
RIDE: Reversal Invariant Descriptor Enhancement

Lingxi Xie1∗ Jingdong Wang2 Weiyao Lin3 Bo Zhang4 Qi Tian5

1,4LITS, TNList, Dept. of Comp. Sci. & Tech., Tsinghua University, Beijing, China
1Department of Statistics, University of California, Los Angeles, Los Angeles, LA, USA

2Microsoft Research, Beijing, China
3Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai, China

5Department of Computer Science, University of Texas at San Antonio, San Antonio, TX, USA
1
198808xc@gmail.com

2
jingdw@microsoft.com

3
wylin@sjtu.edu.cn

4
dcszb@mail.tsinghua.edu.cn

5
qitian@cs.utsa.edu

Abstract

In many fine-grained object recognition datasets, image

orientation (left/right) might vary from sample to sample.

Since handcrafted descriptors such as SIFT are not rever-

sal invariant, the stability of image representation based

on them is consequently limited. A popular solution is to

augment the datasets by adding a left-right reversed copy

for each original image. This strategy improves recognition

accuracy to some extent, but also brings the price of almost

doubled time and memory consumptions.

In this paper, we present RIDE (Reversal Invariant De-

scriptor Enhancement) for fine-grained object recognition.

RIDE is a generalized algorithm which cancels out the

impact of image reversal by estimating the orientation of

local descriptors, and guarantees to produce the identical

representation for an image and its left-right reversed copy.

Experimental results reveal the consistent accuracy gain of

RIDE with various types of descriptors. We also provide

insightful discussions on the working mechanism of RIDE

and its generalization to other applications.

1. Introduction

Image classification is a fundamental problem in com-

puter vision which implies a large number of applications.

One of the most popular approaches for image classification

is the Bag-of-Features (BoF) model [8], a statistics based

algorithm in which local features are extracted, encoded and

summarized into global image representation.

∗This work was done when Lingxi Xie was an intern at MSR.

This work is supported by the 973 Program of China 2013CB329403

and 2012CB316301, NSFC 61332007, 61273023, 61429201, 61471235,

Tsinghua ISRP 20121088071, ARO grants W911NF-15-1-0290 and

W911NF-12-1-0057, and Faculty Research Awards, NEC Lab of America.

SIFT SIFT+RIDE SIFT SIFT+RIDE

� = ͳ.ͳʹ � = Ͳ.ͲͲ

SIFT SIFT+RIDE SIFT SIFT+RIDE

� = ͳ.ͲͲ � = Ͳ.4Ͳ
Figure 1: SIFT [21] matching with (red) and without (blue)

RIDE (best viewed in color). In the latter case, it is diffi-

cult to find feature matches even between an image and its

reversed copy. RIDE also significantly reduces the feature

distance between each pair of reversed objects.

Recent years have witnessed a shift in the interest to-

wards fine-grained recognition, which is aimed at predict-

ing the class at a finer level of granularity. For example,

given that each image contains a bird, it remains to decide

1100

which species is depicted. As observed in [3][6][12], the

key to fine-grained recognition is the alignment of semantic

object parts, such as the head or tail of a bird. Mean-

while, we also observe that image reversal harms the object

alignment quality, as illustrated in Figure 1. Since many

handcrafted descriptors, such as SIFT [21] and LCS [29],

might change completely after being reversed, it is difficult

to find feature correspondence between an image and its

reversed version. Consequently, the vector representation of

an image might be totally different from that of its reversed

version, which limits the machine learning algorithms from

learning discriminative models. To cope with, researchers

propose to perform classification on an augmented dataset,

which is constructed by adding a reversed copy for each im-

age [7][6]. Although such algorithms improve recognition

accuracy to some extent, they still suffer the disadvantage

that requiring almost doubled computational costs.

This paper presents RIDE (Reversal Invariant Descrip-

tor Enhancement), a simple, fast and generalized algorithm

which brings reversal invariance to local descriptors. We

start with observing the difference between original and

reversed descriptors, and then suggest computing the ori-

entation of each descriptor to cancel out the impact of im-

age reversal. For orientation estimation, we adopt an ap-

proximated summation on the gradient-based histograms.

When RIDE is adopted with the BoF model, we guarantee

to generate identical representation for an image and its left-

right reversed copy. Experiments reveal that RIDE produces

consistent accuracy improvement on a wide range of fine-

grained object recognition and scene classification tasks.

RIDE even beats the data augmentation methods with high-

er recognition rates and lower time/memory consumptions.

The easy implementation and cheap computational costs

make RIDE quite competitive in real-world applications.

The remainder of this paper is organized as follows. Sec-

tion 2 briefly introduces related works. The RIDE algorithm

and its application are illustrated in Section 3. After exper-

iments are shown in Section 4, we conclude in Section 5.

2. Related Works

2.1. The BoF Model

The BoF model [8] starts with extracting local descrip-

tors. Due to the limited descriptive power of raw pixels,

handcrafted descriptors, such as SIFT [21][36], HOG [9]

and LCS [29], are widely adopted. Although these descrip-

tors could be automatically detected using operators such

as DoG [21] and MSER [24], the dense sampling strate-

gy [4][35] works better on classification tasks.

Next, a visual vocabulary (codebook) is trained to esti-

mate the feature space distribution. The codebook is of-

ten computed with iterative algorithms such as K-Means

or GMM. Descriptors are then encoded with the codebook.

Popular feature encoding methods include hard quantiza-

tion, sparse coding [49], LLC encoding [39], super-vector

encoding [56], Fisher vector encoding [33], etc.

In the final stage, quantized feature vectors are aggre-

gated as compact image representation. Sum pooling, max-

pooling and ℓp-norm pooling [11] provide different choices,

and visual phrases [53][45] and/or spatial pyramids [13][19]

are constructed for richer spatial context modeling. The

representation vectors are then summarized [47] and fed

into machine learning algorithms such as the SVM.

2.2. Towards Reversal Invariance

One of the major shortcomings of the BoF model comes

from the sensitivity of local descriptors. Especially, in fine-

grained recognition, objects might have different left/right

orientations. Since handcrafted descriptors such as SIFT

are not reversal invariant, feature representation of an image

and its reversed version might be totally different.

To cope with, researchers propose to augment the im-

age datasets by adding a reversed copy for each original

image, and perform classification on the enlarged training

and testing sets [7][6]. In [28], it is even suggested to learn

a larger image transformation set for dataset augmentation.

Although these complicated algorithms are verified to im-

prove recognition accuracy, they still suffer the disadvan-

tage of expensive time and memory overheads.

There are also efforts on designing reversal invariant de-

scriptors for image retrieval. Some of them [22][46] con-

sider geometry-inverted and brightness-inverted variants,

and perform a symmetric function, such as dimension-wise

summation or maximization, to cancel out reverse. Other

examples include defining a set of spatial bins to calculate

histograms [15], or enforcing that the flows of all regions

should follow a pre-defined direction [55]. These inspire us

that symmetry is the key to reversal invariance [34][40].

3. The RIDE Algorithm

This section presents the RIDE algorithm which brings

reversal invariance to local descriptors.

3.1. Why Reversal Invariance?

In almost every fine-grained image collection, there exist

both left-oriented and right-oriented objects. For example,

among 11788 images of the Bird-200 dataset [38], at least

5000 birds are oriented to the left and other 5000 oriented

to the right. In the Aircraft-100 dataset [23] with 10000
images, we can also find more than 4800 left-oriented and

more than 4500 right-oriented aircrafts, respectively.

We perform a simple case study on the Aircraft-100

dataset [23] to reveal how image reversal prevents us from

achieving satisfying classification performance. We choose

the Aircraft-100 dataset for the reason that the orienta-

tion of an aircraft is more easily determined than a bird.

2101

#1: BAE-125 #2: BAE-125 #3: BAE-125

#4: BAE-125 #5: BAE-125 #6: BAE-125

#7: BAE-125 #8: BAE-125

BAE-125

#9: BAE-125

� = Ͳ.ͲͲ � = Ͳ.ʹʹ � = Ͳ.ʹ͵
� = Ͳ.ʹ͵ � = Ͳ.ʹ4 � = Ͳ.ʹͷ
� = Ͳ.ʹͷ � = Ͳ.ʹͷ � = Ͳ.ʹ͸

Mean AP: 0.4143

Mean Dist.: 0.83

Mean TP Dist.: 0.34

Self-Ranking: #1

First FP: #18

QUERY

#1: 707-320 #2: DC-3 #3: Cessna-560

#4: MD-80 #5: 737-400 #6: 747-100

#7: MD-11 #8: 757-300

BAE-125

� = Ͳ.8ͳ � = Ͳ.8͵ � = Ͳ.84
� = Ͳ.84 � = Ͳ.84 � = Ͳ.8ͷ
� = Ͳ.8ͷ � = Ͳ.8͸ � = ͳ.Ͳ4#514: BAE-125

Mean AP: 0.0025

Mean Dist.: 1.09

Mean TP Dist.: 1.06

Self-Ranking: #514

First TP: #388

QUERY

Figure 2: Retrieval in the right-oriented dataset with a right-oriented image and its reversed version (best viewed in color).

Based on the original dataset, we manually reverse the left-

oriented images, generating a right-aligned dataset. We ex-

tract image features with the settings in Section 4.1, and use

them for both image classification and retrieval.

With the standard training/testing split (around 67 im-

ages per category are used for training), the recognition rate

is 53.13% on the original dataset and rises up quickly to

63.94% on the right-aligned dataset, with more-than-10%
absolute accuracy gain (more-than-20% relative gain). This

implies that orientation alignment brings a huge benefit for

fine-grained object recognition.

As another interesting experiment, we use all (10000)

images in the right-aligned dataset for training, and evaluate

the model on two datasets with exactly the same image con-

tents but different orientations. When testing images are all

right-oriented (i.e., performing self-validation), the classifi-

cation accuracy is 99.73%. However, when testing images

are all left-oriented (by reversing right-oriented ones), the

accuracy drops dramatically to 46.84%. This experiment

indicates that a model learned from right-oriented objects

may not recognize left-oriented objects very well.

As an intuitive demonstration, we perform retrieval on

the right-aligned dataset. We sort the candidate images ac-

cording to the ℓ2 distance between the image representation

vectors. Results are summarized to in Figure 2. When the

query is of the same orientation (right) with the database,

the search result is satisfied (mAP is 0.4143, the first false-

positive is ranked at #18). However, if the query image is

reversed, its feature representation changes thoroughly, and

the retrieval accuracy drops dramatically (mAP is 0.025, the

first true-positive is ranked at #388). It is worth noting, in

the latter case, that the reversed version of the query image

is ranked at #514, which means that more than 500 images,

mostly from different categories, are more similar to the

query than its reversed copy!

Since an image and its reversed copy might have total-

ly different feature representation, in a fine-grained dataset

containing both left-oriented and right-oriented objects, we

are implicitly partitioning the images of each class into two

(or even more) prototypes. Consequently, the number of

training images of each prototype is reduced and the risk

of over-fitting increased. With this observation, some algo-

rithms [7][6] augment the dataset by generating a reversed

copy for each image to increase the number of training cases

of each prototype, leading to recognition accuracy gain. We

propose a different idea that focuses on generating feature

representation which is invariant to image reversal.

3.2. Towards Reversal Invariance

We start from observing how SIFT, a typical handcraft-

ed descriptor, changes with left-right image reversal. The

structure of a SIFT descriptor is illustrated in Figure 3. A

patch is partitioned into 4× 4 spatial grids, and in each grid

a 8-dimensional gradient histogram is computed. Here we

assume that spatial grids are traversed from top to bottom,

then left to right, and gradient intensities in each grid is

3102

0 1 2 3

4 5 6 7

8 9 10 11

12 13 1514

Original SIFT

ϯ’ Ϯ’ ϭ’ Ϭ’
ϳ’ ϲ’ ϱ’ ϰ’
ϭϭ’ ϭϬ’ ϵ’ ϴ’
ϭϱ’ ϭϯ’ ϭϮ’ϭϰ’

Reversed SIFT

Gradient Histogram

2 1

0

765

4

3 Ϯ’ ϯ’

ϰ’

5’ϲ’ϳ’

Ϭ’

ϭ’
Original

Indexͳ4 × 8 + ͷ= ͳͳ͹
Reversed

Indexͳ͵ × 8 + ͹= ͳͳͳ
Figure 3: SIFT and its reversed version. Same number in-

dicates corresponding grids/gradients. Numbers in original

SIFT indicate the order of collecting grids/gradients.

collected in a counter-clockwise order. When an image

is left-right reversed, all the patches on it are reversed as

well. In a reversed patch, both the order of traversing spatial

grids and collecting gradient values are changed, although

the absolute gradient values in the corresponding directions

do not change. Taking the lower-right grid in the original

SIFT descriptor (#15) as the example. When the image is

reversed, this grid appears at the lower-left position (#12),

and the order of collecting gradients in the grid changes

from (0, 1, 2, 3, 4, 5, 6, 7) to (4, 3, 2, 1, 0, 7, 6, 5).

Denote the original SIFT as d = (d0, d1, . . . , d127),
in which di×8+j = ai,j for i = 0, 1, . . . , 15 and j =
0, 1, . . . , 7. As shown in Figure 3, each index (0 to 127) of

the original SIFT is mapped to another index of the reversed

SIFT. For example, d117 (a14,5, the bold arrow in Figure 3)

would appear at d111 (a13,7) when the descriptor is re-

versed. Denote the index mapping function as fR(·) (e.g.,

fR(117) = 111), so that the reversed SIFT could be com-

puted as: dR = fR(d) =
(
dfR(0), dfR(1), . . . , dfR(127)

)
.

Towards reversal invariance, we need to design a de-

scriptor transformation function r(d), which satisfies

r(d) = r
(
d
R
)

for any descriptor d. For this, we de-

fine r(d) = s
(
d,dR

)
, in which s(·, ·) satisfies symmetry,

i.e., s(d1,d2) = s(d2,d1) for any pair (d1,d2). In this

way reversal invariance is achieved: r(d) = s
(
d,dR

)
=

s
(
d
R,d

)
= s

(
d
R,

(
d
R
)R)

= r
(
d
R
)
. We use the fact that

(
d
R
)R

= d holds for any d.

3.3. RIDE on SIFT Descriptors

There are a lot of symmetric function s(·, ·), such as

dimension-wise summation or maximization. Here we con-

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

�௜,௝ �3,௝
�3,ଵ௑ = �3,ଵ × 22

�3,ଵ௒ = −�3,ଵ × 22 �3,ଵ
0

123

4

5 6 7

�௑ = ௜=଴ଵ5 ௝=଴7 �௜,௝௑ �௒ = ௜=଴ଵ5 ௝=଴7 �௜,௝௒

ݔ
ݕ

Figure 4: Estimating the orientation of SIFT.

sider only one type of functions which select one of two

candidates as the result, i.e., s
(
d,dR

)
equals to either d

or dR, so that the descriptive power of SIFT is maximally

preserved. In general, we can define an orientation quan-

tization function q(·), and choose the one in
{
d,dR

}
with

the larger function value. Ideally, q(·) could capture the

orientation property of a descriptor, e.g., q(d) reflects the

extent that d is oriented to the right. Recall that in the

original version of SIFT [21], each descriptor is naturally

assigned an orientation angle θ ∈ [0, 2π), so that we can

simply take q(d) = cos θ, but orientation is often ignored

in the implementation of dense SIFT [4][37]. We aim at

recovering the orientation with fast computations.

The major conclusion is that, the global orientation of a

densely-sampled SIFT descriptor could be estimated by its

local gradients. For each of the 128 dimensions, we take its

gradient value and lookup for its (1 of 8) direction. The

gradient value is then decomposed into two components

along the x-axis and y-axis, respectively. The left/right

orientation of the descriptor is then computed by collecting

the x-axis components over all the 128 dimensions. For-

mally we define 8 orientation vectors uj , j = 0, 1, . . . , 7.

According to the definition of SIFT in Figure 3, we have

uj = (cos(jπ/8) , sin(jπ/8))
⊤

. The global gradient could

be computed as G(d) = (Gx, Gy)
⊤
=

∑15
i=0

∑7
j=0ai,juj .

The computing process is illustrated in Figure 4. The proof

of estimation could be found in the supplementary material.

We may simply take Gx as the value of quantization

function, i.e., q(d) = Gx(d) for every d. It is worth noting

that q(d) = −q
(
d
R
)

holds for any d, therefore we can

simply use the sign of q(d) to compute the reversal invariant

descriptor transform d̃:

d̃ = r(d) =





d q(d) > 0
d
R q(d) < 0

max
{
d,dR

}
q(d) = 0

(1)

4103

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5
x 10

6

q(.) Value

N
u
m

b
e
r

o
f
D

e
s
c
ri
p
to

rs

Figure 5: The distribution of q(·) values on the Bird-200

dataset. According to the implementation of [37], SIFT

descriptors are ℓ2-normalized so that ‖·‖2 = 1.

where max
{
d,dR

}
denotes either d or dR with the larger

sequential lexicographic order [46]. We name the algorithm

RIDE (Reversal Invariant Descriptor Enhancement).

Regarding stability, RIDE could also suffer from numer-

ical stability issues especially in areas with low gradient

magnitudes. Meanwhile, when the quantization function

value q(d) is close to 0, r(d) could be sensitive to small

image noises, which may change the sign of q(d). To quan-

titatively analyze the impact of image noises, we first esti-

mate the distribution of q(d) on the Bird-200 dataset [38].

According to the histogram in Figure 5, one may observe

that about half of SIFT descriptors have relatively small

q(·) values. We then add a random Gaussian noise with

standard deviation 0.1203 (the median of |q(·)| values) to

each of the q(·) value, and find that random noises only

cause the classification accuracy of SIFT case drop by less

than 1%, which is relatively smaller compared to the gain

of RIDE (6.37%, see Table 1(d)). Similar experiments on

the Aircraft-100 dataset [23] also lead to the same result.

3.4. Generalization

We generalize RIDE for (a) other local descriptors and

(b) more types of reversal invariance.

When RIDE is applied on other descriptors, we can first

extract SIFT descriptors on the same patches, then compute

G to estimate the orientation of those patches, and perform

reversal operation if necessary. A generalized flowchart of

RIDE is illustrated in Algorithm 1. The extra time over-

heads in this process mainly come from the computation of

SIFT, which sometimes could be saved with a quick recov-

ery of SIFT from given descriptors. For example, RGB-

SIFT is composed of three SIFT vectors dR, dG and dB,

from individual red, green and blue channels, therefore we

can compute GR, GG and GB individually, and combine

Algorithm 1 Reversal Invariant Descriptor Enhancement

1: Input: D = {dm, lm}
M

m=1.

2: procedure RIDE

3: Reversal: DR =
{
d
R
m, lm

}M

m=1
;

4: SIFT: DS =
{
d
S
m, lm

}M

m=1
, if necessary;

5: Orientation: q(dm) = Gx

(
d
S
m

)
;

6: Selection: d̃m = r(dm), based on (1).

7: end procedure

8: Output: D̃ =
{
d̃m, lm

}M

m=1
.

them with G = 0.30GR + 0.59GG + 0.11GB. For other

color SIFT descriptors, the only difference lies in the lin-

ear combination coefficients. By this trick we can perform

RIDE on Color-SIFT descriptors very fast.

In the case that RIDE is applied on fast binary descrip-

tors for image retrieval, we could also use the same idea

to design the gradient G without computing SIFT. Let us

take the BRIEF descriptor [5] as an example. For a BRIEF

descriptor d, Gx(d) is obtained by accumulating the binary

tests. For each tested pixel pair (p1, p2) with distinct x-

coordinates, if the left pixel has a smaller intensity value,

add 1 to Gx(d), otherwise subtract 1 from Gx(d). If x-

coordinates of p1 and p2 are the same, this pair is ignored.

Gx(d) is similarly computed, and q(d) = Gx(d) as usual.

This idea could also be generalized to other binary descrip-

tors such as ORB [32], which is based on BRIEF.

RIDE is also capable of cancelling out a larger family of

reversal operations, including the upside-down image rever-

sal, and image rotation by 90◦, 180◦ and 270◦. For this we

need to constrain the descriptor more strictly with global

gradient G = (Gx, Gy)
⊤

. Recall that limiting Gx > 0
selects 1 descriptor from 2 candidates, resulting in RIDE-

2 (equivalent to RIDE mentioned previously) for left-right

reversal invariance. Similarly, limiting Gx > 0 and Gy > 0
selects 1 from 4 descriptors, obtaining RIDE-4 for both

left-right and upside-down reversal invariance, and limiting

Gx > Gy > 0 obtains RIDE-8 for both reversal and rota-

tion invariance. We do not use RIDE-4 and RIDE-8 in this

paper, since upside-down reversal and heavy rotations are

not often observed in fine-grained datasets, and the descrip-

tive power of a descriptor is reduced by strong constraints

on G. An experimental analysis of RIDE-4 and RIDE-8

could be found in the supplementary material.

3.5. Application on Image Classification

Finally, we briefly discuss the application of RIDE for

image classification. Consider an image I, and a set of,

say, SIFT descriptors extracted from the image: D =
{d1,d2, . . . ,dM}. When the image is left-right reversed,

the set D becomes: DR =
{
d
R
1 ,d

R
2 , . . . ,d

R
M

}
. If the de-

5104

scriptors are not reversal invariant, i.e., D 6= DR, the feature

representation produced by D and DR might be totally dif-

ferent. With RIDE, we have d̃ = d̃R for any d, therefore D̃

and D̃R are identical. Consequently, we generate the same

representation for an image and its reversed copy.

A simple trick applies when RIDE is adopted with Spa-

tial Pyramid Matching [19]. Note that corresponding de-

scriptors might have different x-coordinates on an image

and its reversed copy, e.g., a descriptor appearing at the

upper-left corner of the original image could also be found

at the upper-right corner of the reversed image, resulting in

the difference in spatial pooling bin assignment. To cope

with, we can count the number of descriptors reversed by

RIDE, i.e., the ones satisfying d̃ 6= d. If the number is

larger than M/2, where M is the number of descriptors,

we left-right reverse the descriptor set by replacing the x-

coordinate of each descriptor with W − x, where W is the

image width. This is equivalent to predicting the orientation

of an image using orientation statistics on local descriptors.

3.6. Comparison with Previous Works

To the best of our knowledge, many recently published

papers achieve reversal invariance with dataset augmenta-

tion [39][7][6][28]. We will demonstrate in Section 4.2

that RIDE works better than dataset augmentation.

Although some reversal invariant descriptors have been

proposed for image retrieval [15][22][55][46], these de-

scriptors have not been adopted in classification tasks. We

implement MI-SIFT [22] and Max-SIFT [46], and compare

them with RIDE in Table 2 (see Section 4.2). One can

observe that RIDE significantly outperforms MI-SIFT and

Max-SIFT in every single case. Especially, MI-SIFT work-

s even worse than original descriptors, which is probably

because it destroys the spatial structure of SIFT and thus

harms the descriptive power of SIFT.

4. Experiments

4.1. Datasets and Settings

We evaluate our algorithm on four publicly available

fine-grained object recognition datasets, i.e., the Oxford

Pet-37 dataset [27] (37 cat/dog breeds, 7349 images), the

Aircraft-100 dataset [23] (100 aircraft models, 100 im-

ages for each model), the Oxford Flower-102 dataset [26]

(8189 flower images from 102 categories) and the Caltech-

UCSD Bird-200-2011 dataset [38] (11788 bird images over

200 different species). For the Aircraft-100 and Bird-

200 datasets, a bounding box is provided for each image.

The numbers of training images per category for the above

datasets are about 100, 20, 67 and 30, respectively.

Basic experimental settings follow the recent proposed

BoF model [33]. An image is scaled, with the aspect ratio

preserved, so that there are 300 pixels on the larger axis. We

only use the region within the bounding box if it is avail-

able. We use VLFeat [37] to extract dense RootSIFT [2]

descriptors. The spatial stride and window size of dense

sampling are 6 and 12, respectively. On the same set of

patches, LCS, RGB-SIFT and Opponent-SIFT descriptors

are also extracted. RIDE is thereafter computed for each

type of descriptors. The dimensions of SIFT, LCS and color

SIFT descriptors are reduced by PCA to 64, 64 and 128,

respectively. We cluster the descriptors with a GMM of 32
components, and use the improved Fisher vectors (IFV) for

feature encoding. A spatial pyramid with 4 regions (the en-

tire image and three horizontal stripes) is adopted. Features

generated by SIFT and LCS descriptors are concatenated

as the FUSED feature. The final vectors are square-root

normalized followed by ℓ2 normalized [18], and then fed

into LibLINEAR [10], a scalable SVM implementation.

Averaged accuracy over all the categories are reported on

the fixed training/testing split provided by the authors.

To compare our results with the state-of-the-art classifi-

cation results, strong features are extracted by resizing the

images to 600 pixels in the larger axis, using spatial stride

8, window size 16, and 256 GMM components.

4.2. Object Recognition

We report fine-grained object recognition accuracy with

different descriptors in Table 1. Beyond original descrip-

tors, we adopt both RIDE and dataset augmentation. By

augmentation we mean to generate a reversed copy for each

training/testing image, use the enlarged set to train the mod-

el, test with both original and reversed samples, and predict

the label with a soft-max function [28].

In Table 1, one can see that RIDE produces consistent

accuracy gain beyond original descriptors (ORIG). More-

over, when we use SIFT or Color-SIFT descriptors, RIDE

also produces higher accuracy than that using dataset aug-

mentation (AUGM). When the LCS descriptors are used,

RIDE works a little worse than AUGM, which is proba-

bly because the orientation of LCS (not a gradient-based

descriptor) is not very well estimated with SIFT gradients.

We shall emphasize that dataset augmentation (AUGM)

requires almost doubled computational costs than those of

RIDE (see Section 4.5 for details), since the time/memory

complexity of many classification models is proportional

to the number of training/testing images. To make fair

comparison, we double the codebook size used in RIDE

to obtain longer features, since it is a common knowledge

that larger codebook sizes often lead to better classification

results. Such system, denoted by RIDE×2, works consis-

tently better than AUGM in every single case.

We also use strong features and compare RIDE with

other reversal invariant descriptors, namely MI-SIFT [22],

Max-SIFT [46], FIND [15] and F-SIFT [55]. We com-

pute these competitors for each SIFT component in RGB-

6105

ORIG RIDE AUGM RIDE×2

SIFT 37.92 42.28 42.24 45.61
LCS 43.25 44.27 45.12 46.83
FUSED 52.06 54.69 54.67 57.51
RGB-SIFT 44.90 47.35 46.98 49.53
OPP-SIFT 46.53 49.01 48.72 51.19

(a) Pet-37 Performance

ORIG RIDE AUGM RIDE×2

SIFT 53.13 57.82 57.16 60.14
LCS 41.82 42.86 43.13 44.81
FUSED 57.36 61.27 60.59 63.62
RGB-SIFT 57.89 63.09 62.48 65.11
OPP-SIFT 47.06 53.12 51.39 55.79

(b) Aircraft-100 Performance

ORIG RIDE AUGM RIDE×2

SIFT 53.68 59.12 58.01 61.09
LCS 73.47 75.30 75.88 77.40
FUSED 76.96 80.51 79.49 82.14
RGB-SIFT 71.52 74.97 74.18 77.10
OPP-SIFT 76.12 79.68 78.83 81.69

(c) Flower-102 Performance

ORIG RIDE AUGM RIDE×2

SIFT 25.77 32.14 31.60 34.07
LCS 36.18 38.50 38.97 40.16
FUSED 38.11 44.73 43.98 46.38
RGB-SIFT 31.36 39.16 38.79 41.73
OPP-SIFT 35.40 42.18 41.72 44.30

(d) Bird-200 Performance

Table 1: Classification accuracy (%) of different models: using SIFT, LCS, FUSED(SIFT and LCS features concatenated)

and Color-SIFT features, with RIDE or dataset augmentation. Here, ORIG and RIDE denote using original descriptors

without and with RIDE, AUGM is for dataset augmentation, and RIDE×2 for RIDE with doubled codebook size.

ORIG RIDE MI[22] Max[46] FIND[15] F[55] [1] [23] [25] [28] [30] [41]

P-37 60.24 63.49 58.91 60.65 59.63 61.06 54.30 − 56.8 − − 59.29
A-100 74.61 78.92 72.26 74.39 74.06 75.95 − 48.69 − − − −
F-102 83.53 86.45 81.06 83.13 82.91 84.72 80.66 − 84.6 − − 75.26
B-200 47.61 50.81 45.59 47.20 47.49 48.21 − − 33.3 45.2 44.2 −

Table 2: Classification accuracy (%) comparison with recent works. We use RGB-SIFT on the Aircraft-100 dataset, and

FUSED (SIFT with LCS) features on other datasets. We implement MI-SIFT [22] and Max-SIFT [46] ourselves.

SIFT, and leave LCS unchanged in FUSED. Results are

shown in Table 2. The consistent 3%-4% gain verifies

that RIDE makes stable contribution to visual recogni-

tion. Moreover, researchers design complex part-based

recognition algorithms on the Bird-200 dataset [6][12][44]

[52][54][51][20]. We also evaluate RIDE on the detect-

ed parts provided by symbiotic segmentation and localiza-

tion [6] and gravitational alignment [12]. RIDE boosts the

recognition accuracy of [6] and [12] from 56.6% to 60.7%
and from 65.3% to 67.4%, respectively. In comparison, [12]

applies dataset augmentation to boost the accuracy from

65.3% to 67.0%. RIDE produces better results with only

half time/memory consumptions. With the parts learned by

deep CNNs [51], we get 73.1% with FUSED features.

4.3. Global Reversal vs. Local Reversal

Based on the above experiments, one can conclude that

RIDE produces powerful image features and cooperates

with detected object parts for fine-grained recognition.

An essential difference between RIDE and dataset aug-

mentation comes from the comparison of local and global

image reversal. By local reversal we mean that RIDE can

decide whether to reverse every single descriptor individu-

ally, while dataset augmentation only allows to choose one

image from two candidates, i.e., either original or globally

reversed. Figure 6 compares both strategies in an intuitive

manner. In these cases, we aim at matching a target image

with a possibly reversed test image. With global reversal,

we have only two choices and the flexibility of our model

is limited. With local reversal, however, it is possible to

reverse smaller regions such as the turned head of the bird

or cat. By this we can find larger numbers of true feature

matches and obtain more similar image representation (s-

maller feature distances). Therefore, it is not difficult to

understand the reason why RIDE works even better than

dataset augmentation.

4.4. Other Recognition Results

To reveal that RIDE could also be used on other classi-

fication tasks, we perform experiments on the LandUse-21

7106

� = Ͳ.ͷ͸

� = Ͳ.͸8

� = Ͳ.͵ʹ � = Ͳ.͵͸

� = Ͳ.88

� = Ͳ.ͻ͸

TARGET Image TEST Image

TEST: Local Reversal TEST: Global Reversal

TARGET Image TEST Image

TEST: Local Reversal TEST: Global Reversal

Figure 6: Global vs. local image reversal. Local reversal (with manually labeled regions in the yellow boxes) allows more

flexible image representation, and produces smaller feature distances between test images and target images.

L-21 I-67 S-397 Caltech256

ORIG 93.64 63.17 48.35 58.77
RIDE 94.71 64.93 50.12 60.25
[16] − 63.10 − −
[17] 92.8 63.4 46.1 57.4
[48] − 63.48 45.91 −
[18] − − 49.5 −

Table 3: Classification accuracy (%) comparison with re-

cent works on scene recognition datasets.

dataset [50], the MIT Indoor-67 dataset [31], the SUN-397

dataset [42] and the Caltech256 dataset [14]. FUSED (SIFT

with LCS) features are extracted with RIDE, and results are

summarized in Table 3. It is interesting to see that RIDE

also works well to outperform the recent competitors.

The success on other recognition tasks indicates that re-

versal invariance is a common requirement in recognition.

Although RIDE is motivated by the observation on fine-

grained cases, it enjoys good recognition performance on

a wide range of image datasets.

4.5. Computational Costs

We report the time/memory cost of RIDE with SIFT

in Table 4. Since the only extra computation comes from

gradient accumulation and descriptor permutation, the ad-

ditional time cost of RIDE is merely about 1% of SIFT

computation. RIDE does not require any extra memory

storage. However, if the dataset is augmented with left-

right image reversal, one needs to compute and store t-

wo instances for each image, descriptor and feature vector,

resulting in almost doubled time and memory overheads,

which is comparable with using a double-sized codebook,

whereas the latter produces better classification results.

ORIG RIDE AUGM RIDE×2

Descriptor 2.27 hrs 2.29 hrs 2.30 hrs 2.29 hrs
Codebook 0.13 hrs 0.13 hrs 0.13 hrs 0.27 hrs
Encoding 0.78 hrs 0.78 hrs 1.56 hrs 1.28 hrs
Recognition 1.21 hrs 1.21 hrs 2.46 hrs 2.42 hrs
(RAM cost) 3.71GB 3.71GB 7.52GB 7.51 GB

Table 4: Time/memory cost in each step of the BoF model.

All the data are recorded with SIFT descriptors with 32
GMM components on the Bird-200 dataset [38].

5. Conclusions and Future Works

In this paper, we propose RIDE (Reversal Invariant De-

scriptor Enhancement) which brings reversal invariance to

local descriptors. Our idea is inspired by the observation

that most handcrafted descriptors are not reversal invariant,

whereas many fine-grained datasets contain objects with d-

ifferent left/right orientations. RIDE cancels out the impact

of image/object reversal by estimating the orientation of

each descriptor, and then forcing all the descriptors to have

the same orientation. Experiments reveal that RIDE signif-

icantly improves the accuracy of fine-grained object recog-

nition and scene classification with very few computational

costs. RIDE is robust to small image noises. Compared

with dataset augmentation, RIDE produces better results

with lower time/memory consumptions.

In the future, we will generalize RIDE to more com-

puter vision algorithms. As stated in Section 3.4, we can

apply RIDE to image retrieval with fast binary descriptors.

Moreover, RIDE could also inspire other related algorithms

based on deep learning. For example, it is possible to de-

sign reversal invariant pooling neurons in CNNs for better

performance, and the variation of RIDE might also help to

improve other image representation models such as [43].

8107

References

[1] A. Angelova and S. Zhu. Efficient Object Detection and Segmenta-

tion for Fine-Grained Recognition. CVPR, 2013.

[2] R. Arandjelovic and A. Zisserman. Three Things Everyone Should

Know to Improve Object Retrieval. CVPR, 2012.

[3] T. Berg and P. Belhumeur. POOF: Part-based One-vs-One Features

for Fine-Grained Categorization, Face Verification, and Attribute Es-

timation. CVPR, 2013.

[4] A. Bosch, A. Zisserman, and X. Munoz. Scene Classification via

pLSA. ICCV, 2006.

[5] M. Calonder, V. Lepetit, C. Strecha, and P. Fua. BRIEF: Binary

Robust Independent Elementary Features. ECCV, 2010.

[6] Y. Chai, V. Lempitsky, and A. Zisserman. Symbiotic Segmentation

and Part Localization for Fine-Grained Categorization. ICCV, 2013.

[7] K. Chatfield, V. Lempitsky, A. Vedaldi, and A. Zisserman. The

Devil is in the Details: An Evaluation of Recent Feature Encoding

Methods. BMVC, 2011.

[8] G. Csurka, C. Dance, L. Fan, J. Willamowski, and C. Bray. Visual

Categorization with Bags of Keypoints. Workshop on Statistical

Learning in Computer Vision, ECCV, 2004.

[9] N. Dalal and B. Triggs. Histograms of Oriented Gradients for Human

Detection. CVPR, 2005.

[10] R. Fan, K. Chang, C. Hsieh, X. Wang, and C. Lin. LIBLINEAR: A

Library for Large Linear Classification. JMLR, 2008.

[11] J. Feng, B. Ni, Q. Tian, and S. Yan. Geometric Lp-norm Feature

Pooling for Image Classification. CVPR, 2011.

[12] E. Gavves, B. Fernando, C. Snoek, A. Smeulders, and T. Tuytelaars.

Local Alignments for Fine-Grained Categorization. IJCV, 2014.

[13] K. Grauman and T. Darrell. The Pyramid Match Kernel: Discrim-

inative Classification with Sets of Image Features. International

Conference on Computer Vision, 2:1458–1465, 2005.

[14] G. Griffin. Caltech-256 Object Category Dataset. Technical Report,

Caltech, 2007.

[15] X. Guo and X. Cao. FIND: A Neat Flip Invariant Descriptor. ICPR,

2010.

[16] M. Juneja, A. Vedaldi, C. Jawahar, and A. Zisserman. Blocks that

Shout: Distinctive Parts for Scene Classification. CVPR, 2013.

[17] T. Kobayashi. Dirichlet-based Histogram Feature Transform for Im-

age Classification. CVPR, 2014.

[18] M. Lapin, B. Schiele, and M. Hein. Scalable Multitask Representa-

tion Learning for Scene Classification. CVPR, 2014.

[19] S. Lazebnik, C. Schmid, and J. Ponce. Beyond Bags of Features: S-

patial Pyramid Matching for Recognizing Natural Scene Categories.

CVPR, 2006.

[20] L. Li, Y. Guo, L. Xie, X. Kong, and Q. Tian. Fine-Grained Visual

Categorization with Fine-Tuned Segmentation. ICIP, 2015.

[21] D. Lowe. Distinctive Image Features from Scale-Invariant Key-

points. IJCV, 2004.

[22] R. Ma, J. Chen, and Z. Su. MI-SIFT: Mirror and Inversion Invariant

Generalization for SIFT Descriptor. CIVR, 2010.

[23] S. Maji, E. Rahtu, J. Kannala, M. Blaschko, and A. Vedaldi. Fine-

Grained Visual Classification of Aircraft. Technical Report, 2013.

[24] J. Matas, O. Chum, M. Urban, and T. Pajdla. Robust Wide-Baseline

Stereo from Maximally Stable Extremal Regions. Image and Vision

Computing, 2004.

[25] N. Murray and F. Perronnin. Generalized Max Pooling. CVPR, 2014.

[26] M. Nilsback and A. Zisserman. Automated Flower Classification

over a Large Number of Classes. ICCVGIP, 2008.

[27] O. Parkhi, A. Vedaldi, A. Zisserman, and C. Jawahar. Cats and Dogs.

CVPR, 2012.

[28] M. Paulin, J. Revaud, Z. Harchaoui, F. Perronnin, and C. Schmid.

Transformation Pursuit for Image Classification. CVPR, 2014.

[29] F. Perronnin, J. Sánchez, and T. Mensink. Improving the Fisher

Kernel for Large-scale Image Classification. ECCV, 2010.

[30] J. Pu, Y. Jiang, J. Wang, and X. Xue. Which Looks Like Which:

Exploring Inter-class Relationships in Fine-Grained Visual Catego-

rization. ECCV, 2014.

[31] A. Quattoni and A. Torralba. Recognizing Indoor Scenes. CVPR,

2009.

[32] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. ORB: an Effi-

cient Alternative to SIFT or SURF. ICCV, 2011.

[33] J. Sanchez, F. Perronnin, T. Mensink, and J. Verbeek. Image Classi-

fication with the Fisher Vector: Theory and Practice. IJCV, 2013.

[34] L. Skelly and S. Sclaroff. Improved Feature Descriptors for 3D

Surface Matching. 2007.

[35] T. Tuytelaars. Dense Interest Points. CVPR, 2010.

[36] K. Van De Sande, T. Gevers, and C. Snoek. Evaluating Color De-

scriptors for Object and Scene Recognition. IEEE TPAMI, 2010.

[37] A. Vedaldi and B. Fulkerson. VLFeat: An Open and Portable Library

of Computer Vision Algorithms. ACMMM, 2010.

[38] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. The

Caltech-UCSD Birds-200-2011 Dataset. Technical Report, 2011.

[39] J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong. Locality-

Constrained Linear Coding for Image Classification. CVPR, 2010.

[40] Z. Wang, B. Fan, and F. Wu. Local Intensity Order Pattern for Feature

Description. ICCV, 2011.

[41] Z. Wang, J. Feng, and S. Yan. Collaborative Linear Coding for

Robust Image Classification. IJCV, 2014.

[42] J. Xiao, J. Hays, K. Ehinger, A. Oliva, and A. Torralba. SUN

Database: Large-scale Scene Recognition from Abbey to Zoo.

CVPR, 2010.

[43] L. Xie, R. Hong, B. Zhang, and Q. Tian. Image Classification and

Retrieval are ONE. ICMR, 2015.

[44] L. Xie, Q. Tian, R. Hong, S. Yan, and B. Zhang. Hierarchical Part

Matching for Fine-Grained Visual Categorization. ICCV, 2013.

[45] L. Xie, Q. Tian, M. Wang, and B. Zhang. Spatial Pooling of Hetero-

geneous Features for Image Classification. IEEE TIP, 2014.

[46] L. Xie, Q. Tian, and B. Zhang. Max-SIFT: Flipping Invariant De-

scriptors for Web Logo Search. ICIP, 2014.

[47] L. Xie, Q. Tian, and B. Zhang. Simple Techniques Make Sense:

Feature Pooling and Normalization for Image Classification. IEEE

TCSVT, 2015.

[48] L. Xie, J. Wang, B. Guo, B. Zhang, and Q. Tian. Orientational

Pyramid Matching for Recognizing Indoor Scenes. CVPR, 2014.

[49] J. Yang, K. Yu, Y. Gong, and T. Huang. Linear Spatial Pyramid

Matching Using Sparse Coding for Image Classification. CVPR,

2009.

[50] Y. Yang and S. Newsam. Bag-of-Visual-Words and Spatial Exten-

sions for Land-Use Classification. ICAGIS, 2010.

[51] N. Zhang, J. Donahue, R. Girshick, and T. Darrell. Part-based R-

CNNs for Fine-Grained Category Detection. ECCV, 2014.

[52] N. Zhang, R. Farrell, F. Iandola, and T. Darrell. Deformable Part

Descriptors for Fine-Grained Recognition and Attribute Prediction.

ICCV, 2013.

[53] S. Zhang, Q. Tian, G. Hua, Q. Huang, and S. Li. Descriptive Visual

Words and Visual Phrases for Image Applications. ACM Internation-

al Conference on Multimedia, 2009.

[54] X. Zhang, H. Xiong, W. Zhou, and Q. Tian. Fused One-vs-All Mid-

Level Features for Fine-Grained Visual Categorization. ACMMM,

2014.

[55] W. Zhao and C. Ngo. Flip-Invariant SIFT for Copy and Object

Detection. IEEE TIP, 2013.

[56] X. Zhou, K. Yu, T. Zhang, and T. Huang. Image Classification using

Super-Vector Coding of Local Image Descriptors. ECCV, 2010.

9108

