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Abstract

Capturing the 3D motion of dynamic, non-rigid objects

has attracted significant attention in computer vision. Ex-

isting methods typically require either mostly complete 3D

volumetric observations, or a shape template. In this paper,

we introduce a template-less 4D reconstruction method that

incrementally fuses highly-incomplete 3D observations of

a deforming object, and generates a complete, temporally-

coherent shape representation of the object. To this end, we

design an online algorithm that alternatively registers new

observations to the current model estimate and updates the

model. We demonstrate the effectiveness of our approach

at reconstructing non-rigidly moving objects from highly-

incomplete measurements on both sequences of partial 3D

point clouds and Kinect videos.

1. Introduction

In this paper, we introduce an approach to estimating a

temporally-coherent 3D model of a non-rigid object given

a dynamic sequence of highly-incomplete 3D observations

of the object undergoing large deformations. Capturing the

3D motion of dynamic objects, or 4D reconstruction, has

been a longstanding goal of computer vision. Ultimately,

the resulting methods should yield a temporally-coherent

shape representation of the observed deformable object.

Multiview reconstruction methods have been well-

studied to address 4D reconstruction. While current meth-

ods achieve impressive results [12, 9, 6, 27, 32, 36], they

typically require well-engineered and expensive setups,

where the deforming object is captured from multiple view-

points essentially covering its entire 3D surface. By con-

trast, simpler acquisition devices, such as stereo cameras or

the increasingly popular low-cost depth sensors, allow us

to acquire 3D data in a more affordable manner. Unfortu-

nately, these devices typically only produce partial observa-

Figure 1. Deformable 3D fusion.

tions of the object, depicting, at best, half of its 3D surface.

In the case of rigid motion, several fusion techniques

have been proposed to combine multiple partial 3D ob-

servations [15, 28, 41]. However, when it comes to cap-

turing a dynamically deforming object, the literature re-

mains very sparse. More specifically, most existing meth-

ods [17, 7, 18, 35, 39, 42] rely on a pre-processing stage,

where the object undergoes (quasi-) rigid motion, to acquire

a complete 3D template of the object, which will then be de-

formed to match new non-rigid data.

By contrast, in this paper, we introduce a template-less

4D reconstruction method that directly estimates a complete

temporally-coherent 3D model from partial observations of

a deforming objects. In other words, as illustrated in Fig. 1,

we incrementally fuse the partial observations into a com-

plete model while accounting for the deformations of these

observations. Ultimately, this lets us estimate the complete

shape of the deforming object in each frame of a video se-

quence, thus predicting the hidden parts of the object de-
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spite the very small amount of observations in a frame and

the fact that the object moves non-rigidly.

At the core of our algorithm, we make use of a subspace

representation of the object deformations, which has proven

powerful in the context of non-rigid structure-from-motion

(NRSfM) [8, 10, 14]. In contrast to typical NRSfM meth-

ods, however, we tackle the scenario where the points are

only visible in small portions of the sequence and without

readily available correspondences, but exploit depth infor-

mation. To this end, we therefore design an online, two-step

algorithm: For each new frame, we first perform a non-rigid

registration of the partial observations to the shape estimate

of the previous frame. We then update the deformation sub-

space to integrate the new 3D points and better represent the

new frame, as well as still fit to the observations of the pre-

vious frames. Both steps of our approach can be performed

via iterative algorithms that only involve simple and effi-

cient mathematical operations. Ultimately, we predict the

3D location of each point in each frame of the sequence,

whether the point was observed or not.

We demonstrate the effectiveness of our approach on

several challenging sequences, including sequences of par-

tial 3D point clouds and kinect videos. Our quantitative

and qualitative evaluations evidence that our method can re-

cover accurate 4D models from partial observations of ob-

jects undergoing large deformations.

2. Related Work

Many methods have been proposed to address the prob-

lem of 4D reconstruction of non-rigid motion. In particular,

a vast portion of the literature has focused on the problem

of multiview reconstruction [12, 9, 23, 6, 27, 32, 36], where

multiple cameras are placed so as to observe most of the

surface of the object of interest. With the recent availability

of low-cost depth sensors, several methods have proposed

to rely on multiview depth maps, thus exploiting more in-

formative RGBD data [33, 29, 31, 38, 11]. Here, however,

we focus on the problem of single-view 4D reconstruction,

which alleviates the need for the relatively complex setups

required by multiview approaches.

When considering a standard RGB camera, single-view

reconstruction also has a long history in computer vi-

sion. In particular, non-rigid structure-from-motion [4]

quickly emerged as a generalization of the rigid factoriza-

tion approach of [30]. Recently, great progress has been

made in this area, such as implicit low-rank shape mod-

els [24], prior-free approaches [8], dense reconstruction

techniques [13] and methods handling different types of

motions [25]. While effective, these methods can still only

handle small amounts of missing data (i.e., points visible

in only some frames of the sequence), and are thus mostly

limited to relatively small deformations, or deformations of

open surfaces. By contrast, we propose to exploit the in-

creasingly popular depth sensors, which provide richer in-

formation, to perform 4D reconstruction of deforming ob-

jects from partial observations that depict, at best, half of

the object’s surface.

Several methods have tackled the problem of non-rigid

4D reconstruction from partial depth measurements. In

particular, some techniques tackle the case of open sur-

faces, where the surface can be entirely observed in at least

some frames of the sequence [37, 16]. While some work

has tackled the more challenging case of volumetric sur-

faces, most existing methods rely on a pre-processing step,

where a 3D model of the object of interest is acquired un-

der rigid, or quasi-rigid motion [17, 7, 18, 35, 39, 40, 42].

While methods relying on quasi-rigidity during this model-

building step do account for some degree of deformations,

they are very far from attempting to directly estimate the 4D

motion of, e.g., a human dancing in front of the sensor.

To the best of our knowledge, only two methods have

proposed to tackle such a challenging scenario [20, 19].

In [20], a moving human body was reconstructed in a piece-

wise rigid manner from a kinect. This method, however,

exploits the availability of a 3D skeleton model fitted to

each frame of the sequence. As a consequence, it does

not generalize to other objects, or even to people wearing

loose garments. By contrast, [19] addresses the more gen-

eral scenario of non-rigid shape estimation from partial 3D

observations by warping the partial observations of each

frame in a sequence to one specific, reference frame. The

final shape model in the reference frame is then obtained by

fusing the different partial observations using a volumetric

signed-distance function (SDF) representation. As a conse-

quence, this method suffers from the computational draw-

back of having to perform the warping and fusion opera-

tions multiple times, by sequentially treating each frame as

reference frame. Furthermore, due to its SDF-based shape

representation, it only produces unrelated reconstructions in

each frame, and thus fails to perform 4D reconstruction.

By contrast, here, we introduce an online algorithm to

fuse partial 3D observations of a deforming object. As a

result, we produce a complete 4D model for the entire se-

quence, that accurately infers the missing parts of the object

in all the frames.

The work of [22], virtually concurrent to ours, aims at

the same goal as us. Our approach fundamentally differs

from this work in the representation of the surface deforma-

tions, i.e., warp-field for [22] versus subspace for us. The

main benefit of our representation is that it allows us to esti-

mate the position of newly observed points even in the pre-

vious frames where these points were hidden.

3. Deformable 3D Fusion

In this section, we introduce our approach to estimating

a complete 4D model from a sequence of partial 3D ob-
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Figure 2. Measurement matrix Xf with missing entries in black.

servations of a deforming object. Our algorithm, given by

Algorithm 1, works in an online manner, and, at each frame

f , performs the following two steps: (i) Register the par-

tial observations to the current model while accounting for

deformations; (ii) Update the deformation model and the

shape in each frame up to f . Below, we first discuss our

approach to addressing the second step, and then focus on

non-rigid registration.

3.1. Subspace Learning for 4D Reconstruction

Let us first assume that we have established correspon-

dences between the partial observations acquired up to

frame f , and that the rigid component of the motion in each

frame has been removed. The details of this registration step

will be given in Section 3.2. Here, we propose to model

the remaining deformations with a linear subspace. Such a

subspace model not only provides us with a compact repre-

sentation of the shape in each frame, but also allows us to

predict the locations of the points that are occluded in each

frame. We therefore cast 4D reconstruction as the problem

of learning a subspace from partial observations.

More specifically, let xi
j = [xi

j , y
i
j , z

i
j ]
T denote the 3D

location of point i in frame j. At frame f , given the corre-

spondences between the partial observations of each frame,

we can build a measurement matrix Xf ∈ R
3Nf×f , with

Nf the total number of points observed up to frame f , of

the form

Xf =







x
1
1 · · · x

1
f

...
...

x
Nf

1 · · · x
Nf

f






,

where the missing (unobserved) entries in each frame are

replaced by zeros (or any arbitrary value). Note that, as

illustrated by Fig. 2, Xf contains a large number of missing

entries, since, in our scenario, at most half of the object is

seen in each frame.

As mentioned before, we assume that the deformations

of the object lie on a low-dimensional subspace. This lets

us predict a temporally-coherent 3D surface as

X̂ = X̄+ SW ,

where S ∈ R
3Nf×d and W ∈ R

d×f denote the deformation

subspace and the corresponding coefficients, respectively.

X̄ = x̄1
T
f , with 1f an f -dimensional column vector of

ones, is the matrix containing f copies of the mean shape x̄.

In practice, we compute this mean shape by averaging over

the observations of each point.

Reconstructing a 4D surface can then be achieved by

finding the subspace S and coefficients W that best fit the

given partial observations Xf . This can be expressed as the

optimization problem

min
S,W

‖Ω⊙ (X− X̄− SW)‖2F , (1)

where Ω is the (known) visibility matrix, ⊙ denotes the

Hadamard (elementwise) product and ‖ · ‖F is the Frobe-

nius norm.

Due to the large number of occluded points, the recon-

struction of the unobserved points obtained with our sub-

space may still be noisy. To address this issue, we make use

of a Laplacian regularizer that constrains the local deforma-

tions of the surface [26]. Following [26], we estimate the

Laplacian of 3D point i in frame j as

l(xi
j) = x

i
j −

1

K

∑

k∈NK(i)

x
k
j , (2)

where K is the number of nearest neighbors of x
i
j taken

into account, and NK(i) is the set of indices of these neigh-

bors. An affine-invariant Laplacian regularizer for point i in

frame j can then be written as

rij = ‖Ti
jl(x

i
ri)− l(xi

j)‖
2
2 ,

where ri is the index of the frame in which a reference

Laplacian for point i is computed, and T
i
j is the affine

transformation that aligns this reference Laplacian to the

one in frame j. Note that, in contrast to [26], since no

frame depicts the entire surface, in our case the reference

Laplacian needs to be computed in a different frame for

each point. We find this reference frame, as well as the

best value for K ∈ {4, 5, 6}, by finding the Laplacian with

smallest L2-norm (i.e., the frame and value of K for which

the K nearest neighbors of point i best approximate x
i
j , ac-

cording to Eq. 2). As shown in [26], the affine transfor-

mation T
j
i can directly be obtained from the coordinates of

the points in frame j. Therefore, the regularizers rij for all

points i and all frames j can be encoded with a single matrix

L ∈ R
3Nf×3Nf acting on the coordinates of the points.

By adding such a Laplacian regularizer to our objective

function, we can express 4D reconstruction as the solution

to the optimization problem

min
S,W

‖Ω⊙ (X− X̄− SW)‖2F + γ‖L(X̄+ SW)‖2F ,

(3)

where γ is the weight of the Laplacian regularizer. Solv-

ing (3) in an efficient manner is made difficult by the

Hadamard product that accounts for the missing observa-

tions. In fact, this is a well-known problem in the matrix
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factorization literature [5, 1, 3]. Furthermore, compared to

standard matrix factorization, we have an additional term

in our objective function. To account for these difficul-

ties, here, we introduce an algorithm based on the Alternat-

ing Direction Method of Multipliers [2] , which has proven

more effective than simple alternating schemes in practice.

More specifically, let us first re-write (3) as

min
S,W,Z

‖Ω⊙ (X− Z)‖2F + γ‖L(X̄+ SW)‖2F

s.t. Z = X̄+ SW ,
(4)

where we introduced an auxiliary variable Z. The aug-

mented Lagrangian of (4) can be expressed as

L(S,W,Z,Λ) = ‖Ω⊙ (X− Z)‖2F + γ‖L(X̄+ SW)‖2F
+ tr

(

ΛT (Z− X̄− SW)
)

+ ρ/2‖Z− X̄− SW‖2F ,

where Λ is the matrix of Lagrange multipliers correspond-

ing to the constraints, and ρ is the standard parameter of the

ADMM. The ADMM then consists of iteratively minimiz-

ing the augmented Lagrangian w.r.t. each variable Z, S, W,

and updating the Lagrange multipliers. In our case, each of

these operations has a simple closed-form solution.

Computing Z:

The auxiliary variable Z are obtained by solving

min
Z

‖Ω⊙(X−Z)‖2F +
ρ

2
‖Z−X̄−SW+1/ρΛ‖2F , (5)

where we grouped the linear and quadratic terms of the aug-

mented Lagrangian in a single quadratic term [2]. The solu-

tion to this problem can be obtained independently for each

element Zi
j of the matrix Z. For a single element, it can be

written as

Z
i
j =

(

2Ωi
jX

i
j + ρ(X̄i

j + S
i
Wj)− Λi

j

)

/
(

2Ωi
j + ρ

)

,
(6)

where Si is the ith row of S and Wj the jth column of W.

Computing S:

The subspace S is obtained by solving

min
S

γ‖L(X̄+ SW)‖2F +
ρ

2
‖Z− X̄− SW + 1/ρΛ‖2F ,

(7)

which is simply a least-squares problem. The subspace can

thus be obtained as the solution of the linear system

(

2γLT
L+ ρI

)

SWW
T =

(

ρ(Z− X̄) + Λ− 2γLT
LX̄

)

W
T ,

(8)

which can be computed efficiently in matrix form.

Computing W:

The coefficients W are obtained by solving

min
W

γ‖L(X̄+ SW)‖2F +
ρ

2
‖Z− X̄− SW + 1/ρΛ‖2F ,

(9)

which, as before, is a least-squares problem whose solution

can be efficiently computed in closed-form.

Updating Λ:

At each iteration t, the Lagrange multipliers are updated as

Λt = Λt−1 + ρ
(

Z− X̄− SW
)

. (10)

In practice, we initialize ρ to a small value ρ0 (typically,

we use ρ0 = 1e−3), and increase it at a fixed rate at each

iteration. The Lagrange multipliers are initialized to 0. S

and W are initialized to random matrices. We then run our

algorithm until convergence, or until a maximum number

of iterations is reached. Note that our objective function

remains non-convex. Therefore, convergence is not guaran-

teed, and the solution is likely to be suboptimal. In practice,

however, we observed that the algorithm behaves well.

3.2. Subspace-based Non-rigid Registration

In the previous section, we assumed that the correspon-

dences between the partial observations of the different

frames were given. We now discuss our approach to estab-

lishing these correspondences. In particular, our approach

relies on our subspace-based deformation model.

More specifically, let {xi
f}

M
i=1 be the set of M observa-

tions of a new frame f . Our goal is to estimate the corre-

spondence between these new observations and the points

on the current model, while accounting for the fact that

some points may not have been observed at all in the f − 1
previous frames. To this end, following [21], we introduce a

probability matrix P ∈ R
M×Nf−1 , whose element Pi

j rep-

resents the probability of xi
f corresponding to the jth model

point. We employ this probabilistic correspondence assign-

ment because it is innately more robust than the binary as-

signment used in ICP. As shown in [21], this representation

encodes a Gaussian Mixture Model whose centroids corre-

spond to the model points. The location of these centroids,

as well as the variance σ2 of the Gaussians, can then be

searched for so as to minimize the negative log-likelihood

of the observed points. This can be expressed as

min
P,x̂,σ2

1

2σ2

M
∑

i=1

Nf−1
∑

j=1

P
i
j‖x

i
f − x̂

j‖22 +
3NP

2
log σ2, (11)

where x̂ encodes the location of the centroids, or in other

words the shape of the surface in the current frame , and

Np =
∑M

m=1

∑Nf−1

n=1 P
n
m.

Here, to further regularize this problem, we make use of

our subspace representation. However, since the subspace

obtained from the previous frames may not be rich enough

to accurately represent the shape of the surface in the new

frame, we do not explicitly encode x̂ = Sw, but rather

encourage the shape to remain close to the model. To this

end, and to avoid having to compute the coefficients w, we

penalize the deformations that lie in the nullspace N of our

subspace S. This lets us express non-rigid registration as
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the optimization problem

min
P,x̂,σ2

1

2σ2

M
∑

i=1

Nf−1
∑

j=1

P
i
j‖x

i
f − x̂

j‖22 +
3NP

2
log σ2

+λ‖NT (x̂− x̄)‖22,

(12)

where λ is the weight of the subspace prior. We solve this

optimization problem by alternating over the variables. The

value of each variable, while the other ones are fixed, can

be obtained as follows.

Computing P:

Following [21], each element in P can be computed as

P
i
j :=

exp−
1

2σ2
‖xi

f−x̂
j‖2

2

∑Nf−1

l=1 exp−
1

2σ2
‖xi

f−x̂ll‖2

2 + w
1−w

(2πσ2)3/2Nf−1

M

,

where w is a parameter that reflects the expected proportion

of outliers.

Computing x̂:

To derive the solution for x̂, let us first rewrite our optimiza-

tion problem directly in terms of the matrix P, which yields

min
P,x,σ2

1

2σ2
·

(

x
T
f (I⊗ d(P1))xf − 2xT

f (I⊗P) x̂ +x̂
T
(

I⊗ d(PT
1)
)

x̂
)

+ λ‖NT (x̂− x̄)‖22,
(13)

where d(·) denotes the diagonal matrix obtained from a vec-

tor, and where we have ignored the term that does not de-

pend on x̂. Setting the gradient of the objective function

with respect to x̂ to zero yields

1

σ2

(

−
(

I⊗P
T
)

xf +
(

I⊗ d(PT
1)
)

x̂
)

+2λNN
T (x̂− x̄) = 0,

(14)

which results in a closed-form solution for x̂.

Computing σ2:

The variance σ2 can be obtained by setting the derivative of

the objective function w.r.t. σ2 to zero, which yields

σ2 =
1

3NP

M
∑

i=1

Nf−1
∑

j=1

P
i
j‖x

i
f − x̂

j‖22.

We run this alternating scheme until convergence, and

then extract the correspondences from the resulting P.

More precisely, we start from the maximum probability in

P and iteratively find the corresponding point for each ob-

servation, while avoiding duplicate correspondences (i.e.,

two observations corresponding to the same model point).

If the maximum probability of an observed point is less

than the outlier probability, we treat this observation as a

new point in our model, which will then create 3 new rows

in the measurement matrix. The outlier probability Pw is

computed following [21] as

Pw =
w

1− w

(2πσ2)3/2Nf−1

M
.

In practice, we found that the correspondences could be

improved by updating the subspace. Therefore, for each

frame, we iterate between estimating the correspondences

with the current subspace and refining the subspace from

the new correspondences, following the technique of Sec-

tion 3.1. We stop this iterative procedure when the number

of points registered to the model is stable (i.e., when no

new points are registered compared to the previous itera-

tion), which typically only requires a few iterations.

Rigid Motion and Initialization:

Subspace models are best-suited to only represent non-rigid

deformations. Therefore, we seek to remove the rigid mo-

tion of the new observations. To this end, we first establish

correspondences between the current model and the new ob-

servations using CPD [21]. We then estimate the rigid trans-

formation (rotation and translation), which can be achieved

by singular value decomposition, and remove this rigid mo-

tion from the observations. The subspace can then be re-

estimated with this rigidly aligned data and with the CPD

correspondences, following the technique of Section 3.1.

Algorithm 1 Deformable 3D Fusion

Initialization:

F := Number of frames

x̂1 := observed points in frame 1
X1 := x̂1

Iteration:

1: for f = 2 : F do

2: xf := observed points in frame f ,

3: Estimate correspondences between xf and x̂f−1 us-

ing CPD.

4: Estimate and remove rigid motion of xf .

5: while New points registered do

6: Form Xf from Xf−1 and xf .

7: Estimate mean shape x̄ and Laplacian L.

8: Estimate deformation subspace and coefficients

S,W, see Section 3.1.

9: Estimate correspondences between xf and x̂f−1,

see Section 3.2.

10: end while

11: Form Xf from Xf−1 and xf .

12: Estimate mean shape x̄ and Laplacian L.

13: Estimate deformation subspace and coefficient

S,W, see Section 3.1.

14: end for

Output: 4D reconstruction: X̂ = X̄+ SW
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Figure 3. RMS reconstruction error for the pants sequence. Aver-

age error over all frames: Laplacian: 0.9767; Subspace: 0.7103;

Liao2009: 1.4390; Ours: 0.4963.

Figure 4. RMS reconstruction error for the woman sequence. Av-

erage error over all frames: Laplacian: 0.9619; Subspace: 1.9525;

Liao2009: 2.9833; Ours: 0.7976.

4. Experimental Results

We now evaluate our 4D reconstruction method. To this

end, we made use of three point-cloud sequences (the pants

sequence of [34], and the man and woman sequences of

[9]), and of two sequences captured with a Kinect. The

three point-cloud sequences allow us to perform quantita-

tive evaluations, while the Kinect sequences illustrate the

use of our approach on depth measurements. For the point-

cloud sequences, we generated realistic partial observations

by computing depth maps corresponding to specific view-

points1, and removing the occluded points. For compu-

tational reasons, we downsampled the man, woman and

Kinect sequences. In our experiments, we set the Laplacian

weight in (3) to γ = 1, the subspace weight in (12) to λ = 1,

and the outlier parameter to w = 10−15 for the point-cloud

sequences and w = 10−8 for the Kinect sequences, which

include more noise. Below, we first evaluate our subspace

learning method of Section 3.1 and then present the results

of our full 4D reconstruction algorithm.

4.1. Results of Subspace Learning

To evaluate the quality of our subspace learning recon-

struction, we make use of the ground-truth correspondences

1For the man and woman sequences, we used the calibration data pro-

vided with the sequences.

Figure 5. RMS reconstruction error for the man sequence. Aver-

age error over all frames: Laplacian: 0.3537; Subspace: 4.3070;

Liao2009: 1.3730; Ours: 0.2874.

Figure 6. RMS reconstruction error as a function of the subspace

dimension for the three point-cloud sequences.

to build the partial measurement matrix XF , containing the

observations of all F frames of a sequence. Note that this

can only be achieved with the point-cloud sequences, since

no ground-truth is available for the Kinect sequence. To il-

lustrate the importance of the different components of our

approach, we compare the results of our subspace learning

method against the following baselines:

Laplacian: minY ‖Ω⊙ (Y −X)‖2F + γ‖LY‖2F ,

Subspace: minS,W ‖Ω⊙ (X− X̄− SW)‖2F .

Furthermore, we also report the results of the method

of [19], which we refer to as Liao2009.

In Figs. 3, 4 and 5, we report the RMS reconstruction

error for each frame in the three sequences. While the be-

haviors of Laplacian and Subspace vary across different se-

quences, our algorithm performs consistently well. Further-

more, our subspace learning method clearly outperforms

Liao2009. In Fig. 6, we report the RMS reconstruction er-

ror (averaged over all frames) as a function of the subspace

dimension for the three sequences. Note that, with suffi-

ciently large dimensions, our method is very robust to this

parameter. In our experiments, we used a 20-dimensional

subspace.

4.2. Results of the Full Algorithm

We now evaluate the results of our complete 4D recon-

struction algorithm. Here, we make use of a baseline that
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Figure 7. Registration accuracy on the pants sequence.

Figure 8. Registration accuracy on the woman sequence.

Figure 9. Registration accuracy on the man sequence.

consists of estimating the correspondences using CPD in-

stead of our subspace-based method of Section 3.2, fol-

lowed by our subspace learning technique of Section 3.1.

We refer to this baseline as CPD+OurSub. Furthermore, we

also report the results of using CPD followed by the ap-

proach of [19], which we refer to as CPD+Liao2009.

In Figs. 7, 8 and 9, we compare the registration accu-

racy of all methods (computed as the proportion of cor-

rectly matched points) for each frame of the three point-

cloud sequences. Note that using our subspace-based ap-

proach clearly improves over the CPD registration. In

Figs. 10, 11 and 12, we report the RMS reconstruction er-

rors of the methods for the three point-cloud sequences.

Note again that our approach outperforms the baselines.

While CPD+OurSub performs well, recall that it also relies

on our subspace learning approach.

To evaluate the robustness of our method to noise, we

added zero mean Gaussian noise with different standard de-

viations to the points in the woman sequence. As shown

in Table 1, while the reconstruction error increases, our

method remains relatively robust to noise.

Figure 10. RMS reconstruction error on the pants sequence. Aver-

age error over all frames: CPD+Liao2009: 2.3437; CPD+OurSub:

0.6875; Ours: 0.6640.

Figure 11. RMS reconstruction error on the woman sequence.

Average error over all frames: CPD+Liao2009: 7.6480;

CPD+OurSub: 2.3050; Ours: 2.1173.

Figure 12. RMS reconstruction error on the man sequence. Aver-

age error over all frames: CPD+Liao2009: 5.5454; CPD+OurSub:

2.3023; Ours: 2.1711.

Noise std (mm) 0 5 10

RMS errors (mm) 2.12 10.96 12.35

Table 1. Reconstruction errors with different levels of noise.

In Fig. 13, we provide qualitative comparisons of the

reconstructions obtained by the different methods on the

five sequences. Note that our approach yields more real-

istic results than the baselines. While the Kinect data is

more challenging, due to its lack of exact correspondences,

we are still able to obtain accurate reconstructions. Note

that our template-free method and subject-independent de-

formation model allow us to deal with arbitrary types of

objects. We therefore evaluated it on a publicly available
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Input Ground Truth Ours+GTCorr CPD+Liao2009 Ours

Input CPD+Liao2009 Ours Input Ground Truth Ours

Figure 13. Qualitative comparison of the reconstructions obtained by the different methods on the five sequences (pants, woman, man,

Kinect and paper). Ours+GTCorr refers to our subspace reconstruction method with ground-truth correspondences.

Kinect sequence depicting a deforming sheet of paper2, and,

as in [37], augmented the data with a synthetic occluder,

which hides roughly half of the surface in the first frame,

and is then progressively removed. The results in the bot-

tom row of Fig. 13 illustrate that our approach can accu-

rately reconstruct the entire surface. The complete videos

are provided as supplementary material.

5. Conclusion

We have presented a template-less approach to 4D recon-

struction of non-rigid objects from highly-incomplete 3D

data. Our online algorithm allows us to incrementally fuse

the partial observations in a temporally-coherent model.

Thanks to the deformation subspace learned from the ob-

servations, our approach can predict the hidden parts of the

object, and thus reconstruct a complete 4D representation.

Our experimental results have demonstrated the effective-

ness of our method on several challenging sequences. The

2Publicly available at http://cvlab.epfl.ch/data/dsr

main limitations of our method lie in the potential drift and

drop in accuracy caused by large inter-frame deformations.

In the future, we intend to overcome drift by updating the

previous correspondences, and incorporate 3D features to

improve the accuracy of registration for large deformations.
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