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Abstract

In this paper, we propose a novel deep convolutional

network (DCN) that achieves outstanding performance on

FDDB, PASCAL Face, and AFW. Specifically, our method

achieves a high recall rate of 90.99% on the challeng-

ing FDDB benchmark, outperforming the state-of-the-art

method [23] by a large margin of 2.91%. Importantly, we

consider finding faces from a new perspective through scor-

ing facial parts responses by their spatial structure and ar-

rangement. The scoring mechanism is carefully formulated

considering challenging cases where faces are only par-

tially visible. This consideration allows our network to de-

tect faces under severe occlusion and unconstrained pose

variation, which are the main difficulty and bottleneck of

most existing face detection approaches. We show that de-

spite the use of DCN, our network can achieve practical

runtime speed.

1. Introduction

Neural network based methods were once widely applied

for localizing faces [33, 26, 7, 25], but they were soon re-

placed by various non-neural network-based face detectors,

which are based on cascade structure [3, 9, 20, 34] and de-

formable part models (DPM) [23, 36, 40] detectors. Deep

convolutional networks (DCN) have recently achieved re-

markable performance in many computer vision tasks, such

as object detection, object classification, and face recogni-

tion. Given the recent advances of deep learning and graph-

ical processing units (GPUs), it is worthwhile to revisit the

face detection problem from the neural network perspective.

In this study, we wish to design a deep convolutional net-

work for face detection, with the aim of not only exploit-

ing the representation learning capacity of DCN, but also

formulating a novel way for handling the severe occlusion

issue, which has been a bottleneck in face detection. To

this end, we design a new deep convolutional network with

the following appealing properties: (1) It is robust to severe

occlusion. As depicted in Fig. 1, our method can detect

Figure 1. (a) We propose a deep convolutional network for face

detection, which achieves high recall of faces even under severe

occlusions and head pose variations. The key to the success of our

approach is the new mechanism for scoring face likeliness based

on deep network responses on local facial parts. (b) The part-level

response maps (we call it ‘partness’ map) generated by our deep

network given a full image without prior face detection. All these

occluded faces are difficult to handle by conventional approach.

faces even more than half of the face region is occluded;

(2) it is capable of detecting faces with large pose variation,

e.g. profile view without training separate models under dif-

ferent viewpoints; (3) it accepts full image of arbitrary size

and the faces of different scales can appear anywhere in the

image.

All the aforementioned properties, which are challenging

to achieve with conventional approaches, are made possible

with the following considerations:
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(1) Generating face parts responses from attribute-aware

deep networks: We believe the reasoning of unique struc-

ture of local facial parts (e.g. eyes, nose, mouths) is the key

to address face detection in unconstrained environment. To

this end, we design a set of attribute-aware deep networks,

which are pre-trained with generic objects and then fine-

tuned with specific part-level binary attributes (e.g. mouth

attributes including big lips, opened mouth, smiling, wear-

ing lipstick). We show that these networks could generate

response maps in deep layers that strongly indicate the loca-

tions of the parts. The examples depicted in Fig. 1(b) show

the responses maps (known as ‘partness map’ in our paper)

of five different face parts.

(2) Computing faceness score from responses configura-

tions: Given the parts responses, we formulate an effec-

tive method to reason the degree of face likeliness through

analysing their spatial arrangement. For instance, the hair

should appear above the eyes, and the mouth should only

appear below the nose. Any inconsistency would be penal-

ized. Faceness scores will be derived and used to re-rank

candidate windows of any generic object proposal genera-

tor to obtain a set of face proposals. Our experiment shows

that our face proposal enjoys a high recall with just modest

number of proposals (over 90% of face recall with around

150 proposals, ≈0.5% of full sliding windows, and ≈10%

of generic object proposals).

(3) Refining the face hypotheses – Both the aforementioned

components offer us the chance to find a face even under

severe occlusion and pose variations. The output of these

components is a small set of high-quality face bounding box

proposals that cover most faces in an image. Given the face

proposals, we design a multitask deep convolutional net-

work in the second stage to refine the hypotheses further,

by simultaneously recognizing the true faces and estimat-

ing more precise face locations.

Our main contribution in this study is the novel use of

DCN for discovering facial parts responses from arbitrary

uncropped face images. Interestingly, in our method, part

detectors emerge within CNN trained to classify attributes

from uncropped face images, without any part supervision.

This is new in the literature. We leverage this new capabil-

ity to further propose a face detector that is robust to severe

occlusion. Our network achieves the state-of-the-art perfor-

mance on challenging face detection benchmarks including

FDDB, PASCAL Faces, and AFW. We show that practical

runtime speed can be achieved albeit the use of DCN.

2. Related Work

There is a long history of using neural network for the

task of face detection [33, 26, 7, 25]. An early face de-

tection survey [38] provides an extensive coverage on rel-

evant methods. Here we highlight a few notable studies.

Rowley et al. [26] exploit a set of neural network-based

filters to detect presence of faces in multiple scales, and

merge the detections from individual filters. Osadchy et

al. [25] demonstrate that a joint learning of face detec-

tion and pose estimation significantly improves the perfor-

mance of face detection. The seminal work of Vaillant et

al. [33] adopt a two-stage coarse-to-fine detection. Specif-

ically, the first stage approximately locates the face region,

whilst the second stage provides a more precise localiza-

tion. Our approach is inspired by these studies, but we intro-

duce innovations on many aspects. In particular, we employ

contemporary deep learning strategies, e.g. pre-training, to

train deeper networks for more robust feature representation

learning. Importantly, our first stage network is conceptu-

ally different from that of [33], and many recent deep learn-

ing detection frameworks – we train attribute-aware deep

convolutional networks to achieve precise localization of

facial parts, and exploit their spatial structure for inferring

face likeliness. This concept is new and it allows our model

to detect faces under severe occlusion and pose variations.

While great efforts have been devoted for addressing face

detection under occlusion [21, 22], these methods are all

confined to frontal faces. In contrast, our model can dis-

cover faces under variations of both pose and occlusion.

In the last decades, cascade based [3, 9, 20, 34] and de-

formable part models (DPM) detectors dominate the face

detection approaches. Viola and Jones [34] introduced

fast Haar-like features computation via integral image and

boosted cascade classifier. Various studies thereafter fol-

low a similar pipeline. Amongst the variants, SURF cas-

cade [20] was one of the top performers. Later Chen et

al. [3] demonstrate state-of-the-art face detection perfor-

mance by learning face detection and face alignment jointly

in the same cascade framework. Deformable part models

define face as a collection of parts. Latent Support Vector

Machine is typically used to find the parts and their rela-

tionships. DPM is shown more robust to occlusion than

the cascade based methods. A recent study [23] demon-

strates state-of-the-art performance with just a vanilla DPM,

achieving better results than more sophisticated DPM vari-

ants [36, 40].

A recent study [6] shows that face detection can be fur-

ther improved by using deep learning, leveraging the high

capacity of deep convolutional networks. In this study, we

push the performance limit further. Specifically, the net-

work proposed by [6] does not have explicit mechanism to

handle occlusion, the face detector therefore fails to detect

faces with heavy occlusions, as acknowledged by the au-

thors. In contrast, our two-stage architecture has its first

stage designated to handle partial occlusions. In addition,

our network gains improved efficiency by adopting the more

recent fully convolutional architecture, in contrast to the

previous work that relies on the conventional sliding win-

dow approach to obtain the final face detector.

3677



Hair CNN

Eye CNN

Nose CNN

Mouth CNN

Beard CNN

Input Image

Upsampling

Conv7 Feature

Conv7 Feature

Conv7 Feature

Conv7 Feature

Conv7 Feature

(a)

Upsampling

Upsampling

Upsampling

Upsampling

Ground Truth
Prediction

x

(b)

A B

C D

E

0 0.05 0.1 0.15 0.2 0.25 0.3
0

500

1000

1500

Bounding Box Score

N
um

be
r 

of
 B

ou
nd

in
g 

B
ox

A

BCD

E

0 0.5 1 1.5 2 2.5 3
0

500

1000

1500

Bouding box Score

N
um

be
r 

of
 B

ou
nd

in
g 

bo
x

A EB

C

D

Objectness

Faceness

Part Proposal

NMS

Face Proposal

S
patial 

configuration

A

(c)

S
patial 

configuration

S
patial 

configuration

S
patial 

configuration

S
patial 

configuration

A A A A

Part 
Localization

Figure 2. (a) The pipeline of generating part response maps and part localization. Different CNNs are trained to handle different facial parts,

but they can share deep layers for computational efficiency. (b) The pipeline for generating face proposals. (c) Bounding box reranking by

face measure (Best viewed in color).

The first stage of our model is partially inspired by the

generic object proposal approaches [2, 32, 41]. Generic ob-

ject proposal generators are now an indispensable compo-

nent of standard object detection algorithms through provid-

ing high-quality and category-independent bounding boxes.

These generic methods, however, are devoted to generic ob-

jects therefore not suitable to propose windows specific to

face. In particular, applying a generic proposal generator

directly would produce enormous number of candidate win-

dows but only minority of them contain faces. In addition, a

generic method does not consider the unique structure and

parts on the face. Hence, there will be no principled mech-

anism to recall faces when the face is only partially visible.

These shortcomings motivate us to formulate the new face-

ness measure to achieve high recall on faces, whilst reduce

the number of candidate windows to half the original.

3. Faceness-Net

This section introduces the proposed attribute-aware face

proposal and face detection approach, Faceness-Net. In the

following, we first briefly overview the entire pipeline and

then discuss the details.

Faceness-Net’s pipeline consists of three stages, i.e. gen-

erating partness maps, ranking candidate windows by face-

ness scores, and refining face proposals for face detection.

In the first stage as shown in Fig. 2(a), a full image x is used

as input to five CNNs. Note that all the five CNNs can share

deep layers to save computational time. Each CNN outputs

a partness map, which is obtained by weighted averaging

over all the label maps at its top convolutional layer. Each

of these partness maps indicates the location of a specific fa-

cial component presented in the image, e.g. hair, eyes, nose,

mouth, and beard, denoted by ha , he, hn , hm , and hb, re-

spectively. We combine all these partness maps into a face

label map h f , which clearly designates faces’ locations.

In the second stage, given a set of candidate windows

that are generated by existing object proposal methods such

as [2, 32, 41], we rank these windows according to their

faceness scores, which are extracted from the partness maps

with respect to different facial parts configurations, as illus-
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Figure 3. A general architecture of an attribute-aware deep net-

work. Other architecture is possible.

trated at the bottom of Fig. 2(b). For example, as visualized

in Fig. 2(b), a candidate window ‘A’ covers a local region

of ha (i.e. hair) and its faceness score is calculated by di-

viding the values at its upper part with respect to the values

at its lower part, because hair is more likely to present at

the top of a face region. A final faceness score of ‘A’ is

obtained by averaging over the scores of these parts. In this

case, large number of false positive windows can be pruned.

Notably, the proposed approach is capable of coping with

severe face occlusions, as shown in Fig. 2(c), where face

windows ‘A’ and ‘E’ can be retrieved by objectness [1] only

if large amount of windows are proposed, whilst they rank

top 50 by using our method.

In the last stage, the proposed candidate windows are re-

fined by training a multitask CNN, where face classification

and bounding box regression are jointly optimized.

3.1. Partness Maps Extraction

Network structure. Fig. 3 depicts the structure and hyper-

parameters of the CNN in Fig. 2(a), which stacks seven

convolutional layers (conv1 to conv7) and two max-pooling

layers (max1 and max2). This convolutional structure is in-

spired by the AlexNet [16] in image classification. Many

recent studies [29, 39] showed that stacking many convolu-

tions as AlexNet did can roughly capture object locations.
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