
Multi-scale recognition with DAG-CNNs

Songfan Yang

College of Electronics and Information Engineering,

Sichuan University, China

syang@scu.edu.cn

Deva Ramanan

Robotics Institute,

Carnegie Mellon University, USA

deva@cs.cmu.edu

Abstract

We explore multi-scale convolutional neural nets (CNNs)

for image classification. Contemporary approaches extract

features from a single output layer. By extracting features

from multiple layers, one can simultaneously reason about

high, mid, and low-level features during classification. The

resulting multi-scale architecture can itself be seen as a

feed-forward model that is structured as a directed acyclic

graph (DAG-CNNs). We use DAG-CNNs to learn a set of

multi-scale features that can be effectively shared between

coarse and fine-grained classification tasks. While fine-

tuning such models helps performance, we show that even

“off-the-self” multi-scale features perform quite well. We

present extensive analysis and demonstrate state-of-the-art

classification performance on three standard scene bench-

marks (SUN397, MIT67, and Scene15). In terms of the

heavily benchmarked MIT67 and Scene15 datasets, our re-

sults reduce the lowest previously-reported error by 23.9%

and 9.5%, respectively.

1. Introduction

Deep convolutional neural nets (CNNs), pioneered by

Lecun and collaborators [19], now produce state-of-the-art

performance on many visual recognition tasks [17, 30, 33].

An attractive property is that it appear to serve as univer-

sal feature extractors, either as “off-the-shelf” features or

through a small amount of “fine tuning”. CNNs trained on

particular tasks such as large-scale image classification [5]

transfer extraordinarily well to other tasks such as object

detection [11], scene recognition [40], image retrieval [12],

etc [28].

Hierarchical chain models: CNNs are hierarchical

feed-forward architectures that compute progressively in-

variant representations of the input image. However, the ap-

propriate level of invariance might be task-dependent. Dis-

tinguishing people and dogs requires a representation that

is robust to large spatial deformations, since people and

dogs can articulate. However, fine-grained categorization

coarse classes Fine classes

sedanSUVdogperson

LayerN
Output

classifier

Layer2

Layer1

LayerN
Output

classifier

Layer2

Layer1

LayerN

Layer2

Layer1

Output
layer

CNN Multi-scale CNN DAG-CNN

Figure 1. Recognition typically require features at multiple scales.

Distinguishing a person versus dog requires highly invariant fea-

tures robust to the deformation of each category. On the other

hand, fine-grained recognition likely requires detailed shape cues

to distinguish models of cars (top). We use these observations to

revisit deep convolutional neural net (CNN) architectures. Typical

approaches train a classifier using features from a single output

layer (left). We extract multi-scale features from multiple layers

to simultaneously distinguish coarse and fine classes. Such fea-

tures come “for free” since they are already computed during the

feed-forward pass (middle). Interestingly, the entire multi-scale

predictor is still a feed-forward architecture that is no longer chain-

structured, but a directed-acyclic graph (DAG) (right). We show

that DAG-CNNs can be discriminatively trained in an end-to-end

fashion, yielding state-of-the-art recognition results across various

recognition benchmarks.

of car models (or bird species) requires fine-scale features

that capture subtle shape cues. We argue that a universal

architecture capable of both tasks must employ some form

of multi-scale features for output prediction.

Multi-scale representations: Multi-scale representa-

tions are a classic concept in computer vision, dating back

to image pyramids [4], scale-space theory [21], and multi-

1215



query

florist

grocery store toy store buffet shoeshop

Mid-level 

feature

High-level 

feature

bakery

(a) mid-level feature is preferred

query

church inside

mallairport living room mall jewelleryshop

shoeshop

shoeshop

l 

l 

(b) high-level feature is preferred

Figure 2. Retrieval results using L2 distance for both mid- and high-level features on MIT67 [26], computed from layer 11 and 20 of the

Caffe model. Green (Red) box means correct (wrong) results, in terms of the scene category label. The correct label for wrong retrievals

are provided. The retrieval results are displayed such that the left-most image has the closest distance to the query, and vice versa. Certain

query images (or categories) produce better matches with high-level features, while others produce better results with mid-level features.

This motivates our multi-scale approach.

resolution models [23]. Though somewhat fundamental no-

tions, they have not been tightly integrated with contempo-

rary feed-forward approaches for recognition. We introduce

multi-scale CNN architectures that use features at multiple

scales for output prediction (Fig. 1). From one perspective,

our architectures are quite simple. Typical approaches train

a output predictor (e.g., a linear SVM) using features ex-

tracted from a single output layer. Instead, one can train

an output predictor using features extracted from multiple

layers. Note that these features come “for free”; they are

already computed in a standard feed-forward pass.

Spatial pooling: One difficulty with multi-scale ap-

proaches is feature dimensionality - the total number of fea-

tures across all layers can easily reach hundreds of thou-

sands. This makes training even linear models difficult

and prone to over-fitting. Instead, we use marginal acti-

vations computed from sum (or max) pooling across spa-

tial locations in a given activation layer. From this per-

spective, our models are similar to those that compute

multi-scale features with spatial pooling, including multi-

scale templates [10], orderless models [12], spatial pyra-

mids [18], and bag-of-words [32]. Our approach is most

related to [12], who also use spatially pooled CNN fea-

tures for scene classification. They do so by pooling to-

gether multiple CNN descriptors (re)computed on various-

sized patches within an image. Instead, we perform a single

CNN encoding of the entire image, extracting multi-scale

features “for free”.

End-to-end training: Our multi-scale model differs

from such past work in another notable aspect. Our en-

tire model is still a feed-forward CNN that is no longer

chain-structured, but a directed-acyclic graph (DAG). DAG-

structured CNNs can still be discriminatively trained in an

end-to-end fashion, allowing us to directly learn multi-scale

representations. DAG structures are relatively straightfor-

ward to implement given the flexibility of many deep learn-

ing toolboxes [35, 15]. Our primary contribution is the

demonstration that structures can capture multi-scale fea-

tures, which in turn allow for transfer learning between

coarse and fine-grained classification tasks.

DAG Neural Networks: DAG-structured neural nets

were explored earlier in the context of recurrent neural nets

[1, 13]. Recurrent neural nets use feedback to capture dy-

namic states, and so typically cannot be processed with

feed-forward computations. Recent networks have explored

the use of “skip” connections between layers [27, 33, 29],

similar to our multi-scale connections. [27] show that such

connections are useful for a single binary classification task,

but we motivate multi-scale connections through multi-task

learning: different visual classification tasks require fea-

tures at different image scales. [33] use skip connections

for training, but not at test-time (implying the final model

not a DAG). Finally, our work aligns with approaches that

predict local pixel labels using features extracted from mul-

tiple CNN layers [14, 22]. We show that such features also

improve global image classification.

Overview: We motivate our multi-scale DAG-CNN

model in Sec. 2, describe the full architecture in Sec. 3,

and conclude with numerous benchmark results in Sec. 4.

We evaluate multi-scale DAG-structured variants of ex-

isting CNN architectures (e.g., Caffe [15], Deep19 [30])

on a variety of scene recognition benchmarks including

SUN397 [39], MIT67 [26], Scene15 [9]. We observe a

consistent improvement regardless of the underlying CNN

architecture, producing state-of-the-art results on all 3

datasets.

2. Motivation

In this section, we motivate our multi-scale architecture

with a series of empirical analysis. We carry out an analysis

on existing CNN architectures, namely Caffe and Deep19.

1216



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
c
c
u

ra
c
y

Layers

Figure 3. The classification accuracy on MIT67 [26] using activa-

tions from each layer. We use an orange color fill representing the

output of a ReLU layer, where there are 7 in total for the Caffe

model. We tend to see a performance jump at each successive

ReLU layer, particularly earlier on in the model.

Caffe [15] is a broadly used CNN toolbox. It includes a

pre-trained model “AlexNet” [17] model, learned with mil-

lions of images from the ImageNet dataset [5]. We de-

note the output of each convolution, rectification, normal-

ization, pooling, and fully-connected inner product oper-

ation as a unique layer. Under this definition, the Caffe

AlexNet model has 20 layers, while the state-of-the-art

Deep19 model [30] has a total of 43 layers. To develop our

motivation, we analyze the behavior of the “off-the-shelf”

Caffe model on the heavily benchmarked MIT Indoor Scene

(MIT67) dataset [26], using 10-fold cross-validation.

2.1. Single­scale models

Image retrieval: Recent work has explored sparse re-

construction techniques for visualizing and analyzing fea-

tures [36]. Inspired by such techniques, we use image re-

trieval to begin our exploration. We attempt to “reconstruct”

a query image by finding M = 7 closest images in terms

of L2-distance, when computed with mean-pooled layer-

specific activations. Results are shown for two query im-

ages and two Caffe layers in Fig. 2. The florist query

image tends to produces better matches when using mid-

level features that appear to capture objects and parts. On

the other hand, the church-inside query image tends to

produce better matches when using high-level features that

appear to capture more global scene statistics.

Single-scale classification: Following past work [28],

we train a linear SVM classifier using features extracted

from a particular layer. We specifically train K = 67 1-

vs-all linear classifiers. We plot the performance of single-

layer classifiers in Fig. 3. The detailed parameter options for

both Caffe model are described later in Sec. 4. As past work

has pointed out, we see a general increase in performance

as we use higher-level (more invariant) features. We do see

a slight improvement at each nonlinear activation (ReLU)

layer. This makes sense as this layer introduces a nonlinear

rectification operation max(0, x), while other layers (such

an convolutional or sum-pooling) are linear operations that

can be learned by a linear predictor.

Scale-varying classification: The above experiment re-

quired training K × N 1-vs-all classifiers, where K is the

number of classes and N is the number of layers. We can

treat each of the KN classifiers as binary predictors, and

score each with the number of correct detections of its tar-

get class. We plot these scores as a matrix in Fig. 4. We tend

to see groups of classes that operate best with features com-

puted from particular high-level or mid-level layers. Most

categories tend to do well with high-level features, but a

significant fraction (over a third) do better with mid-level

features.

Spatial pooling: In the next section, we will explore

multi-scale features. One practical hurdle to including all

features from all layers is the massive increase in dimen-

sionality. Here, we explore strategies for reducing dimen-

sionality through pooled features. We consider various

pooling strategies (average versus max), pooling neighbor-

hoods, and normalization post-processing (with and without

L2 normalization). We saw good results with average pool-

ing over all spatial locations, followed by L2 normalization

(though we will re-examine these issues further in the next

section). Specifically, assume a particular layer is of size

H ×W ×F , where H is the height, W is the width, and F

is the number of filter channels. We compute a 1 × 1 × F

feature by averaging across spatial dimensions. We then

normalize this feature to have unit norm.

2.2. Multi­scale models

Multi-scale classification: We now explore multi-scale

predictors that process pooled features extracted from mul-

tiple layers. As before, we analyze “off-the-shelf” pre-

trained models. We evaluate performance as we iteratively

add more layers by feature concatenation. Fig. 3 suggests

that the last ReLU layer is a good starting point due to its

strong single-scale performance. Fig 5(a) plots performance

as we add previous layers to the classifier feature set. Per-

formance increases as we add intermediate layers, while

lower layers prove less helpful (and may even hurt perfor-

mance, likely do to over-fitting). Our observations suggest

that high and mid-level features (i.e., parts and objects) are

more useful than low-features based on edges or textures in

scene classification.

Multi-scale selection: The previous results show that

adding all layers may actually hurt performance. We veri-

fied that this was an over-fitting phenomena; additional lay-

ers always improved training performance, but could de-

crease test performance due to over-fitting. This appears es-

pecially true for multi-scale analysis, where nearby layers

may encoded redundant or correlated information (that is

susceptible to over-fitting). Ideally, we would like to search

for the “optimal” combination of ReLU layers that max-

imize performance on validation data. Since there exists

1217



L
a

y
e

r

11

13

15

18

20

1

0.8

0.6

0.4

0.2

A
c
c
u

ra
c
y

Layer-11 Layer-15Layer-13 Layer-18 Layer-20
Best 

classified 

by

�

�

�

�

�

�

�

�

�

	

�

�

�




�

�

�

�

�

�

�




�

�




�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�




�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�




�

�

�

�

�




�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�




�

�

�




�

	

�

�

�

�

�

�

�

�




�

�

�

	

�

�

�

�

�

�

�

�

�

�




�

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

	

�




�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�




�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

	

�

�

�

	

�

�

�

�

�

�

�

	

�




�

�




�

�

	

	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�




�

�

�

�

�

�

�

�




�

�

�

	

�

�

�

�

�

�

�

	

�

�

�

�




�

	

�

�

�

�

�

�

�

�

�

�

�

�




�

�

	

�

�

�

�

�

�

�

�

�

	

�

�

�

�

	




�

	

�

�

�




�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�




�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�




�

�

�

�

�




�

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�




�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�




�

�

�

�

�

�

�

�

�




�

�

�

	

�

�

�

�

�

�

�

�







�

�

�

�

�




�

�

�

�

�

�

�

�

�

�

	

�

�

�

	

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�




�

�

�




�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�




�

�

�

�

�

	

�

�

�

�

	

�




�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�




�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�




�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�




�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

Figure 4. The “per-class” performance using features extracted from particular layers. We group classes with identical best-performing

layers. The last layer (20) is optimal for only 15 classes, while the second-to-last layer (18) proves most discriminative for 26 classes. The

third-most effective layer (11) captures significantly lower-level level features. These results validate our underlying hypothesis; different

classes require different amounts of invariance. This suggests that a feature extractor shared across such classes will be more effective

when multi-scale.

59

60

61

62

63

64

65

20 +18 +15 +13 +11 +7 +3

A
c
c
u
ra

c
y

Layers

(a) Multi-scale

60

61

62

63

64

65

18 +13 +15 +11 +20

A
c
c
u

ra
c
y

Layers

(b) Forward Selection

Figure 5. (a) The performance of a multi-scale classifier as we add

more layer-specific features. We start with the last ReLU layer,

and iteratively add the previous ReLU layer. The “+” sign means

the recent-most added layer. Adding additional layers help, but

performance saturates and even slightly decreases when adding

lower-layer features. This suggests it may be helpful to search

for the “optimal” combination of layers. (b) The performance

trend when using forward selection to incorporate the ReLU lay-

ers. Note that layers are not selected in high-to-low order. Specif-

ically, it begin with the second-to-last ReLU layer, and skip one

or more previous layers when adding the next layer. This sug-

gests that layers encode some redundant or correlated information.

Overall, we see a significant 6% improvement.

an exponential number of combinations (2N for N ReLU

layers), we find an approximate solution with a greedy

forward-selection strategy. We greedily select the next-best

layer (among all remaining layers) to add, until we observe

no further performance improvement. As seen in Fig. 5(b),

the optimal results of this greedy approach rejects the low-

level features. This is congruent with the previous results in

Fig. 5(a).

Multi-scale pooling: We use our greedy scale-selection

strategy to re-examine pooling strategies. Specifically, we

divide the spatial features from a particular layer into M ×

M non-overlapping windows, where M varies from 1 to

3. We average-pool features within each window and con-

catenate the M2 pooled features together into a final L2-

normalized descriptor. When greedily searching over lay-

ers to add, we also greedily search over the 3 possible pool-

ing windows for each layer. Interestingly, when evaluat-

60

61

62

63

64

65

1 2 3 4 5

A
c
c
u
ra
c
y

Number of layers included

1x1 2x2

3x3 all

Figure 6. We evaluate spatial pooling strategies to see if retain-

ing spatial information (by pooling over smaller windows) helps

multi-scale performance. The answer is essentially ‘no’: global

pooling (using a 1 × 1 window covering the entire layer) does

as well as or better than local windows, either of a fixed-size or

adaptive-size dynamically selected during the greedy search (all).

We posit two reasons: (1) finer spatial cues may already be cap-

tured by multiscale features extracted from neighboring layers and

(2) additional training data might be needed to realize the benefit

of local pooling windows since they generate larger descriptors.

Dotted line means the layer will not be selected by greedy pro-

cedure. For reference, we also experimented with max-pooling

strategies, but saw consistently worse results.

ing pooling windows for single-scale classification, smaller

pooling windows sometimes improved performance for cer-

tain layers. But in the multi-scale setting, there is essen-

tially no improvement over global pooling (Fig. 6), perhaps

because finer spatial cues may already be captured in multi-

scale features extracted from neighboring layers. We posit

that with more training data, locally-pooled features may

perform better. In our subsequent analysis we consider only

globally-pooled features, as they are simpler to implement

and generate smaller descriptors.

Our analysis strongly suggest the importance (and ease)

of incorporating multi-scale features for classification tasks.

For our subsequent experiments, we use scales selected by

the forward selection algorithm on MIT67 data (shown in

Fig. 5(b)). Note that we use them for all our experimental

benchmarks, demonstrating a degree of cross-dataset gen-

eralization in our approach.

1218



FC FC FC

Add

ReLUConv

Avg-pool Avg-pool Avg-pool

ReLUConv Max-pool

Layer-

Conv Norm Max-poolReLU

Layer- Layer-

Softmax

Norm Norm Norm

Figure 7. Our multi-scale DAG-CNN architecture is constructed by adding multi-scale output connections to an underlying chain backbone

from the original CNN. Specifically, for each scale, we spatially (average) pool activations, normalize them to have unit-norm, compute

an inner product with a fully-connected (FC) layer with K outputs, and add the scores across all layers to predictions for K output classes

(that are finally soft-maxed together).

3. Approach

In this section, we show that the multi-scale model ex-

amined in Fig. 5(b) can be written as a DAG-structured,

feed-forward CNN. Importantly, this allows for end-to-end

gradient-based learning. To do so, we use standard calculus

constructions – specifically the chain rule and partial deriva-

tives – to generalize back-propagation to layers that have

multiple “parents” or inputs. Though such DAG structures

have been previously introduced by prior work, we have

not seen derivations for the corresponding gradient compu-

tations. We include them here for completeness, pointing

out several opportunities for speedups given our particular

structure.

Model: The run-time behavior of our multi-scale predic-

tor from the previous section is equivalent to feed-forward

processing of the DAG-structured architecture in Fig. 5(b).

Note that we have swapped out a margin-based hinge-loss

(corresponding to a SVM) with a softmax function, as

the latter is more amenable to training with current tool-

boxes. Specifically, typical CNNs are grouped into collec-

tions of four layers, i.e., Conv., ReLU, contrast normaliza-

tion (Norm), pooling layers (with the Norm and pooling lay-

ers being optional). The final layer is usually a K-way soft-

max function that predicts one of K outputs. We visualize

these layers as a chain-structured “backbone” in Fig. 7. Our

DAG-CNN simply links each ReLU layer to an average-

pooling layer, followed by a L2 normalization layer, which

feeds to a fully-connected (FC) layer that produces K out-

puts (represented formally as a 1 × 1 × K matrix). These

outputs are element-wise added together across all layers,

and the resulting K numbers are fed into the final softmax

function. The weights of the FC layers are equivalent to the

weights of the final multi-scale K-way predictor (which is a

softmax predictor for a softmax loss output, and a SVM for

a hinge-loss output). Note that all the required operations

are standard modules except for the Add.

Training: Let w1, ...wK be the CNN model parameters

at 1, ..,K-th layer, training data be (x(i), y(i)), where x(i)

is the i-th input image and y(i) is the indicator vector of

the class of x(i). Then we intend to solve the following

optimization problem

argmin
w1,...wK

1

n

n∑

i=1

L(f(x(i);w1, ...,wK), y(i)) (1)

As is now commonplace, we make use of stochastic gra-

dient descent to minimize the objective function. For a tra-

ditional chain model, the partial derivative of the output

with respect to any one weight can be recursively computed

by the chain rule, as described in the back-prop algorithm.

Multi-output layers (ReLU): Our DAG-model is struc-

turally different at the ReLU layers (since they have multi-

ple outputs) and the Add layer (since it has multiple inputs).

We can still compute partial derivatives by recursively ap-

plying the chain rule, but care needs to be taken at these

points. Let us consider the i-th ReLU layer in Fig. 8. Let

αi be its input, β
(j)
i be the output for its j-th output branch

(its jth child in the DAG), and let z is the final output of the

softmax layer. The gradient of z with respect to the input of

the i-th ReLU layer can be computed as

∂z

∂αi

=

C∑

j=1

∂z

∂β
(j)
i

∂β
(j)
i

∂αi

(in general) (2)

where C = 2 for the example in Fig. 8. One can recover

standard back-propagation equations from the above by set-

ting C = 1: a single back-prop signal ∂z

∂β
(1)
i

arrives at ReLU

unit i, is multiplied by the local gradient
∂β

(1)
i

∂α
(1)
i

, and is passed

on down to the next layer below. In our DAG, multiple back-

prop signals arrive ∂z

∂β
(j)
i

from each branch j, each is mul-

tiplied by an branch-specific gradient
∂β

(j)
i

∂αi
, and their total

sum is passed on down to the next layer.

1219



Norm

ReLU

Avg-pool

Add Softmax

Figure 8. Visualization of the parameter setup at i-th ReLU.

Multi-input layers (Add): Let βk = g(α
(1)
k , · · · , α

(N)
k )

represents the output of a layer with multiple inputs. We can

compute the gradient along the layer by applying the chain

rule as follows:
∂z

∂αi

=
∂z

∂βk

∂βk

∂αi

=
∂z

∂βk

C∑

j=1

∂βk

∂α
(j)
k

∂α
(j)
k

∂αi

(in general) (3)

One can similarly arrive at the standard back-propagation

by setting C = 1.

Special case (ReLU): Our particular DAG architecture

can further simplify the above equations. Firstly, it may

be common for multiple-output layers to duplicate the same

output for each child branch. This is true of our ReLU units;

they pass the same values to the next layer in the chain and

the current-layer pooling operation. This means the output-

specific gradients are identical for those outputs ∀j,
∂β

(j)
i

∂αi
=

∂β
(1)
i

∂αi
, which simplifies (2) to

∂z

∂αi

=
∂β

(1)
i

∂αi

C∑

j=1

∂z

∂β
(j)
i

(for duplicate outputs) (4)

This allows us to add together multiple back-prop signals

before scaling them by the local gradient, reducing the num-

ber of multiplications by C. We make use of this speed up

to train our ReLU layers .

Special case (Add): Similarly, our multi-input Add

layer reuses the same partial gradient for each input

∀j, ∂βk

∂α
(j)
k

= ∂βk

∂α
(1)
k

which simplifies even further in our case

to 1. The resulting back-prop equations that simplify (3) are

given by

∂z

∂αi

=
∂z

∂βk

∂βk

∂α
(1)
k

C∑

j=1

∂α
(j)
k

∂αi

(for duplicate gradients)

(5)

implying that one can similarly save C multiplications.

The above equations have an intuitive implementation; the

standard chain-structured back-propagation signal is simply

replicated along each of the parents of the Add layer.

Implementation: We use the excellent MatConNet

codebase to implement our modifications [35]. We im-

plemented a custom Add layer and a custom DAG data-

structure to denote layer connectivity. Training and testing

is essentially as fast as the chain model.

Vanishing gradients: We point out an interesting prop-

erty of our multi-scale models that make them easier to

train. Vanishing gradients [2] refers to the phenomena

that gradient magnitudes decrease as they are propogated

through layers, implying that lower-layers can be difficult

to learn because they recieve too small a learning signal.

In our DAG-CNNs, lower layers are directly connected to

the output layer through multi-scale connections, ensuring

they receive a strong gradient signal during learning. Fig. 9

experimentally verifies this claim.

0.01

0.1

1

10

100

1 2 3 4 5 6 7 8 9 10

A
v
e

ra
g
e

 g
ra

d
ie

n
t

(i
n

 l
o

g
 s

c
a

le
)

Number of training epochs

Gradient-based learning

DAG

Chain

Figure 9. The average gradient from Layer-1 (Conv.) during train-

ing, plotted in log-scale. Gradients from the DAG are consistently

10× larger, implying that they receive a stronger supervised signal

from the target label during gradient-based learning.

4. Experimental Results

We explore DAG-structured variants of two popular deep

models, Caffe [15] and Deep19 [30]. We refer to these

models as Caffe-DAG and Deep19-DAG. We evaluate these

models on three benchmark scene datasets: SUN397 [39],

MIT67 [26], and Scene15 [9]. In absolute terms, we achieve

the best performance ever reported on all three benchmarks,

sometimes by a significant margin.

Feature dimensionality: Most existing methods that

use CNNs as feature extractors work with the last layer

(or the last fully connected layer), yielding a feature vec-

tor of size 4096. Forward feature selection on Caffe-

DAG selects layers (11, 13, 15, 18, 20), making the final

multi-scale feature 9216-dimensional. Deep19-DAG se-

lects layers(26, 28, 31, 33, 30), for a final size of 6144. We

perform feature selection by cross-validating on MIT67,

and use the same multi-scale structure for all other datasets.

Dataset-dependant feature selection may further improve

performance. Our final multi-scale DAG features are only

2X larger than their single-scale counter part, making them

practically easy to use and store.

Training: We follow the standard image pre-processing

steps of fixing the input image size to 224 × 224 by scal-

ing and cropping, and subtracting out the mean RGB value

(computed on ImageNet). We initialize filters and biases

to their pre-trained values (tuned on ImageNet) and ini-

tialize multi-scale fully-connected (FC) weights to small

normally-distributed numbers. We perform 10 epochs of

learning.

1220



SUN397 MIT67 Scene15

Approach Accuracy(%)

Deep19-DAG 56.2

Deep19 [30] 51.9

Caffe-DAG 46.6

Caffe [15] 43.5

Places [40] (Caffe) 54.3

MOP-CNN [12] (Caffe) 52.0

FV [34] 47.2

DeCaf [7] 40.9

Baseline-overfeat [38] 40.3

Baseline [39] 38.0

Approach Accuracy(%)

Deep19-DAG 77.5

Deep19 [30] 70.8

Caffe-DAG 64.6

Caffe [15] 59.5

MOP-CNN [12] (Caffe) 68.9

Places [40] (Caffe) 68.2

Mid-level [6] 64.0

FV+BoP [16] 63.2

Disc. Patch [31] 49.4

SPM [18] 34.4

Approach Accuracy(%)

Deep19-DAG 92.9

Deep19 [30] 90.8

Caffe-DAG 89.7

Caffe [15] 86.8

Place [40] (Caffe) 91.6

CENTRIST [37] 84.8

Hybrid [3] 83.7

Spatial pyramid [18] 81.4

Object bank [20] 80.9

Reconfigurable model [25] 78.6

Spatial Envelop [24] 74.1

Baseline [9] 65.2

Table 1. Classification results on SUN397, MIT67, and Scene15 datasets. We explicitly denote those methods that make use of the same

Caffe model, either applied with a different (multi-scale) post-processing stage [12] or learned with a massively-large custom dataset [40].

Please see text for an additional discussion.

Baselines: We compare our DAG models to published

results, including two additional baselines. We evaluate the

best single-scale “off-the-shelf” model, using both Caffe

and Deep19. We pass L2-normalized single-scale features

to Liblinear [8] to train K-way one-vs-all classifiers with

default settings. Finally, Sec. 4.1 concludes with a detailed

diagnostic analysis comparing off-the-shelf and fine-tuned

versions of chain and DAG structures.

SUN397: We tabulate results for all our benchmark

datasets in Table 1, and discuss each in turn. SUN397 [39]

is a large scene recognition dataset with 100K images span-

ning 397 categories, provided with standard train-test splits.

Our DAG models outperform their single-scale counter-

parts. In particular, Deep19-DAG achieves the highest

56.2% accuracy. Our results are particularly impressive

given that the next-best method of [40] (with a score of

54.3) makes use of a ImageNet-trained CNN and a custom-

trained CNN using a new 7-million image dataset with 400

scene categories.

MIT67: MIT67 consists of 15K images spanning 67 in-

door scene classes [26], provided with standard train/test

splits. Indoor scenes are interesting for our analysis be-

cause some scenes are well characterized by high-level spa-

tial geometry (e.g. church and cloister), while oth-

ers are better described by mid-level objects (e.g. wine

celler and operating room) in various spatial con-

figurations. We show qualitative results in Fig. 10. Deep19-

DAG produces a classification accuracy of 77.5%, reducing

the best-previously reported error [12] by 23.9%. Interest-

ingly [12] also uses multi-scale CNN features, but do so by

first extracting various-sized patches from an image, rescal-

ing each to canonical size. Single-scale CNN features ex-

tracted from these patches are then vector-quantized into a

large-vocabulary codebook, followed by a projection step

to reduce dimensionality. Our multi-scale representation,

while similar in spirit, is an end-to-end trainable model that

is computed “for free” from a single (DAG) CNN.

Scene15: The Scene15 [9] includes both indoor scene

(e.g., store and kitchen) and outdoor scene (e.g., mountain

and street). It is a relatively small dataset by contempo-

rary standards (2985 test images), but we include here for

completeness. Performance is consistent with the results

above. Our multi-scale DAG model, specifically Deep19-

DAG, outperforms all prior work. For reference, the next-

best method of [40] uses a new custom 7-million image

scene dataset for training.

4.1. Diagnostics

In this section, we analyze “off-the-shelf” (OTS) and

“fine-tuned” (FT) versions of both single-scale chain and

multi-scale DAG models. We focus on the Caffe model, as

it is faster and easier for diagnostic analysis.

Chain: Chain-OTS uses single-scale features extracted

from CNNs pre-trained on ImageNet. These are the base-

line Caffe results presented in the previous subsections.

Chain-FT trains a model on the target dataset, using the pre-

trained model as an initialization. This can be done with

standard software packages [35]. To ensure consistency of

analysis, in both cases features are passed to a K-way multi-

class SVM to learn the final predictor.

DAG: DAG-OTS is obtained by fixing all internal filters

and biases to their pre-trained values, and only learning the

multi-scale fully-connected (FC) weights. Because this fi-

nal stage learning is a convex problem, this can be done by

simply passing off-the-shelf multi-scale features to a con-

vex linear classification package (e.g., SVM). We compare

this model to a fine-tuned version that is trained end-to-end,

making use of the modified backprop equation from Sec. 3.

Comparison: Fig. 11 compares off-the-shelf and fine-

tune variants of chain and DAG models. We see two dom-

inant trends. First, as perhaps expected, fine-tuned (FT)

models consistently outperform their off-the-shelf (OTS)

countparts. Even more striking is the large improvement

from chain to DAG models, indicating the power of multi-

scale feature encodings.

1221



train station

subway mall

laundromat

toy store gym

corridor corridor corridor

elevator

classroom

waiting room office

Figure 10. Deep19-DAG results on MIT67. The category label is shown on the left and the label for false-positives (in red) are also

provided. We use the multi-scale analysis of Fig. 4 to compare categories that perform better with mid-level features (top 2 rows) versus

high-level features (bottom 2 rows). Mid-level features appear to emphasize objects such as operating equipment for operating room

scenes and circular grid for wine celler, while high-level features appear to focus on global spatial statistics for inside bus and

elevator scenes.

42

44

46

48

(a) SUN397

56

58

60

62

64

66

(b) MIT67

84

86

88

90

92

(c) Scene15

Figure 11. Off-the-shelf vs. Fine-tuning models on both Chain

and DAG model for Caffe backbone. Please see the text for a

discussion.

DAG-OTS: Perhaps most impressive is the strong per-

formance of DAG-OTS. From a theoretical perspective, this

validates our underyling hypothesis that multi-scale fea-

tures allow for better transfer between recognition tasks –

in this case, ImageNet and scene classification. An interest-

ing question is whether multi-scale features, when trained

with gradient-based DAG-learning on ImageNet, will al-

low for even more transfer. We are currently exploring this.

However even with current CNN architectures, our results

suggest that any system making use of off-the-shelf CNN

features should explore multi-scale variants as a “cheap”

baseline. Compared to their single-scale counterpart, multi-

scale features require no additional time to compute, are

only a factor of 2 larger to store, and consistently provide

a noticeable improvement.

Conclusion: We have introduced multi-scale CNNs for

image classification. Such models encode scale-specific

features that can be effectively shared across both coarse

and fine-grained classification tasks. Importantly, such

models can be viewed as DAG-structured feedforward pre-

dictors, allowing for end-to-end training. While fine-tuning

helps performance, we empirically demonstrate that even

“off-the-self” multi-scale features perform quite well. We

present extensive analysis and demonstrate state-of-the-art

classification performance on three standard scene bench-

marks, sometimes improving upon prior art by a significant

margin.

Acknowledgement. This work was supported by NSF

Grant 0954083 and ONR-MURI Grant N00014-10-1-0933.

This research is based upon work supported in part by the

Office of the Director of National Intelligence (ODNI), In-

telligence Advanced Research Projects Activity (IARPA),

via IARPA R & D Contract No. 2014-14071600012. The

views and conclusions contained herein are those of the

authors and should not be interpreted as necessarily rep-

resenting the official policies or endorsements, either ex-

pressed or implied, of ODNI, IARPA, or the U.S. Govern-

ment. The U.S. Government is authorized to reproduce and

distribute reprints for Governmental purposes notwithstand-

ing any copyright annotation thereon.

1222



References

[1] P. Baldi and G. Pollastri. The principled design of large-scale

recursive neural network architectures–dag-rnns and the pro-

tein structure prediction problem. JMLR, 2003. 2

[2] Y. Bengio, P. Simard, and P. Frasconi. Learning long-term

dependencies with gradient descent is difficult. IEEE Trans-

actions on Neural Networks, 1994. 6

[3] A. Bosch, A. Zisserman, and X. Muoz. Scene classification

using a hybrid generative/discriminative approach. PAMI,

2008. 7

[4] P. J. Burt and E. H. Adelson. The laplacian pyramid as a

compact image code. IEEE Transactions on Communica-

tions, 31(4):532–540, 1983. 1

[5] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-

Fei. Imagenet: A large-scale hierarchical image database. In

CVPR, 2009. 1, 3

[6] C. Doersch, A. Gupta, and A. A. Efros. Mid-level visual

element discovery as discriminative mode seeking. In ECCV.

2013. 7

[7] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang,

E. Tzeng, and T. Darrell. Decaf: A deep convolutional acti-

vation feature for generic visual recognition. In ICML, 2014.

7

[8] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J.

Lin. LIBLINEAR: A library for large linear classification.

JMLR, 2008. 7

[9] L. Fei-Fei and P. Perona. A bayesian hierarchical model for

learning natural scene categories. In CVPR, 2005. 2, 6, 7

[10] P. Felzenszwalb, D. McAllester, and D. Ramanan. A dis-

criminatively trained, multiscale, deformable part model. In

CVPR, 2008. 2

[11] R. B. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich

feature hierarchies for accurate object detection and semantic

segmentation. In CVPR, 2014. 1

[12] Y. Gong, L. Wang, R. Guo, and S. Lazebnik. Multi-scale

orderless pooling of deep convolutional activation features.

In ECCV, 2014. 1, 2, 7

[13] A. Graves and J. Schmidhuber. Offline handwriting recog-

nition with multidimensional recurrent neural networks. In

NIPS, 2009. 2

[14] B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik. Hyper-

columns for object segmentation and fine-grained localiza-

tion. In CVPR, 2015. 2

[15] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-

shick, S. Guadarrama, and T. Darrell. Caffe: Convolu-

tional architecture for fast feature embedding. arXiv preprint

arXiv:1408.5093, 2014. 2, 3, 6, 7

[16] M. Juneja, A. Vedaldi, C. Jawahar, and A. Zisserman. Blocks

that shout: Distinctive parts for scene classification. In

CVPR, 2013. 7

[17] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

NIPS. 2012. 1, 3

[18] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of

features: Spatial pyramid matching for recognizing natural

scene categories. In CVPR, 2006. 2, 7

[19] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-

based learning applied to document recognition. Proceed-

ings of the IEEE, (11), 1998. 1

[20] L.-J. Li, H. Su, E. P. Xing, and F.-F. Li. Object bank: A high-

level image representation for scene classification & seman-

tic feature sparsification. In NIPS, 2010. 7

[21] T. Lindeberg. Scale-space theory in computer vision.

Springer Science & Business Media, 1993. 1

[22] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional

networks for semantic segmentation. In CVPR, 2015. 2

[23] S. Mallat. A wavelet tour of signal processing. Academic

press, 1999. 2

[24] A. Oliva and A. Torralba. Modeling the shape of the scene:

A holistic representation of the spatial envelope. IJCV, 2001.

7

[25] S. Parizi, J. Oberlin, and P. Felzenszwalb. Reconfigurable

models for scene recognition. In CVPR, 2012. 7

[26] A. Quattoni and A. Torralba. Recognizing indoor scenes. In

CVPR, 2009. 2, 3, 6, 7

[27] T. Raiko, H. Valpola, and Y. LeCun. Deep learning made

easier by linear transformations in perceptrons. In AISTATS,

volume 22, pages 924–932, 2012. 2

[28] A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carls-

son. CNN features off-the-shelf: an astounding baseline for

recognition. In CVPR, 2014. 1, 3

[29] P. Sermanet, K. Kavukcuoglu, S. Chintala, and Y. LeCun.

Pedestrian detection with unsupervised multi-stage feature

learning. In CVPR. IEEE, 2013. 2

[30] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. In ICLR, 2015.

1, 2, 3, 6, 7

[31] S. Singh, A. Gupta, and A. A. Efros. Unsupervised discovery

of mid-level discriminative patches. In ECCV, 2012. 7

[32] J. Sivic and A. Zisserman. Video google: A text retrieval

approach to object matching in videos. In ICCV, 2003. 2

[33] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.

Going deeper with convolutions. In CVPR, 2015. 1, 2

[34] J. Snchez, F. Perronnin, T. Mensink, and J. Verbeek. Im-

age classification with the fisher vector: Theory and practice.

IJCV, 2013. 7

[35] A. Vedaldi and K. Lenc. Matconvnet user manual. 2, 6, 7

[36] C. Vondrick, A. Khosla, T. Malisiewicz, and A. Torralba.

Hoggles: Visualizing object detection features. In ICCV,

2013. 3

[37] J. Wu and J. Rehg. Centrist: A visual descriptor for scene

categorization. PAMI, 2011. 7

[38] J. Xiao, K. A. Ehinger, J. Hays, A. Torralba, and A. Oliva.

Sun database: Exploring a large collection of scene cate-

gories. IJCV, 2001. 7

[39] J. Xiao, J. Hays, K. Ehinger, A. Oliva, and A. Torralba. Sun

database: Large-scale scene recognition from abbey to zoo.

In CVPR, 2010. 2, 6, 7

[40] B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva.

Learning deep features for scene recognition using places

database. In NIPS, 2014. 1, 7

1223


