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Abstract

We explore the problem of predicting “just noticeable

differences” in a visual attribute. While some pairs of

images have a clear ordering for an attribute (e.g., A is

more sporty than B), for others the difference may be in-

distinguishable to human observers. However, existing rel-

ative attribute models are unequipped to infer partial or-

ders on novel data. Attempting to map relative attribute

ranks to equality predictions is non-trivial, particularly

since the span of indistinguishable pairs in attribute space

may vary in different parts of the feature space. We develop

a Bayesian local learning strategy to infer when images are

indistinguishable for a given attribute. On the UT-Zap50K

shoes and LFW-10 faces datasets, we outperform a variety

of alternative methods. In addition, we show the practical

impact on fine-grained visual search.

1. Introduction

Imagine you are given a pile of images of Barack Obama,

and you must sort them according to where he looks most to

least serious. Can you do it? Surely there will be some obvi-

ous ones where he is more serious or less serious. There will

even be image pairs where the distinction is quite subtle, yet

still perceptible. However, you are likely to conclude that

forcing a total order is meaningless: while the images ex-

hibit different degrees of the attribute seriousness, at some

point the differences become indistinguishable. It’s not that

the pixel patterns in indistinguishable image pairs are liter-

ally the same—they just can’t be characterized consistently

as anything other than “equally serious”.

Attributes are visual properties describable in words,

capturing anything from material properties (metallic,

furry), shapes (flat, boxy), expressions (smiling, surprised),

to functions (sittable, drinkable). Since their introduc-

tion to the recognition community [7, 15, 16], attributes

have inspired a number of useful applications in image

search [13, 14, 15, 26], biometrics [4, 21], and language-

based supervision for recognition [2, 16, 19, 25].

Existing attribute models come in one of two forms:

categorical or relative. Whereas categorical attributes are

least serious most serious

least open most open

indistinguishable?

indistinguishable?

Figure 1: At what point is the strength of an attribute indistinguishable be-

tween two images? While existing relative attribute methods are restricted

to inferring a total order, in reality there are images that look different but

where the attribute is nonetheless perceived as “equally strong”. For exam-

ple, in the fourth and fifth images of Obama, is the difference in seriousness

noticeable enough to warrant a relative comparison?

suited only for clear-cut predicates, such as male or wooden,

relative attributes can represent “real-valued” properties

that inherently exhibit a spectrum of strengths, such as se-

rious or sporty. Typically one learns a relative attribute in

the learning-to-rank setting; training data is ordered (e.g.,

we are told image A has it less than B), and a ranking func-

tion is optimized to preserve those orderings. Given a new

image, the function returns a score conveying how strongly

the attribute is present [1, 3, 5, 6, 14, 17, 18, 19, 22, 23, 27].

The problem is that existing models for relative attributes

assume that all images are orderable. In particular, they as-

sume that at test time, the system can and should always dis-

tinguish which image in a pair exhibits the attribute more.

Yet, as our Obama example above illustrates, this assump-

tion is incompatible with how humans actually perceive at-

tributes. In fact, recent work reports that in a fine-grained

domain like fashion, 40% of the time human judges asked to

compare images for a relative attribute declare that no dif-

ference is perceptible [27]. Within a given attribute, some-

times we can perceive a comparison, sometimes we can’t.

See Figure 1.

We argue that this situation calls for a model of just no-

ticeable difference among attributes. Just noticeable differ-

ence (JND) is a concept from psychophysics. It refers to

the amount a stimulus has to be changed in order for it to

be detectable by human observers at least half the time. For

example, JND is of interest in color perception (which light

sources are perceived as the same color?) and image quality
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Smiling

Figure 2: Analogous to the MacAdam ellipses in the CIE x,y color space

(right) [8], relative attribute space is likely not uniform (left). That is, the

regions within which attribute differences are indistinguishable may vary

in size and orientation across the high-dimensional visual feature space.

Here we see the faces within each “equally smiling” cluster exhibit varying

qualities for differentiating smiles—such as age, gender, and visibility of

the teeth—but are still difficult or impossible to order in terms of smiling-

ness. As a result, simple metrics and thresholds on attribute differences are

insufficient to detect just noticeable differences.

assessment (up to what level of compression do the images

look ok?). JNDs are determined empirically through tests

of human perception. For example, JND in color can be de-

termined by gradually altering the light source just until the

human subject detects that the color has changed [8].

Why is it challenging to develop a computational model

of JND for relative attributes? At a glance, one might think

it amounts to learning an optimal threshold on the differ-

ence of predicted attribute strengths. However, this begs

the question of how one might properly and densely sam-

ple real images of a complex attribute (like seriousness) to

gradually walk along the spectrum, so as to discover the

right threshold with human input. More importantly, an at-

tribute space need not be uniform. That is, depending on

where we look in the feature space, the magnitude of at-

tribute difference required to register a perceptible change

may vary. Therefore, the simplistic “global threshold” idea

falls short. Analogous issues also arise in color spaces, e.g.,

the famous MacAdam ellipses spanning indistinguishable

colors in the CIE x,y color space vary markedly in their size

and orientation depending on where in the feature space one

looks (leading to the crafting of color spaces like CIE Lab

that are more uniform). See Figure 2.

We propose a solution to infer when two images are in-

distinguishable for a given attribute. Following the non-

uniformity intuition above—which says the decision func-

tion will likely vary depending on where in the feature

space one looks—we develop a Bayesian approach that re-

lies on local statistics of orderability. Our approach lever-

ages both a low-level visual descriptor space, within which

image pair proximity is learned, as well as a mid-level vi-

sual attribute space, within which attribute distinguishabil-

ity is represented. To our knowledge, our framework of-

fers the first attempt to unify a notion of “equality” (i.e.,

unnoticeable differences) into relative attributes during in-

ference. Whereas past ranking models have attempted to

integrate equality into training, none attempt to distinguish

between orderable and un-orderable pairs at test time.

We apply our method on two challenging datasets with

fine-grained relative attributes, the UT Zappos 50K collec-

tion of catalog images of shoes and the Labeled Faces in the

Wild (LFW) collection of human faces. The results show

our approach’s superior performance compared to various

baselines for detecting noticeable differences. Furthermore,

we demonstrate how attribute JND has potential benefits for

an image search application.

2. Related Work

Comparing images by their attributes Relative at-

tributes are most commonly represented with learned rank-

ing functions [1, 2, 3, 5, 6, 14, 17, 18, 19, 22, 23, 27]. Pair-

wise supervision is used for training: a set of pairs ordered

according to the attribute is obtained from human annota-

tors, and a ranking function that preserves those orderings

is learned. Given a novel pair of images, the ranker in-

dicates which image has the attribute more. In a similar

spirit, regression [4] and paired-difference classification [9]

have also been employed. While some implementations (in-

cluding [19]) augment the training pool with “equal” pairs

to facilitate learning, notably no existing work attempts to

discern distinguishable from indistinguishable pairs at test

time—our main goal. In Sec. 3 we discuss technical rea-

sons why other common learning paradigms (e.g., ordinal

regression) are not an easy solution to the problem.

Fine-grained and unrankable attributes Of all prior

work in relative image ranking, those that come closest to

our goal are our fine-grained relative attribute work [27] and

the facial attractiveness ranking method of [3]. The former

uses local learning to tackle attribute comparisons that are

visually subtle, e.g., deciding which of two athletic shoes

is more sporty. Like the methods cited above, this method

also assumes all images are distinguishable at test time. In

contrast, our method specifically deals with the boundary

where “subtle” and “indistinguishable” meet.

In [3], the authors train a hierarchy of SVM classifiers to

recursively push a image into buckets of more/less attrac-

tive faces. The leaf nodes contain images “unrankable” by

the human subject, which can be seen as indistinguishability

for the specific attribute of human attractiveness. Nonethe-

less, the proposed method is not applicable to our problem.

It learns a ranking model specific to a single human sub-

ject, whereas we learn a subject-independent model. Fur-

thermore, the training procedure [3] has limited scalability,

since the subject must rank all training images into a partial

order; the results focus on training sets of 24 images for this

reason. In our domains of interest, where thousands or more

training instances are standard, getting a reliable global par-

tial order on all images remains an open challenge.
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Variability in how attributes are perceived Differences

in human perception are another source of ambiguity in at-

tribute prediction, especially for subjective properties. Re-

cent work deals with this by learning personalized mod-

els [1, 3, 12]. In contrast, we are interested in modeling

attributes where there is consensus about comparisons, only

they are subtle. Rather than personalize a model towards an

observer, we want to discover the (implicit) map of where

the consensus for JND boundaries in attributes exists. The

attribute calibration method of [24] post-processes attribute

classifier outputs so they can be fused for multi-attribute

search. Our method is also conscious that differences in at-

tribute outputs taken at “face value” can be misleading, but

our goal and approach are entirely different.

Choosing between relative and binary attributes The

“spoken attributes” [22] method learns to generate a human-

like description for an image by intelligently selecting

whether to use binary or relative attributes. The insight is

that even when a person can distinguish an attribute, he may

choose not to say so, depending on the context. For exam-

ple, if one face is clearly smiling more than the other, but

neither is smiling much, it is unusual for a human describ-

ing the image to say “the person on the left is smiling more

than the one on the right.” The work is not concerned with

detecting JND. It assumes a relative comparison is always

possible, just not always worth mentioning.

3. Approach

Given a pair of images and specified attribute, our goal

is to decide whether or not the attribute’s strength is distin-

guishable between the two. We develop a Bayesian pre-

diction approach based on local learning. Our approach

first constructs a predicted relative attribute space using

sparse human-provided supervision about image compar-

isons (Sec. 3.1). Then, on top of that model, we com-

bine a likelihood computed in the predicted attribute space

(Sec. 3.2.1) with a local prior computed in the original im-

age feature space (Sec. 3.2.2). See Figure 3.

3.1. Relative Attribute Ranks

In all notation that follows, it is assumed that a single

attribute is learned at a time (e.g., seriousness). For each

attribute to be learned, we take as input two sets of anno-

tated training image pairs. The first set consists of ordered

pairs, Po = {(i, j)}, for which humans perceive image i to

have the attribute more than image j. That is, each pair in

Po has a “noticeable difference”. The second set consists

of unordered, or “equal” pairs, Pe = {(p, q)}, for which

humans cannot perceive a difference in attribute strength.

We enforce stringent requirements to ensure the preci-

sion of these pair annotations, such that the training data

reflects the common perception across multiple human ob-

servers (see Sec. 4 for details). This is critical, since a JND

model demands that we correctly preserve the distinction

between a “just barely orderable” pair and an equal pair.

Let xi ∈ X ⊂ ℜd be a d-dimensional image descriptor

for image i. First we learn a ranking function R : X →
ℜ that maps an input image to (an intial estimate of) its

attribute strength. Following [19], we use a large-margin

approach based on the SVM-Rank framework [11]. The

method optimizes the rank function parameters to preserve

the orderings in Po, maintaining a margin between them in

the 1D output space, while also minimizing the separation

between the unordered pairs in Pe. For the linear case, the

parameters are simply a weight vector w:

R(x) = w
T
x, (1)

though non-linear ranking functions are also possible. The

learning objective is as follows:

minimize

(

1

2
||w||2

2
+ C

(

∑

ξ2ij +
∑

γ2

p,q

)

)

(2)

s.t. w
T (xi − xj) ≥ 1− ξij ; ∀(i, j) ∈ Po

|wT (xp − xq)| ≤ γpq; ∀(p, q) ∈ Pe

ξij ≥ 0; γpq ≥ 0,

where the constant C balances the margin regularizer and

pair constraints. Step 1 in Figure 3 depicts a linear ranking

function learned from the training pairs.

Given a novel image pair (xm,xn), one can apply the

rank function to predict their order. If R(xm) > R(xn),
then image m exhibits the attribute more than image n, and

vice versa. As discussed above, despite the occasional use

of unordered pairs for training 1, it is assumed in prior work

that all test images will be orderable. However, the real-

valued output of the ranking function will virtually never

be equal for two distinct inputs. Therefore, even though

existing methods may learn to produce similar rank scores

for equal pairs, it is non-trivial to determine when a novel

pair is “close enough” to be considered un-orderable.

3.2. A Local Bayesian Model of Distinguishability

The most straightforward approach to infer whether a

novel image pair is distinguishable would be to impose a

threshold on their rank differences, i.e., to predict “indis-

tinguishable” if |R(xm) − R(xn)| ≤ ǫ. The problem is

that unless the rank space is uniform, a global threshold ǫ

is inadequate. In other words, the rank margin for indistin-

guishable pairs need not be constant across the entire fea-

ture space. By testing multiple variants of this basic idea,

our empirical results confirm this is indeed an issue, as we

will see in Sec. 4.

1Empirically, we found the inclusion of unordered pairs during training

in [19] to have negligible impact at test time.
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Figure 3: Overview of our approach. (1) Learn a ranking function R using all annotated training pairs. (2) Estimate the likelihood densities of the equal

and ordered pairs, respectively, using the pairwise distances in relative attribute space. (3) Determine the local prior by counting the labels of the analogous

pairs in the image descriptor space. (4) Combine the results to predict whether the novel pair is distinguishable (not depicted). Best viewed in color.

Our key insight is to formulate distinguishability predic-

tion in a probabilistic, local learning manner. Mindful of

the non-uniformity of relative attribute space, our approach

uses distributions tailored to the data in the proximity of a

novel test pair. Furthermore, we treat the relative attribute

ranks as an imperfect mid-level representation on top of

which we can learn to target the actual (sparse) human judg-

ments about distinguishability.

Let D ∈ {0, 1} be a binary random variable representing

the distinguishability of an image pair. For a distinguishable

pair, D = 1. Given a novel test pair (xm,xn), we are

interested in the posterior:

P (D|xm,xn) ∝ P (xm,xn|D)P (D), (3)

to estimate of how likely two images are distinguishable.

To make a hard decision we take the maximum a posteriori

estimate over the two classes, i.e., d∗ = argmaxd P (D =
d|xm,xn).

At test time, our method can further be used in a two-

stage cascade. If the test pair appears distinguishable, we

return the response “more” or “less” according to whether

R(xm) < R(xn). Otherwise, we say the test pair is indis-

tinguishable. In this way we unify relative attributes with

JND, generating partially ordered predictions in spite of the

ranker’s inherent totally ordered outputs.

Next, we derive models for the likelihood and prior in

Eq. 3, accounting for the challenges described above.

3.2.1 Likelihood model

We use a kernel density estimator (KDE) to represent the

distinguishability likelihood over image pairs. The likeli-

hood captures the link between the observed rank differ-

ences and the human-judged just noticeable differences.

Let ∆m,n denote the difference in attribute ranks for im-

ages m and n:

∆m,n = |R(xm)−R(xn)|. (4)

We compute the rank differences for all training pairs in Po

and Pe, and fit a non-parametric Parzen density:

P (xm,xn|D) =
1

|P|

∑

i,j∈P

Kh (∆i,j −∆m,n) , (5)

for each set in turn. Here P refers to the ordered pairs Po

when representing distinguishability (D = 1), and the equal

pairs Pe when representing indistinguishability (D = 0).

The Parzen density estimator [20] superimposes a kernel

function Kh at each data pair. It integrates local estimates

of the distribution and resists overfitting. The KDE has a

smoothing parameter h that controls the model complexity.

To ensure that all density is contained within the positive ab-

solute margins, we apply a positive support to the estimator.

Namely, we transform ∆i,j using a log function, estimate

the density of the transformed values, and then transform

back to the original scale. See step 2 in Figure 3.

The likelihood reflects how well the equal and ordered

pairs are separated in the attribute space. However, criti-

cally, P (xm,xn|D = 1) need not decrease monotonically

as a function of rank differences. In other words, the model

permits returning a higher likelihood for certain pairs sep-

arated by smaller margins. This is a direct consequence of

our choice of the non-parametric KDE, which preserves lo-

cal models of the original training data. This is valuable

for our problem setting because in principle it means our

method can correct imperfections in the original learned

ranks and account for the non-uniformity of the space.

3.2.2 Prior model

Finally, we need to represent the prior over distinguishabil-

ity. The prior could simply count the training pairs, i.e., let

P (D = 1) be the fraction of all training pairs that were

distinguishable. However, we again aim to account for the

non-uniformity of the visual feature space. Thus, we esti-

mate the prior based only on a subset of data near the input

images. Intuitively, this achieves a simple prior for the label
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distribution in multiple pockets of the feature space:

P (D = 1) =
1

K
|P ′

o|, (6)

where P ′
o ⊂ Po denotes the set of K neighboring ordered

training pairs. P (D = 0) is defined similarly for the in-

distinguishable pairs Pe. Note that while the likelihood is

computed over the pair’s rank difference, the locality of the

prior is with respect to the image descriptor space. See step

3 in Figure 3.

To localize the relevant pocket of the image space, we

adopt the metric learning strategy developed in prior work

for comparing fine-grained attributes [27]. Briefly, it works

as follows. First, a Mahalanobis distance metric f : X ×
X → ℜ is trained to return small distances for images per-

ceptually similar according to the attribute, and large dis-

tances for images that are dissimilar. Using that metric,

pairs analogous to (xm,xn) are retrieved based on a prod-

uct of their individual Mahalonobis distances, so as to find

pairs whose members both align. See [27] for details.

3.3. Discussion

An alternative approach to represent partial orders is or-

dinal regression, where training data would consist of or-

dered equivalence classes of data. However, ordinal re-

gression has severe shortcomings for our problem setting.

First, it requires a consistent ordering of all training data

(via the equivalence classes). This is less convenient for hu-

man annotators and more challenging to scale than the dis-

tributed approach offered by learning-to-rank, which pools

any available paired comparisons. For similar reasons,

learning-to-rank is much better suited to crowdsourcing

annotations and learning universal (as opposed to person-

specific [3, 1]) predictors. Finally, ordinal regression re-

quires committing to a fixed number of buckets. This makes

incremental supervision updates problematic. Furthermore,

to represent very subtle differences, the number of buckets

would need to be quite large.

Our approach offers a way to learn a computational

model for just noticeable differences. While we borrow

the term JND from psychophysics to motivate our task, of

course the analogy is not 100% faithful. In particular, psy-

chophysical experiments to elicit JND often permit system-

atically varying a perceptual signal until a human detects

a change, e.g., a color light source, a sound wave ampli-

tude, or a compression factor. In contrast, the space of all

visual attribute instantiations does not permit such a sim-

ple generative sampling. Instead, our method extrapolates

from relatively few human-provided comparisons (fewer

than 1,000 per attribute in our experiments) to obtain a sta-

tistical model for distinguishability, which generalizes to

novel pairs based on their visual properties.

JND models for attributes appear most relevant for

category-specific attributes. Within a category domain (e.g.,

faces, cars, handbags, etc.), attributes describe fine-grained

properties, and it is valuable to represent any perceptible

differences (or realize there are none). In contrast, compar-

ative questions about very unrelated things or extra-domain

attributes can be nonsensical. For example, do we need to

model whether the shoes and the table are “equally ornate”?

or whether the dog or the towel is “more fluffy”? Accord-

ingly, we focus our experiments below on two domains with

rich vocabularies of fine-grained attributes, faces and shoes.

4. Experiments

With two challenging datasets, we present results on the

core JND detection task (Sec. 4.1) and demonstrate its im-

pact on an existing image search application (Sec. 4.2).

Datasets and establishing JND ground truth Our task

requires attribute datasets that (1) have instance-level rela-

tive supervision, meaning annotators were asked to judge

attribute comparisons on individual pairs of images, not

object categories as a whole and (2) have pairs labeled

as “equal” and “more/less”. To our knowledge, UT-

Zap50K [27] and LFW-10 [23] are the only existing datasets

satisfying those conditions.

To train and evaluate just noticeable differences, we must

have annotations of utmost precision. Therefore, we take

extra care in establishing the (in)distinguishable ground

truth for both datasets. We perform pre-processing steps to

discard unreliable pairs, as we explain next. This decreases

the total volume of available data, but it is essential to have

trustworthy results.

The UT-Zap50K dataset [27] consists of 50,025 total

catalog shoes images from Zappos.com.2 It contains 4 rela-

tive attributes, open, pointy, sporty, and comfort, with 3,000

annotated pairs each. Each pair was labeled by 5 work-

ers on Mechanical Turk (MTurk). The labeled image pairs

are partitioned into two sets—coarser pairs and fine-grained

pairs—as determined by a two-stage crowdsourcing proce-

dure to discover subtle pairs. As ordered pairs Po, we use all

coarse and fine-grained pairs for which all 5 workers agreed

and had high confidence. Even though the fine-grained pairs

might be visually similar, if all 5 workers could come to

agreement with high confidence, then the images are most

likely distinguishable. As equal pairs Pe, we use all fine-

grained pairs with 3 or 4 workers in agreement and only

medium confidence. Since the fine-grained pairs have al-

ready been presented to the workers twice (see [27]), if the

workers are still unable to come to an consensus with high

confidence, then the images are most likely indistinguish-

able. The resulting dataset has 4,778 total annotated pairs,

consisting of on average 800 ordered and 350 indistinguish-

able (equal) pairs per attribute.

2vision.cs.utexas.edu/projects/finegrained/utzap50k
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The LFW-10 dataset [23] consists of 2,000 face images,

taken from the Labeled Faces in the Wild [10] dataset.3 It

contains 10 relative attributes, like smiling, big eyes, etc.,

with 1,000 labeled pairs each. Each pair was labeled by 5

people. As ordered pairs Po, we use all pairs labeled “more”

or “less” by at least 4 workers. As equal pairs Pe, we use

pairs where at least 4 workers said “equal”, as well as pairs

with the same number of “more” and “less” votes. The latter

reflects that a split in decision signals indistinguishability.

Due to the smaller scale of LFW-10, we could not perform

as strict of a pre-processing step as in UT-Zap50K; requir-

ing full agreement on ordered pairs would eliminate most

of the labeled data. The resulting dataset has 5,543 total

annotated pairs, on average 230 ordered and 320 indistin-

guishable pairs per attribute.

Baselines We are the first to address the attribute JND

task. Prior relative attributes work evaluates only the

“more/less” decision task [13, 17, 19, 22, 23, 27]. No prior

methods infer indistinguishability at test time. Therefore,

we develop multiple baselines to compare to our approach:

• Rank Margin: Use the magnitude of ∆m,n as a con-

fidence measure that the pair m,n is distinguishable.

This baseline assumes the learned rank function pro-

duces a uniform feature space, such that a global

threshold on rank margins would be sufficient to iden-

tify indistinguishable pairs. To compute a hard deci-

sion for this method (for F1-scores), we threshold the

Parzen window likelihood estimated from the training

pairs by ǫ, the mid-point of the likelihood means.

• Logistic Classifier [13]: Train a logistic regression

classifier to distinguish training pairs in Po from those

in Pe, where the pairs are represented by their rank dif-

ferences ∆i,j . To compute a hard decision, we thresh-

old the posterior at 0.5. This is the method used in [13]

to obtain a probabilistic measure of attribute equality.

It is the closest attempt we can find in the literature to

represent equality predictions, though the authors do

not evaluate its accuracy. This baseline also maintains

a global view of attribute space.

• SVM Classifier: Train a nonlinear SVM classifier

with a RBF kernel to distinguish ordered and equal

pairs. We encode pairs of images as single points by

concatenating their image descriptors. To ensure sym-

metry, we include training instances with the two im-

ages in either order. 4

• Mean Shift: Perform mean shift clustering on the pre-

dicted attribute scores R(xi) for all training images.

3cvit.iiit.ac.in/projects/relativeParts
4We also implemented other encoding variants, such as taking the dif-

ference of the image descriptors or using the predicted attribute scores

R(xi) as features, and they performed similarly or worse.
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Figure 4: Just noticeable difference detection accuracy for all attributes.

We show the precision-recall (top row) and ROC curves (bottom row) for

the shoes (left) and faces (right) datasets. Legends show AUC values for

ROC curves. Note that the Mean Shift baseline does not appear here, since

it does not produce confidence values.

Images falling in the same cluster are deemed indistin-

guishable. Since mean shift clusters can vary in size,

this baseline does not assume a uniform space. Though

unlike our method, it fails to leverage distinguishabil-

ity supervision as it processes the ranker outputs.

Implementation details We use the image descriptors

kindly provided by the authors of each dataset. For UT-

Zap50K, they are 960-dim GIST and 30-bin Lab color his-

tograms. For LFW-10, they are 8,300-dim part-based fea-

tures learned on top of dense SIFT bag of words features.

We reduce their dimensionality to 100 with PCA to pre-

vent overfitting. The part-based features [23] isolate local-

ized regions of the face (e.g., exposing cues specific to the

eyes vs. hair). We experimented with both linear and RBF

kernels for R. Since initial results were similar, we use

linear kernels for efficiency. We use Gaussian kernels for

the Parzen windows. We set all hyperparameters (h for the

KDE, bandwidth for Mean Shift, K for the prior) on held-

out validation data. To maximize the use of training data, in

all results below, we use leave-one-out evaluation and report

results over 4 folds of random training-validation splits.

4.1. Just Noticeable Difference Detection

We evaluate just noticeable difference detection accu-

racy for all methods on both datasets. Figure 4 shows the

precision-recall curves and ROC curves, where we pool the

results from all 4 and 10 attributes in UT-Zap50K and LFW-

10, respectively. Tables 1 and 2 report the summary F1-

scores and standard deviations for each individual attribute

(see Supp for per-attribute curves). The F1-score is a useful
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Bald DarkHair BigEyes GdLook Masc. Mouth Smile Teeth Forehead Young All Attributes

Margin 71.10 55.81 74.16 61.36 82.38 62.89 60.56 65.26 67.49 34.20 63.52 ± 2.67

Logistic 75.77 53.26 86.71 64.27 87.29 63.41 59.66 64.83 75.00 NaN 63.02 ± 1.84

SVM 79.06 32.43 89.70 70.98 87.35 70.27 55.01 39.09 79.74 NaN 60.36 ± 9.81

M. Shift 66.37 56.69 54.50 51.29 69.73 68.38 61.34 65.73 73.99 23.19 59.12 ± 10.51

Ours 81.75 69.03 89.59 75.79 89.86 72.69 73.30 74.80 80.49 32.89 74.02 ± 1.66

Table 1: Just noticeable difference detection on LFW-10 (F1 scores). NaN occurs when recall=0 and precision=inf.

Open Pointy Sporty Comf. All Attributes

Margin 48.95 67.48 66.93 57.09 60.11 ± 1.89

Logistic 10.49 62.95 63.04 45.76 45.56 ± 4.13

SVM 48.82 50.97 47.60 40.12 46.88 ± 5.73

M. Shift 54.14 58.23 60.76 61.60 58.68 ± 8.01

Ours 62.02 69.45 68.89 54.63 63.75 ± 3.02

Table 2: Just noticeable difference detection on UT-Zap50K (F1 scores).

summary statistic for our data due to the unbalanced nature

of the test set: 25% of the shoe pairs and 80% of the face

pairs are indistinguishable for some attribute.

Overall, our method outperforms all baselines. We ob-

tain sizeable gains—roughly 4-18% on UT-Zap50K and 10-

15% on LFW-10. This clearly demonstrates the advantages

of our local learning approach, which accounts for the non-

uniformity of attribute space. The “global approaches”,

Rank Margin and Logistic Classifier, reveal that a uniform

mapping of the relative attribute predictions is insufficient.

In spite of the fact that they include equal pairs during train-

ing, simply assigning similar scores to indistinguishable

pairs is inadequate. Their weakness is likely due both to

noise in those mid-level predictions as well as the existence

of JND regions that vary in scale. Furthermore, the results

suggest that even for challenging, realistic image data, we

can identify just noticeable differences at a high precision

and recall, up to nearly 90% in some cases.

The SVM baseline is much weaker than our approach,

indicating that discriminatively learning what indistinguish-

able image pairs look like is insufficient. This result under-

scores the difficulty of learning subtle differences in a high-

dimensional image descriptor space, and supports our use

of the compact rank space for our likelihood model.

Looking at the per-attribute results (Tables 1 and 2), we

see that our method also outperforms the Mean Shift base-

line. While Mean Shift captures dominant clusters in the

spectrum of predicted attribute ranks for certain attributes,

for others (like pointy or masculine) we find that the distri-

bution of output predictions are more evenly spread. De-

spite the fact that the rankers are optimized to minimize

margins for equal pairs, simple post-processing of their out-

puts is inadequate.

The tables also show that our method is nearly always

best, except for two attributes: comfort in UT-Zap50K and

young in LFW-10. Of the shoe attributes, comfort is perhaps

the most subjective; we suspect that all methods may have

suffered due to label noise for that attribute. While young

would not appear to be subjective, it is clearly a more dif-
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Figure 5: Image search results. We enhance an existing relative attribute

search technique called WhittleSearch [14] with our JND detection model.

The resulting system finds target images more quickly (left) and produces

a better overall ranking of the database images (right).

ficult attribute to learn. This makes sense, as youth would

be a function of multiple subtle visual cues like face shape,

skin texture, hair color, etc., whereas something like bald-

ness or smiling has a better visual focus captured well by the

part features of [23]. Indeed, upon inspection we find that

the likelihoods insufficiently separate the equal and distin-

guishable pairs. For similar reasons, the Logistic Classifier

baseline [13] fails dramatically on both open and young.

Figure 6 shows qualitative prediction examples. Here we

see the subtleties of JND. Whereas past methods would be

artificially forced to make a comparison for the left panel

of image pairs, our method declares them indistinguishable.

Pairs may look very different overall (e.g., different hair,

race, headgear) yet still be indistinguishable in the context

of a specific attribute. Meanwhile, those that are distin-

guishable (right panel) may have only subtle differences.

Figure 7 illustrates examples of just noticeable difference

“trajectories” computed by our method. We see how our

method can correctly predict that various instances are in-

distinguishable, even though the raw images can be quite di-

verse (e.g., a strappy sandal and a flat dress shoe are equally

sporty). Similarly, it can detect a difference even when

the image pair is fairly similar (e.g., a lace-up sneaker and

smooth-front sneaker are distinguishable for openness even

though the shapes are close).

4.2. Image Search Application

Finally, we demonstrate how JND detection can enhance

an image search application. Specifically, we incorporate

our model into the existing WhittleSearch framework [14].

WhittleSearch is an interactive method that allows a user to

provide relative attribute feedback, e.g., by telling the sys-

tem that he wants images “more sporty” than some refer-

ence image. The method works by intersecting the relative
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Figure 6: Example predictions. The top four rows are pairs our method correctly classifies as indistinguishable (left panel) and distinguishable (right panel),

whereas the Rank Margin baseline fails. Each row shows pairs for a particular attribute. The bottom row shows failure cases by our method; i.e., the bottom

left pair is indistinguishable for pointiness, but we predict distinguishable.

DistinguishableIndistinguishable
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Figure 7: Example just noticeable differences. In each row, we take leftmost image as a starting point, then walk through nearest neighbors in relative

attribute space until we hit an image that is distinguishable, as predicted by our method. For example, in row 2, our method finds the left block of images to

be indistinguishable for sportiness; it flags the transition from the flat dress shoe to the pink “loafer-like sneaker” as being a noticeable difference.

attribute constraints, scoring database images by how many

constraints they satisfy, then displaying the top scoring im-

ages for the user to review. See [14] for details.

We augment that pipeline such that the user can express

not only “more/less” preferences, but also “equal” prefer-

ences. For example, the user can now say, “I want im-

ages that are equally sporty as image x.” Intuitively, enrich-

ing the feedback in this manner should help the user more

quickly zero in on relevant images that match his envisioned

target. To test this idea, we mimic the method and experi-

mental setup of [14] as closely as possible, including their

feedback generation simulator. See Supp for all details.

We evaluate a proof-of-concept experiment on UT-

Zap50K, which is large enough to allow us to sequester dis-

joint data splits for training our method and performing the

searches (LFW-10 is too small). We select 200 images at

random to serve as the mental targets a user wants to find

in the database, and reserve 5,000 images for the database.

The user is shown 16 reference images and expresses 8

feedback constraints per iteration.

Figure 5 shows the results. Following [14], we measure

the relevance rank of the target as a function of feedback it-

erations (left, lower is better), as well as the similarity of all

top-ranked results compared to the target (right, higher is

better). We see that JNDs substantially bolster the search

task. In short, the user gets to the target in fewer itera-

tions because he has a more complete way to express his

preferences—and the system understands what “equally”

means in terms of attribute perception.

5. Conclusion

This work explores the challenging task of deciding

whether a difference in attributes is perceptible. We present

a simple, easily reproducible approach. Our method lever-

ages local statistics in order to respect the perceptual non-

uniformity of relative attribute space. Empirical results

on two distinct domains with fine-grained visual properties

demonstrate its advantages over multiple alternative strate-

gies. In future work, we will investigate ways to blend our

findings about JND with personalization, so as to account

for heterogenous observer sensitivities that may exist for

certain subjective attributes.
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