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Abstract

To reconstruct hyperspectral image (HSI) accurately

from a few noisy compressive measurements, we present a

novel manifold-structured sparsity prior based hyperspec-

tral compressive sensing (HCS) method in this study. A ma-

trix based hierarchical prior is first proposed to represent

the spectral structured sparsity and spatial unknown mani-

fold structure of HSI simultaneously. Then, a latent variable

Bayes model is introduced to learn the sparsity prior and

estimate the noise jointly from measurements. The learned

prior can fully represent the inherent 3D structure of HSI

and regulate its shape based on the estimated noise level.

Thus, with this learned prior, the proposed method improves

the reconstruction accuracy significantly and shows strong

robustness to unknown noise in HCS. Experiments on four

real hyperspectral datasets show that the proposed method

outperforms several state-of-the-art methods on the recon-

struction accuracy of HSI.

1. Introduction

Hyperspectral image (HSI) is a 3D data cube which con-

tains a series of 2D spatial images over continuous spectral

bands and each pixel has a spectrum [5]. Its abundant spec-

tral information is helpful for object identification, which

facilitates a variety of applications on HSI [22, 1]. However,

the high cost on imaging, storage and transmission incurred

by the huge volume of HSI limits its application.

Recently, compressive sensing (CS) provides a brand-

new framework for image acquisition and compression. It

has been proved that a sparse signal can be recovered from a

few compressive measurements under some mild condition-

s [12]. Thus only a few measurements need to be captured

during the imaging procedure, which greatly reduces the re-

source expense on imaging. Since HSI can be converted in-

to a sparse signal by transformation [16] or unmixing [23]

strategies, hyperspectral compressive sensing (HCS) meth-
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Figure 1. Illustration of spectral sparsity and spatial correlation in

the wavelet transformation of HSI. (a) HSI cube with a marked

pixel. (b) The spectrum of the marked pixel. (c) The wavelet

transformation coefficient vector of the marked spectrum. (d) The

image composed of the first transformation coefficient of spectra

from all pixels according to pixels’ spatial arrangement.

ods [16, 20, 18] have drawn much attention for HSI com-

pression. However, how to reconstruct HSI accurately from

a few noisy measurements is still challenging.

Regularization methods [18, 20, 16] are effective to deal

with the reconstruction in HCS. One of their most importan-

t concerns is to learn a proper sparsity prior for HSI. Since

high spectral resolution gives a continuous spectrum at each

pixel, HSI can be sparsified pixel by pixel (see Figure 1) and

a group of sparse vectors are generated. Though many reg-

ularizers (e.g., ℓ0 norm and ℓ1 norm etc.) can depict the

sparsity in each of those sparse vectors, they usually treat

coefficients in the vector independently without considering

its structure, which is crucial to improving the reconstruc-

tion accuracy of standard sparse learning [17].

For those sparse vectors generated from HSI, two kind-

s of structures are often considered. One is the structure

in each sparse vector, the other is the structure among d-

ifferent sparse vectors (see Figure 1, where the transforma-

tion coefficient vectors of all pixels are spatially correlated).

They are termed as intra-vector structure and inter-vector

structure in this study. To explore the intra-vector struc-

ture, Chen [9] proposed a tree structured sparsity prior for

the wavelet transformation coefficients of image. Wipf et

al. [27] represented the implicit structure in a sparse vector

by an empirical Bayes framework. Zhang et al. [28] pro-

posed a matrix-based reweighted Laplace prior to capture

the structure in each column vector from a sparse matrix

assuming those column vectors are independent. For inter-

vector structure, Cotter et al. [10] extended the classical fo-
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cal undetermined system solver to multiple vectors to ex-

plore the inter-vector structure. Zhang et al. [29, 26] adopt-

ed a block sparse Bayes learning framework to learn the

correlation among multiple vectors (state-of-the-art method

on inter-vector structure based CS).

Though these two structures based methods can improve

the reconstruction accuracy over those methods without

considering the structure information, they can only cap-

ture either the spectral or spatial structure in HSI. Actually

both the spectral and spatial structures are crucial for mod-

eling HSI. Moreover, 3D structure of HSI (i.e. the correla-

tion among any two coefficients in HSI) requires these two

structures to be further correlated. For simplicity, we term

their interrelation result as the 3D structured sparsity in this

study. However, none of those existing methods can capture

such kind of 3D structured sparsity of HSI.

In this study, we propose a novel manifold-structured s-

parsity based HCS (MSHCS) method to reconstruct HSI ac-

curately from noisy measurements. A matrix based hierar-

chical prior is proposed to represent the spectral structured

sparsity and spatial unknown manifold structure of HSI si-

multaneously, which represents the 3D structured sparsity

of HSI. To the best of our knowledge, this is the first paper

to capture the 3D structured sparsity of HSI. To make this

prior fit the 3D structure of HSI well and be robust to the

unknown noise in HCS, a latent variable Bayes model is in-

troduced to learn the sparsity prior and estimate the noise

jointly from measurements. Thus, with this learned prior,

the proposed method improves the reconstruction accuracy

significantly and shows strong robustness to unknown noise

in HCS. Experiments on four real hyperspectral dataset-

s demonstrate that the proposed method outperforms other

6 state-of-the-art HCS methods on the reconstruction ac-

curacy. For example, the proposed MSHCS exceeds other

methods on PSNR at least 4db on the Face dataset when the

sampling rate is 0.09 and the SNR of measurements is 15db.

2. The Proposed Method

Given a HSI of nb bands as X ∈ R
nr×nc×nb , which con-

tains nr rows and nc columns in the image of each band, we

reshape the image of each band in X as a row vector to for-

m a 2D matrix X ∈ R
nb×np , where np = nr × nc. Each

column of X denotes the spectrum of one pixel, while each

row of X denotes a vectorized image from one band. For

convenience, we term the column and row of X as the spec-

tral dimension and spatial dimension in this study. In HCS,

X is sampled by a random sampling matrix A ∈ R
mb×nb

(mb < nb) along the spectral dimension as

F = AX +N, (1)

where F ∈ R
mb×np is the noisy compressive measure-

ments of X and N ∈ R
mb×np denotes noise. In this study,

we mainly focus on reconstructing X from the noisy mea-

surements F given A. Since X is not sparse, a dictionary

Ψ ∈ R
nb×nd is employed to transform X into a group of

sparse coefficient vectors Y ∈ R
nd×np as X = ΨY . Each

column of Y , denoted as Y.i, is a sparse vector. Ψ is known

in this study, which can be orthogonal basis (nb = nd),

over-complete basis (nb < nd) or dictionary learned for-

m training examples. Hence, the reconstruction can be re-

duced to estimating the most likely Y from F as

Yopt = argmax
Y

p (Y |F ) ∝ p (F |Y ) p(Y ). (2)

To this end, noise N is assumed to obey a matrix normal

distribution MN (0,Σn, I) and the rows of N are uncorre-

lated, where I denotes an identity matrix with proper size.

Thus, Σn = diag (λ) is a λ-dependent diagonal matrix1,

where λ = [λ1, ..., λmb
]
T

. Since X = ΨY , the likelihood

of HCS can be formulated as

p (F |Y,λ) =
exp

{

− 1
2 ∥AΨY − F∥2Σn

}

(2π)
mbnp/2 |Σn|

np/2
, (3)

where ∥Q∥Σn
=

√

tr
(

QTΣ−1
n Q

)

represents a weighted

trace norm. In the following subsections, we will introduce

how to model the prior p (Y ) and estimate its parameters .

2.1. Manifold­Structured Sparsity Prior

As discussed before, X can be transformed into a group

of coefficient vectors Y in Ψ-determined space, which has

3D structured sparsity. To model this 3D structured sparsity,

we propose a novel manifold-structured sparsity prior with

a hierarchical structure as Figure 2 shows.

First, we represent the sparse matrix Y with a matrix

norm distribution as

p (Y |Σry,Σcy) =
exp

{

− 1
2tr

(

Σ−1
cy Y TΣ−1

ry Y
)}

(2π)
ndnp/2 |Σry|

np/2 |Σcy|
nd/2

, (4)

where covariance matrix Σry depicts the correlation among

the coefficients within each sparse vector of Y and Σcy de-

scribes the correlation among all of these sparse vectors.

2.1.1 Spectral Structured Sparsity

Previous works [11, 23] show that Laplace distribution is

appropriate to model the distribution of image sparsity.

However, Laplace prior is unable to capture the structure

in sparse vector and it puts undemocratic penalization on

nonzero coefficients [7]. To alleviate these problems, we

adopt the reweighted Laplace prior proposed in [28] to rep-

resent the spectral structured sparsity in each column vector

1For a vector x, diag(x) denotes a diagonal matrix with elements from

x. For a matrix X , diag(X) denotes extracting the diagonal elements

from X to form a vector.
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Figure 2. The hierarchical structure of the manifold-structured s-

parsity prior based HCS.

of Y . Specifically, we first define Σry = diag (γ), where

γ = [γ1, ..., γnd
]
T

. Then, a Gamma distribution is imposed

on the unknown γ.

p (γ|κ) =
nd
∏

i=1

Gamma(1,
2

κi
) =

nd
∏

i=1

κi

2
exp

(

−
κiγi
2

)

.

(5)

When Σcy = I , the hierarchical prior in Eqs. (4) (5) equals

to a reweighted Laplace prior on each Y.i as [28], which can

capture the structured sparsity within each sparse vector.

2.1.2 Spatial Manifold Structure

The inter-vector structure of Y can be viewed as an un-

known manifold [15, 19], which is implicitly modeled by

describing the correlation among all sparse vectors in Y as

[4, 15] have done. Since Σcy in Eq. (4) describes the cor-

relation among all sparse vectors in matrix Y , a reasonable

Σcy is capable to represent the desired manifold structure in

Y , which will be clarified further in subsection 2.4. To learn

Σcy more flexibly, we further assume Σcy obey an inverse-

Wishart distribution as

p (Σcy|Θ, l) = W−1(Θ, l) =
|Θ|l/2 exp

{

− 1
2tr

(

ΘΣ−1
cy

)}

2npl/2Γnp
(l/2)|Σcy|(np+l+1)/2

,

(6)

where l is a constant implying the freedom degree, Γnp
is a

multivariate Gamma function and Θ ∈ R
np×np is the ref-

erence covariance matrix. In this prior, Σcy is encouraged

to fit the reference covariance matrix Θ by minimizing the

Bregman divergence between Σcy and Θ. Through learning

Σcy , the hierarchical prior represented in Eqs. (4) (6) can

capture the unknown manifold structure robustly to random

noise (We will clarify this in Subsection 2.4).

The proposed manifold-structured sparsity prior unifies

the spectral structured sparsity and spatial manifold struc-

ture into a matrix normal distribution as Eq. (4). It is no-

ticeable that p (Y |Σry,Σcy) ̸= p (Y |Σry, I) p (Y |I,Σcy)
in general case, which implies that the proposed prior con-

siders the correlation between spectral structured sparsity of

each vector and the manifold structure among those sparse

vectors. Consequently, the proposed sparsity prior can rep-

resent the 3D structured sparsity of HSI. More evidence will

be provided in Subsection 2.4.

2.2. Latent Variable based Sparsity Prior Learning

To make the proposed prior fit the distribution of desired

HSI and robust to unknown noise, a latent variable Bayes

model is introduced to learn the noise variance λ, the prior-

related parameters κ, γ, Σcy and Θ from the noisy mea-

surements. Let f = vec(F ), y = vec(Y ), n = vec(N)
and Φ = I ⊗ (AΨ), the model in Eq. (1) amounts to

f = Φy + n, where ⊗ denotes the Kronecker product.

Then, the likelihood in Eq. (3) can be represented as

p(f |y,λ) =
exp

{

− 1
2 ∥f − Φy∥2I⊗Σn

}

(2π)mbnp/2|I ⊗ Σn|1/2
. (7)

Similarly, the sparsity prior in Eq. (4) equals to

p(y|γ,Σcy) =
exp

(

− 1
2y

TΣ−1
y y

)

(2π)ndnp/2 |Σy|
1/2

, Σy = Σcy ⊗ Σry.

(8)

Thus, all unknown variables can be inferred by

max
λ≥0,γ≥0,κ,Σcy,Θ

p (λ,γ,κ,Σcy,Θ|f) ∝

=

∫

p(f |y,λ)p(y|γ,Σcy)p(γ|κ)p(Σcy|Θ, l)dy,
(9)

where the latent variable y is integrated out and flat priors

are implicitly adopted for p(λ), p(κ) and p(Θ) for compu-

tational convenience. It can be proved that the optimization

in Eq. (9) equals to minimizing the following cost function

L (λ,γ,κ,Σcy,Θ) = −2 log p (λ,γ,κ,Σcy,Θ|f)

≡ fTΣ−1
by f + log |Σby|+

nd
∑

i=1

(κiγi − 2 log κi)

+ tr(ΘΣ−1
cy ) + (np + l + 1) log |Σcy| − l log |Θ|,

(10)

where Σby = I⊗Σn+ΦΣyΦ
T and the constant term is re-

moved. With the learned variables by minimizing Eq. (10),

we can directly recover the sparse signal Y by the following

maximum a posterior(MAP) estimation.

yopt = argmax
y

p(y|f) ∝ p(f |y,λ)p(y|γ,Σcy). (11)

However, it is complicated to solve the nonconvex opti-

mization in Eq. (10) directly. Instead, we transform the cost

function into an intuitive regularized regression formula as

[20, 18]. Similar as [27], fTΣ−1
by f can be reformulated as

fTΣ−1
by f = min

y
∥Φy − f∥2I⊗Σn

+ yTΣ−1
y y. (12)

Substituting Eq. (12) into Eq. (10), we can integrate sparse

signal recovery, sparsity prior learning and noise estimation

into a unified optimization framework as:

min
y,λ≥0,γ≥0,κ,Σcy,Θ

L (y,λ,γ,κ,Σcy,Θ) , (13)
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where

L (y,λ,γ,κ,Σcy,Θ) = ∥Φy − f∥2I⊗Σn
+ yTΣ−1

y y

+ log |Σby|+
nd
∑

i=1

(κiγi − 2 log κi) + tr(ΘΣ−1
cy )

+ (np + l + 1) log |Σcy| − l log |Θ|.
(14)

It can be proved as [27] that minimizing

L (y,λ,γ,κ,Σcy,Θ) and L (λ,γ,κ,Σcy,Θ) result

in the same solution over λ,γ,κ,Σcy,Θ. Therefore, this

unified framework equals to minimizing Eq. (10) assisted

with a MAP estimation in Eq. (11). In this framework, on

one hand, the estimated noise will result in the shape of

sparsity prior to be regulated for better fitting the image

distribution. On the other hand, the better learned sparsity

prior will promote the accuracy of noise estimation. Thus,

this framework guarantees the accurate reconstruction of

HSI from noisy measurements.

2.3. Optimization Procedure

In this section, we will first estimate the reference co-

variance matrix Θ from measurements, then optimize the

remaining unknown variables from Eq. (13).

2.3.1 Reference Covariance Matrix Estimation

Since the sparse matrix Y preserves the manifold structure

of X in spatial domain [15], Θ can be defined based on the

manifold structure of X to provide a prior guess of Σcy .

Assuming the manifold structure of X is defined on a fully

connected graph [25], Θ can be denoted as the inverse of

the Laplacian matrix of the graph [15] as Θopt = (D −
M)−1. M is the similarity weight matrix of X and D is a

diagonal matrix with Dii =
∑

j Mij , where Mij denotes

the element of M at position (i, j). Generally, M is defined

by the Gaussian similarity function [25] over two pixels of

X as
Mij = exp

(

−∥X.i −X.j∥
2
2/σ

)

, (15)

where the similar pixel pair (X.i, X.j) is given a larger

weight Mij and vice versa. σ is a predetermined scalar.

However, the unknown X makes computing M intractable.

In CS, it has been proved that compressive mea-

surements preserve the geometry structure of the high-

dimensional signal well (i.e., ∥X.i −X.j∥
2
2 ≈ ∥F.i −F.j∥

2
2

with a small distortion) when the sampling matrix satisfies

the restricted isometry property (RIP) [3]. In this study,

Gaussian random matrix is employed as the sampling ma-

trix, which satisfies RIP with high probability [2]. There-

fore, the measurements F preserves the geometrical struc-

ture of X well and M can be defined directly on measure-

ments F . To improve the robustness to noise, local feature

in spatial domain of F is utilized to define M as

Mij = exp
(

−∥NF
i −NF

j ∥2F /σ
)

, (16)

where NF
i ∈ R

mb×k2

contains all measurements within a

square neighborhood of fixed size k × k centered at point

F.i in the spatial domain of F . F.i denotes the measure-

ments of pixel X.i. ∥ · ∥F denotes the Frobenius norm.

Thus, NF
i records the local feature centered at point F.i

and ∥NF
i − NF

j ∥2F denotes the dissimilarity between lo-

cal features, which is more robust to the noise than that

defined between two individual points as Eq. (15). Then,

Θ = (D − M)−1, which gives a good approximation to

Θopt and avoids the over-fitting resulted from estimating Θ
by the unified framework in Eq. (13).

2.3.2 Parameter Estimation

Since learning parameters in the vector space as Eq. (13)

results in the cost of computation and memory to be pro-

hibitive, we back-map the algorithm into original matrix s-

pace as Eq. (1) to reduce the cost by an approximation as

(

I ⊗ Σn +ΦΣyΦ
T
)−1

≈ Σ−1
cy ⊗

(

Σn +AΨΣryΨ
TAT

)−1
.

(17)

This approximation is inspired by [26], but the proposed

method has more sophisticated form than that in [26]. This

approximation performs well over a wide range of condi-

tions (see Section 3). When λ = 0 or Σcy = I , equality

in Eq. (17) holds. With this approximation, we perform

an alternative minimization scheme [28] to solve the op-

timization problem in Eq. (13), which reduces the original

problem into several simpler subproblems and optimizes the

variables in each subproblem alternatively.

(1) Sparse Signal Recovery: Solving for Y . Given λ

and γ, the subproblem over y can be formulated as

min
y

∥Φy − f∥2I⊗Σn
+ yTΣ−1

y y. (18)

The solution2 is

Y new = ΣryΨ
TAT

(

Σn +AΨΣryΨ
TAT

)−1
F. (19)

(2) Sparsity Learning: Solving for γ. With the fixed

Y , λ, Σcy and κ, the subproblem over γ simplifies to

min
γ≥0

nd
∑

i=1

Yi.Σ
−1
cy Y T

i.

γi
+ np log |Σn +AΨΣryΨ

TAT |+
nd
∑

i=1

κiγi,

(20)

where Yi. denotes the ith row of Y . A concave conjugate

function [6] is used to convert this nonconvex optimization

into a convex one. Consequently, the solution2 over γ is

α = diag[Σry − ΣryΨ
TAT (Σn +AΨΣryΨ

TAT )−1AΨΣry],

γnew
i = (

√

4κi(Yi.Σ
−1
cy Y T

i. + npαi) + n2
p − np)/ (2κi) ,

(21)

where α = [α1, ..., αnd
]T is an intermediate variable.

2The details of derivation can be found in the supplementary materials.
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(3) Manifold Learning: Solving for Σcy . Given Y , γ

and Θ, the subproblem over Σcy simplifies to

min
Σcy

nd
∑

i=1

Yi.Σ
−1
cy Y T

i.

γi
+ µ log |Σcy|+ tr(ΘΣ−1

cy ), (22)

where µ = mb+np+ l+1. This convex optimization gives

a closed-form solution2 as

Σnew
cy =

(

Y TΣ−1
ry Y +Θ+ ϵI

)

/µ, (23)

where ϵ is a constant scalar and ϵI is introduced to make

Σcy invertible. To improve the robustness to noise, µ =
∥Y TΣ−1

ry Y +Θ+ ϵI∥F is suggested.

(4) Noise Estimation: Solving for λ. Similarly, the sub-

problem over λ can be formulated as

min
λ≥0

∥AΨY − F∥2Σn
+ np log |Σn +AΨΣryΨ

TAT |,

(24)

and a concave conjugate function is adopted to convert this

nonconvex optimization into a convex one. The solution2 of

λ is
υ = diag[(Σn +AΨΣryΨ

TAT )−1],

λnew
i =

√

(

QT
.iQ.i

)

/ (npυi),
(25)

where υ = [υ1, ..., υmb
]T is an intermediate variable and

Q = AΨY − F .

(5) Hyperparameter Estimation: Solving for κ. Given

γ, we have the subproblem over κ as

min
κ

nd
∑

i=1

(κiγi − 2 log κi). (26)

The solution for κ is

κnew
i = 2/γi. (27)

The whole optimization procedure is summarized

in Algorithm 1. The maximum iteration number

ItNum = 200 and minimum update difference η =
∥Y new − Y ∥2 / ∥Y ∥ = 10−4 are employed as the stopping

criteria in this study. Because the alternative minimization

scheme decreases the objective function at each iteration

and the objective function is proved to be bounded from

below, the optimization will converge to a local minima.

2.4. Analysis of Structure and Robustness

In this subsection, we clarify the 3D structure and ro-

bustness to noise of the proposed prior.

Spatial Manifold Structure. Locally linear embedding

(LLE) [4] and Laplacian eigenmap (LE) [15] are two popu-

lar manifold learning paradigms, where the manifold struc-

ture is implicitly represented by the correlation among n-

odes. Applied to HCS, the correlation defined in these two

Algorithm 1: Manifold-Structured Sparsity Prior

based Hyperspectral Compressive Sensing (MSHCS)

Input: Random sampling matrix A, dictionary Ψ,

noisy compressive measurements F .

Initialize: Noise level λ = 1mb
, signal variance

γ = 1nd
, hyperparameter κ = 1nd

;

preprocessing: Learn reference covariance matrix Θ;

while Stopping criteria is not satisfied do
1. Recover sparse signal Y by Eq. (19);

2. Learn sparsity parameter γ by Eq. (21);

3. Learn manifold structure Σcy by Eq. (23);

4. Estimate noise level λ by Eq. (25);

5. Update the hyperparameter κ by Eq. (27);

Output: Reconstruct HSI by Xrec = ΨYrec.

methods can be viewed as the following priors on Y .

pLLE (Y |W ) ∝ exp

{

−
1

2

∑

i
∥Y.i −

∑

j
WjiY.j∥

2
2

}

,

pLE (Y |K) ∝ exp

{

−
1

2

∑

i,j
Kij∥Y.i − Y.j∥

2
2

}

,

(28)

where W and K are the similarity weight matrices defined

on Y in LLE and LE, respectively. Let L = (I −W )(I −
W )T in LLE and L = D −K in LE where D is a diagonal

matrix with Dii =
∑

j Kij , pLLE (Y |W ) and pLE (Y |K)
can be integrated into a unified distribution.

p (Y |L) =
exp

{

− 1
2tr

(

Y LY T
)}

(2π)
−ndnp/2 |L−1|nd/2

. (29)

It can be seen that this manifold structure prior amounts to

the proposed prior in Eq. (4) when Σcy = L−1 and Σry =
I , i.e., the proposed prior can model the spatial manifold

structure of Y by learning a reasonable Σcy .

3D Structure. The optimization in Eq. (13) equals to a

standard regularized regression model as

min
y

∥Φy − f∥2I⊗Σn
+ g(y),

g(y) = min
γ≥0,κ,Σcy

∥y∥2Σy
+ log |Σby|+

nd
∑

i=1

(κiγi − 2 log κi)

+ tr(ΘΣ−1
cy ) + (np + l + 1) log |Σcy| − l log |Θ|,

(30)

where g(y) is the penalty function on y. This standard regu-

larized regression model equals to a Bayes MAP estimation

with an implicit prior p̄(y) ∝ exp{− 1
2g(y)} and likelihood

in Eq. (7) [27]. In this study, since log |Σby| makes Σn, Σry ,

Σcy and Φ coupled together, the corresponding prior p̄(y)
is non-factorial, i.e., there is no such a prior g(yi) for each

coefficient yi that satisfies p̄(y) =
∏

i g(yi), implying that

any two coefficients of y are dependent in this prior. Con-

sequently, the proposed prior can represent the 3D structure
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Figure 3. The PSNR curves on four datasets with sampling rate ρ = 0.3 and the measurements of SNR ranging from 15db to 50db.
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Figure 4. The SAM bar charts on four datasets with sampling rate ρ = 0.3 and the measurements of SNR ranging from 15db to 50db.

of HSI. Although a similar analysis is provided in [28], they

only capture the structure within each sparse vector.

Robustness to Noise. According to Eqs. (21) (23) (25),

the parameters γ and Σcy in spectral structured sparsity and

spatial manifold structure are updated depending on the es-

timated noise level, and the noise level is estimated based on

the learned sparsity prior in turn, which makes the proposed

manifold-structured sparsity robust to noise.

3. Experimental Results and Analysis

Datasets: Four datasets are used to evaluate the perfor-

mance of the proposed method, named as Urban3, PaviaU4,

Face5 and Scene6. Urban and PaviaU are remote sensing H-

SI, Face comes from the CMU hyperspectral face database

and Scene is the HSI of nature scene. For Urban, we selec-

t 128 continuous bands and crop 128 × 128 pixels in each

band as the experimental data. For other datasets, we crop

128× 128 pixels in each band as the experimental data.

Comparison methods: We compare the proposed

method with 6 state-of-the-art methods, including Orthog-

onal Matching Pursuit (OMP) [24], Stagewise Orthogonal

Matching Pursuit (StOMP) [13], LASSO [14], Iteratively

Reweighted Compressive Sensing (IRCS) [8], the regular-

ized Multi-variable FOcal Underdetermined System Solver

(MFOCUSS) [10], and the Temporally Multi-variable S-

parse Bayes Learning (TMSBL) [29]. Therein, OMP, S-

tOMP are the classical greedy algorithm based CS meth-

ods, LASSO and IRCS are the ℓ1 and ℓp (p = 0.5) norm

3http://www.tec.army.mil/Hypercube
4http://www.ehu.es/ccwintco/index.php/Hyperspectral Remote

Sensing Scenes
5http://www.consortium.ri.cmu.edu/hsagree/index.cgi
6http://personalpages.manchester.ac.uk/staff/david.foster/Hyperspectral

images of natural scenes 04.html

based regularization methods, MFOCUSS and TMSBL are

the inter-vector structure based CS methods. To further il-

lustrate the superiority of the proposed method, we utilize

two special cases of the proposed method as another two

comparison methods, namely MSHCS-S and MSHCS-M.

MSHCS-S only considers the spectral structured sparsity by

setting Σcy = I whereas MSHCS-M only considers the s-

patial manifold structure with Σry = I .

Parameter setup: For all experiments, the 3D HSI is

converted into a matrix X by vectorizing the image of each

band as a row of X . Haar wavelet is chosen as the dictio-

nary Ψ to transform X into the sparse matrix Y . A column

normalized Gaussian random sampling matrix is adopted as

A for all methods. The MSHCS, MSHCS-S and MSHCS-

M share the same stopping criterion in Subsection 2.3.2.

For other comparison methods, all parameters involved are

optimally assigned as described in the reference papers.

Evaluation measures: Peak signal-to-noise ratio (P-

SNR) [21]) and spectral angle mapper (SAM) [21] are

adopted as the evaluation measures. PSNR measures the

average similarity between the reconstructed image and ref-

erence image, while SAM calculates the average angles be-

tween spectrum vectors from the reconstructed image and

the reference image at each pixel. Larger PSNR, or small

SAM denotes higher reconstruction accuracy.

3.1. Performance on Robustness to Noise

In this subsection, X is compressed by the sampling ma-

trix A with sampling rate ρ = 0.3, which is defined as

the volume proportion of the measurements to the origi-

nal HSI. Different levels of additive Gaussian white noise

are added into the measurements F to simulate the noise

in HCS, which results in the signal-noise-ratio (SNR) of F
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Figure 5. Visual reconstruction results of the 120th band from Urban, the 90th band from PaviaU, the 44th band from Face and the 30th

band from Scene with sampling rate ρ = 0.3 when the SNR of measurements is 25db. (a) OMP. (b) StOMP. (c) LASSO. (d) IRCS. (e)

MFOCUSS. (f) TMSBL. (g) MSHCS-S. (h) MSHCS-M. (i) MSHCS. (j) Original bands.
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Figure 6. The PSNR curves on four datasets with the measurements of SNR = 15db and the sampling rate ρ ranging from 0.06 to 0.3.

ranging from 15db to 50db. Given the noisy F , sampling

matrix A and dictionary Ψ, we recover the sparse signal Ŷ
for all comparison methods. Then HSI is reconstructed as

X̂ = ΨŶ . After 10 Monte-Carlo runs of reconstruction, we

obtain the average evaluation measures.

Under different levels of noise, the PSNR curves versus

the SNR of measurements on four datasets are shown in Fig-

ure 3. It is clear that the proposed MSHCS outperforms oth-

er HCS methods on all datasets significantly. For example,

when SNR of measurements is 30db, the PSNR of MSHC-

S exceeds other competing methods at least 2.5db on Ur-

ban dataset, 1.4db on PaviaU dataset, 1.8db on Face dataset

and 1.6db on Scene dataset. The bar charts of SAM values

under different levels of noise on four datasets are given in

Figure 4. Under different levels of noise, the SAM values of

MSHCS are smaller than other methods in most of the cas-

es. For example, when SNR of measurements is larger than

20db, SAM values of MSHCS are smaller than 10 degree

on the PaviaU dataset. All the SAM values of MSHCS on

Face dataset are smaller than 8 degree under different levels

of noise. Since MSHCS-M neglects the spectral sparsity of

Y but it is crucial for reconstruction in HCS, larger SAM

values are given by MSHCS-M compared with MSHCS-S

and MSHCS. Additionally, the visual comparison of part

reconstruction results is shown in Figure 5, where MSHCS

obtains the most approximate results to the original bands.

The evaluation results above demonstrate that the pro-

posed MSHCS gives the best reconstruction result of HSI

among all methods under different levels of noise.

3.2. Performance on Reconstruction Accuracy

In this subsection, we compress X by the sampling ma-

trix A with sampling rate ρ ranging from 0.06 to 0.3. Ad-

ditive Gaussian white noise is added into the measurements

F and the SNR of F is 15db. Given the noisy F , sampling

matrix A and dictionary Ψ, we reconstruct HSI as Subsec-

tion 3.1 does by all methods. The average evaluation mea-

sures are given with 10 Monte-Carlo runs of reconstruction.

Under fixed noise level, the PSNR curves versus sam-

pling rate on four datasets are shown in Figure 6. We can

find that the proposed MSHCS obtains the highest PSNR

values on all datasets. Specifically, when sampling rate

ρ = 0.09, the PSNR of MSHCS exceeds other methods at

least 2.6db on Urban dataset, 4db on Face dataset and 2.6db
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Figure 7. The SAM bar charts on four datasets with the measurements of SNR = 15db and the sampling rate ρ ranging from 0.06 to 0.3.

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Figure 8. Visual reconstruction results of the 120th band from Urban, the 90th band from PaviaU, the 44th band from Face and the 30th

band from Scene with sampling rate ρ = 0.15 when the SNR of measurements is 15db. (a) OMP. (b) StOMP. (c) LASSO. (d) IRCS. (e)

MFOCUSS. (f) TMSBL. (g) MSHCS-S. (h) MSHCS-M. (i) MSHCS. (j) Original bands.

on Scene dataset. The bar charts of SAM values versus sam-

pling rate on four datasets are given in Figure 7. With dif-

ferent sampling rates, the SAM values of MSHCS on all

datasets are smaller than other competing methods in most

of the cases. For example, when sampling rate ρ > 0.06,

the SAM values of MSHCS are smaller than 12 degree on

the PaviaU dataset. Similarly, without considering the spec-

tral sparsity of Y leads to larger SAM values of MSHCS-M

than that of MSHCS-S and MSHCS. The visual comparison

of part reconstruction results is given in Figure 8, where the

proposed MSHCS yields the most approximate results to

the original bands.

These comparison results demonstrate that the proposed

MSHCS outperforms other methods on the reconstruction

accuracy of HSI with different sampling rates.

4. Conclusion

We have proposed a novel manifold-structured sparsi-

ty prior based HCS method to accurately reconstruct HSI

from a few noisy measurements. The proposed prior rep-

resents the 3D structured sparsity of HSI for the first time

through integrating the spectral structured sparsity and spa-

tial unknown manifold structure into a unified distribution

with hierarchical structure. To make the prior fit the image

distribution well and robustly to the random noise in HCS,

the sparsity prior and unknown noise are jointly optimized

from measurements by a latent Bayes model. Thus, with

this learned prior, the proposed method improves the re-

construction accuracy under unknown noise corruption sig-

nificantly. Extensive experimental results on four real hy-

perspectral datasets demonstrate the superiority of the pro-

posed method to other 6 state-of-the-art HCS methods on

the reconstruction accuracy of HSI.
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