
Segment Graph Based Image Filtering: Fast Structure-Preserving Smoothing

Feihu Zhang1,2 Longquan Dai2 Shiming Xiang2 Xiaopeng Zhang2

1School of Computer Science, Northwestern Polytechnical University, Xi’an, China
2NLPR-LIAMA, Institute of Automation, Chinese Academy of Sciences, Beijing, China

hi.yexu@gmail.com, lqdai@foxmail.com, {smxiang, xpzhang}@nlpr.ia.ac.cn

Abstract

In this paper, we design a new edge-aware structure,

named segment graph, to represent the image and we fur-

ther develop a novel double weighted average image filter

(SGF) based on the segment graph. In our SGF, we use

the tree distance on the segment graph to define the inter-

nal weight function of the filtering kernel, which enables

the filter to smooth out high-contrast details and textures

while preserving major image structures very well. While

for the external weight function, we introduce a user spec-

ified smoothing window to balance the smoothing effects

from each node of the segment graph. Moreover, we also

set a threshold to adjust the edge-preserving performance.

These advantages make the SGF more flexible in various

applications and overcome the “halo” and “leak” problem-

s appearing in most of the state-of-the-art approaches. Fi-

nally and importantly, we develop a linear algorithm for the

implementation of our SGF, which has an O(N) time com-

plexity for both gray-scale and high dimensional images, re-

gardless of the kernel size and the intensity range. Typically,

as one of the fastest edge-preserving filters, our CPU im-

plementation achieves 0.15s per megapixel when perform-

ing filtering for 3-channel color images. The strength of

the proposed filter is demonstrated by various applications,

including stereo matching, optical flow, joint depth map up-

sampling, edge-preserving smoothing, edges detection, im-

age denoising, abstraction and texture editing.

1. Introduction

Natural image often contains rich trivial details and tex-

tures, which may reduce the performance of many visual

computing algorithms. Serving as the pre-processing or a

key step for these algorithms, edge-preserving smoothing

aims to remove trivial details while preserving major image

structures. This makes it the foundation for many vision

and graphics applications, including low-level image anal-

ysis (e.g., edge detection, image segmentation), image ab-

straction/vectorization, content-aware image editing et al.

(a) Input (b) GF [13] (c) WLS [7]

(d) L0-smoothing [23] (e) TF [2] (f) Ours

Figure 1: Problems illustrations. (a) Image with high-contrast

details and textures as input. (b) “halo” artifacts around major

edges. (c) WLS [7] distributes the blurring (“halo”) globally. (d)

L0-smoothing [7] could not smooth out some high-contrast detail-

s. (d) “leak” problem at some edges (see arrows). (e) Our method

keeps the image structure very well.

Although many state-of-the-art edge-preserving smooth-

ing techniques have been proposed recently, they may suffer

from various problems, including “halo” artifacts, residu-

al artifacts, “leak” problem and the time-consuming short-

coming. “Halo” artifacts (as shown in Fig.1(b)) usually

appear around the major edges and are shared by a vari-

ety of smoothing techniques, including the widely used bi-

lateral filter (BF), guided filter (GF) et al. These methods

do not distinguish trivial details from major image struc-

tures, and they use intensity/color as the criterion to smooth

out all contents in the images. Many improved researches

(such as WLS [7], CLMF [16], L0-smoothing [23] et al.)

attempted to solve the “halo” problem and generate sharp-

er edges. Although they are different from each other, the

common behavior of these operators is to smooth out low-

contrast details from input images. However, they typically

only use pixel color/intensity contrasts (or image gradients)

to distinguish details from major image structures, and as

a result, they will cause new troubles when utilized to re-

move high-contrast details and textures. For example, L0-

smoothing [23] could not remove all of the trivial detail-

s (Fig.1(d)). While for WLS [7], the globally distributed

blurring (“halo”) becomes clear again (Fig.1(c)).

1361

Unlike the “halo” artifacts, “leak” problem is introduced

by tree filtering (TF) scheme [2,27] and only occurs at some

of the major object edges. This is because that TF [2, 27]

constructs a minimum spanning tree (MST) to connect all

pixels in the image together and aggregates the smoothing

effects globally along the MST. As a result, connections will

inevitably cross some strong edges, and these edges will be

corrupted (as illustrated in Fig 1(e)).

Although some approaches, like texture smoothing [24],

do not suffer from above problems, they have extremely

high computational cost. Therefore, they cannot be applied

to applications with high speed requirement. It is thus de-

sired to design a new image filter which should be able to

1. smooth out high-contrast details/textures effectively;

2. keep the image structure (major edges) pretty well;

3. run in linear time complexity (be suitable for real-time

processing).

In this paper, we design a new edge-aware structure (seg-

ment graph) to represent the image, and we further devel-

op a double weighted average image filter named segment

graph filter (SGF), in which the three goals could be simul-

taneously achieved. Moreover, other superiorities are pos-

sessed, including local nature, ease of implementation, scal-

ability, flexibility and adaptability to a variety of application

scenarios.

2. Related Work and Problem Analysis

The widely used structure-preserving smoothing tech-

niques can be categorized into two types. One contain-

s the optimization based filters, among which Farbman et

al. [7] propose an edge-preserving filtering method based

on weighted least square (WLS) optimization. Xu et al. [23]

develop an edge-preserving smoothing algorithm according

to the optimization on the L0 norm of image gradients to

produce piecewise constant images. Generally speaking,

these two methods could generate impressive performance

when used to smooth out low-contrast details since they are

designed based on image gradients. However, these inten-

sity contrast or gradient-oriented approaches could not sup-

press high-contrast details and textures. Xu et al. [24], on

the other hand, design a local variation measure, namely,

Relative Total Variation (RTV), to distinguish textures from

major image structures regardless of contrasts. This method

produce favorable results for highly textured images, but it

may overly smooth natural images. Also as one of the com-

mon limitations, the performance of these methods comes

at the price of huge time consumption.

The weighted average based smoothing approaches, in-

cluding our method, are another kind of edge-preserving

smoothing techniques. Typically, bilateral filter (BF), as

the first proposed edge-preserving filter, has been widely

used due to its simplicity. However, computational efficien-

cy (non-linear) is still one of major challenges which limits

its performance in many applications, e.g. stereo matching,

optical flow. Even though, many acceleration algorithms

have been developed for BF [4, 12, 26, 28], they are usu-

ally the approximation approaches [4, 12, 26] or their per-

formance depends on the intensity range of the image [28].

The linear GF is introduced in [13] as a linear transform

of the guidance image. Being computationally much faster

than BF, GF has demonstrated its unique advantages over

BF in some applications such as detail enhancement, stere-

o and optical flow [19] et al. However, both BF and GF

cannot get rid of the “halo” artifacts which would concen-

trate the blurring near the object edges (Fig.1(b) and 2(b)).

Subsequently, the cross-based local multipoint filter (CLM-

F) [16] is proposed to remove “halos” and generate sharp

edges in linear time. It takes a spatial-aware window to

select the most relevant pixels for smoothing. However,

its performance degenerates greatly when used for high-

contrast details smoothing.

Being different from above point-wise intensity based

filters, Karacan et al. develop a patch-based texture removal

algorithm by using the similarity measures built on a re-

gion covariance descriptor [14]. Cho et al. jointly employ

the idea of Karacan and the weighted averaging scheme of

BF to present a texture filter (BTF) [6] for texture remov-

ing. These two local filters have shown superiorities in tex-

ture/structure separation. However, just like the optimiza-

tion based techniques, the impressive performance comes

at the sacrifice of the time complexity, and they may also

suffer from other problems (for example, over smoothing

of some image edges). In addition, Zhang et al. propose

the iterative rolling guidance filter (RGF) scheme [29] with

controlling of the level of details during filtering. While,

it tends to round off the object edges or corners (Fig.9(i)).

Recently, geodesic filtering algorithms are well studied for

image denoising [5, 11]. However, they are not strong e-

nough for high-contrast details smoothing.

On the other hand, by treating an image I as a stan-

dard four connected, undirected grid (planar graph) with

nodes being the image pixels and edges being weighted

by color/intensity differences (Eq.4), a minimum spanning

tree (MST) can be computed by removing edges with large

weights leaving the remaining edges connecting through all

pixels as a tree (Kruskal algorithm or other linear algorith-

m [9, 15]). Then, the similarity between any two vertices

could be decided by their shortest distance on the MST. The

MST extracted from the image has two important proper-

ties which make the tree distance be an edge-aware metric

for high-contrast details smoothing. 1) MST can automati-

cally drag away two dissimilar pixels that are close to each

other in the spatial domain. 2) Small isolated region sur-

rounded by large homogeneous region with dissimilar col-

or/intensity (noise, high-contrast details and textures) will

362

(a) visualized input (b) GF [13] (c) MST [27] (d) TF [2] (e) SGF denoising (f) SGF smoothing

Figure 2: (a) Color visualized noisy input (PSNR=23.9dB), (b) “halo” appears around major edges (PSNR=32.1dB). (c) No “halos”, but

“leaks” and “false edges” destroy the image structure (PSNR=28.4dB), (d) TF [2] just alleviates the “leak” problem, but it still appears

around some object edges (35.2dB). (e) With a small smoothing window, our method could be used for denoising (45.5dB), and all the

object edges are preserved well. (f) Some undesirable details (“stars”) removed by using large window while other contents are preserved.

be connected to the surrounding region with a short tree dis-

tance during the MST construction.

Although the tree distance has the edge-aware proper-

ty and can be used to remove the “halo” artifacts, there

is an obvious problem which might limits its developmen-

t in edge-preserving smoothing. That is the “leak” prob-

lem (Fig.2(c)). Since the global MST forces every pixel to

eventually be connected through the tree, even an isolated

region with hard edges has to contain at least one bridge to

the rest of the image. As a result, when used for smoothing

images, these major edges are easily destroyed. To alle-

viate the “leak” problem, Bao et al. combine the joint BF

and the original MST filtering scheme [27] to develop their

own edge-preserving TF [2]. Besides the tree distance, it

also involves the pixel spatial distance and color/intensity

difference as the smoothing criterions. However, the im-

provement comes at the sacrifice of the time complexity.

Moreover, the “leak” problem is just alleviated but not fun-

damentally solved (Fig.2(d)).

In fact, the “leaks” just appear in the global MST

scheme. To take full advantage of the edge-aware prop-

erty of the tree distance and remove the “leaks” fundamen-

tally, instead of using MST, it is more reliable to design a

new edge-aware structure to represent the image and fur-

ther to develop the image filtering approach for structure-

preserving smoothing.

3. Segment Graph Based Image Filter

In order to solve the “halo” problem which appears in

most of the local filters, tree distance can be introduced.

Instead of using the global MST scheme which suffers from

the “leak” problem, we design a more reliable edge-aware

structure to represent the image, namely the segment graph.

Based on this, we develop our segment graph based image

filter (SGF), a linear local filter that can smooth out high-

contrast details while preserving major image structures.

3.1. Segment Graph Construction

As a key building block to many vision algorithms, re-

cently, superpixel decomposition of a given image has been

actively studied. For example, the recently proposed SLIC

superpixel algorithm [1] can decompose an input image I

into non-overlapping superpixels and yield adherence to the

major image boundaries. The size of the superpixels can

be easily adjusted and more importantly, it can run very

fast (linearly).

We construct a well-designed segment graph based on

the superpixel segmentation. The segment graph construc-

tion can be achieved by three step: 1) decompose the entire

image domain I into superpixel regions, in which the pixel-

s usually share the similar intensity; 2) for each superpixel

region S, we build a local MST; 3) treat each sperpixel S as

node of the segment graph and choose the minimal edge be-

tween S and each of its K neighborhoods Si (0 ≤ i < K),

namely, Emin(S, Si) = min{W (u, v)|u ∈ S, v ∈ Si} to

connect the adjacent nodes/superpixels.

Part of the segment graph structure is illustrated in

Fig.3(a). We will analyze the effects of the segment graph

on the filtering results in section 4. Next, we begin to build

our structure-preserving image filter.

3.2. Filtering Kernel

Unlike most of the weighted average filters, we novelly

design our SGF as a double weighted average filter. Given

a scalar-valued input image I , the filter computes an output

image J by

Jp =
1

Kp

∑

0≤i<k

ω2(p, Si)
∑

q∈Si

ω1(p, q)Iq. (1)

Here, Kp is a normalizing term. Si represents superpixel

region around the pixel p. The output Jp at pixel p is a dou-

ble weighted average of the intensity value Iq in a specific

neighbor region Ω = ∪0≤i<k Si (q ∈ S0). The two weight

functions ω1 and ω2 are defined as totally different forms.

Internal Weight: For the internal weight function ω1, we

take the tree distance for major consideration and define ω1

as

ω1(p, q) = exp(−
D(p, q)

σ
). (2)

In such a Gaussian function, σ controls the attenuation

speed of D(p, q) as it increases. ω1 is inversely propor-

tional to the tree distance D(p, q) between two pixels p and

q. D(p, q) can be achieved by

D(p, q) =
∑

0≤i<n

W (pi, pi+1). (3)

363

p
S′

1

S1

v
u

S0

S′

0

(a)

(x0, ym)

(x0, y0) (xn, y0)

(xn, ym)

p

A

B
S

R(S)

(b)

Figure 3: (a) Illustration of filtering kernel of our SGF. The super-

pixels are presented as hexagons. Green edges represent the con-

necting edges Emin. The pixel p is in the superpixel S0 (yellow

hexagon). And its filtering window Ωp is shown with violet mask

which overlaps with four superpixel regions {S0, S1, S2, S3}. As

a result, the overlapped regions are {S′
0, S

′
1, S

′
2, S

′
3} and Ωp =⋃

0≤i<4
S′

i. (b) Illustration of weighted average calculation (lin-

ear algorithm to calculate |S′(p)| for any pixel p).

where {p0, p1...pi, pi+1, ...pn} constitute the path from

pixel p to q on the tree (segment graph). W (pi, pi+1) can

be achieved through Eq.(4), which is also the edge weight

function when we construct the MST for each superpixel.

W (p, q) = |Ip − Iq| . (4)

External Weight: In the filtering kernel Eq.(1), the exter-

nal weight ω2 balances the smoothing contribution of each

superpixel region Si. As illustration in Fig.3(a), just like GF

and BF, we also introduce a smoothing window Ωp (usually

a user defined square window with radius r) for each pixel

p. Such a window mask Ωp will overlap with several super-

pixel regions. We denote these k overlapped superpixel as

{S0, S1, · · ·Si, · · ·Sk−1} and represent the overlapped ar-

eas as {S′
0, S

′
1, · · ·S

′
i, · · ·S

′
k−1}, namely, S′

i = Ωp ∩ Si.

Finally, we define the weight function ω2 as the area size

ratio of S′
i and Si.

ω2(p, Si) =
|S′

i|

|Si|
. (5)

Here, |S′
i| and |Si| denote the area size of S′

i and Si.

3.3. Linear Implementation

Here, we describe the linear implementation of our S-

GF which includes three procedures: the internal aggre-

gation, the external aggregation and the weighted average

calculation. The overview of the implementation is pre-

sented in Algorithm 1. For simplicity, we set CA
Si
(p) =

∑

q∈Si
ω1(p, q)Iq and replace the filtering kernel (Eq.1)

with

Jp = 1
Kp

∑

0≤i<k

ω2(p, Si)
∑

q∈Si

ω1(p, q)Iq

= 1
Kp

∑

0≤i<k

ω2(p, Si)C
A
Si
(p).

(6)

Internal Aggregation: To calculate CA
S0
(p) (p ∈ S0),

we take full use of the recently proposed linear cost aggre-

gation algorithm [27] which contains two steps (upward ag-

gregation and downward aggregation). For all the pixels in

Algorithm 1 Linear Implementation of the SGF

1: ♦ segment graph construction

2: over segment image I into superpixel lattices.

3: construct a local MST for each superpixel S.

4: connect S and all of its neighborhoods Si by Emin(S, Si).
5: ♦ internal aggregation

6: for each superpixel region S do

7: aggregate the cost by Eq.(7) and Eq.(8).

8: end for

9: ♦ neighbor aggregation

10: for each superpixel S & its neighborhood Si(0 ≤ i < K) do

11: aggregate the cost CA
Si

to S (Eq.9).

12: end for

13: ♦ weighted average

14: for each pixel p ∈ I do

15: calculate {|S′
0|, · · · |S

′
i|, · · · |S

′
k−1|} for p.

16: end for

17: compute filtering result Jp for all pixels using Eq.(1) .

superpixel S0 which have been connected with a local MST,

the upward aggregation performs aggregation from leaf n-

odes to root node and stores the aggregation result CA↑
S0

at

each node. Let p = P (q) denote the parent of node/pixel q.

Then, for each pixel p ∈ S0,

CA↑
S0

(p) = Ip +
∑

P (q)=p

ω1(p, q)C
A↑
S0

(q). (7)

After the upward aggregation, downward aggregation is

performed from root node to leaf nodes based on the pre-

vious upward aggregation result CA↑
S0

.

CA
S0
(p) = CA↑

S0
(p)

+ω1(P (p), p) · [CA↑
S0

(P (p))− ω1(p, P (p)) · CA↑
S0

(p)].
(8)

After the upward and downward aggregations, we can get

the aggregated cost CA
S0
(p) =

∑

q∈S0
ω1(p, q)Iq .

Neighbor Aggregation: After the internal aggregation,

we perform our neighbor aggregation (step 9∼12) to calcu-

late the rest CA
Si
(p) (1 ≤ i < k). For S0(p ∈ S0) and its

neighborhood Si(1 ≤ i < k), we can achieve CA
Si
(p) by

Eq.(9).

CA
Si
(p) = ω1(p, v) · C

A
Si
(v)

= ω1(p, u) · ω1(u, v) · C
A
Si
(v).

(9)

Where u ∈ S0, v ∈ Si are the pixels/vertexes of the con-

necting edge Emin(S0, Si) = min{W (u, v)|u ∈ S0, v ∈
Si} during the segment graph construction. CA

Si
(v) is the

aggregated cost of pixel/vertex v in Si after internal aggre-

gation for superpixel Si. Note that ω1(p, u) for all pixel

p ∈ S0 can be achieved by traversing the MST in S0 from

root node u just once.

Weighted Average:1 After the internal and neighbor ag-

gregations (step 5∼12 in Algorithm 1), we still need a linear

1 See supplementary material for more details.

364

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4: (a) Input, (b) SLIC superpixel segmentation, (c) ran-

dom segmentation for comparison, (d) square lattices to construct

the segment graph. (e) Guided filter [13] serves as the comparison

(r = 16, ε = 0.22). (f)∼(h) are the smoothing results when using

(b)∼(d) for segment graph construction. Parameters are all set as

(r = 16, σ = 0.2, τ = 30/255).

algorithm to calculate the external weight ω2 for all pixel-

s. Precisely, we need to calculate the overlapped area size

{|S′
0|, · · · |S

′
i|, · · ·

∣

∣S′
k−1

∣

∣} for all pixels p ∈ I . As illustrat-

ed in Fig.3(b), using superpixel region S as an example, we

first find its minimum circumscribed rectangle R(S) with it-

s four vertexes as (x0, y0), (xn, y0), (x0, ym) and (xn, ym).
We treat R(S) as a sub image I ′, and for any pixel q ∈ I ′,
we set I ′q = 1, if q ∈ S (blue region in Fig.3(b)); otherwise,

I ′q = 0 (green region). After that, we can get that for any

rectangle region ΩR ∈ R(S), the overlapped region size

|ΩR ∩ S| =
∑

q∈ΩR
I ′q .

Then, for pixel p and its smoothing window Ωp (with ra-

dius r), |S′(p)| = |Ωp ∩ S| =
∑

q∈Ωp
I ′q . However, Ωp is

not always included in R(S). Fortunately, there is a corre-

sponding rectangle RB
A ∈ R(S) which satisfies the condi-

tions RB
A ∩S = Ωp∩S and |S′(p)| =

∑

q∈RB
A
I ′q . It’s clear

that RB
A = R(S) ∩ Ωp. With A and B as the upper left and

lower right vertexes of RB
A , we can locate RB

A by

A = (x
A
, y

A
) = (max(xp − r, x0),max(yp − r, y0));

B = (x
B
, y

B
) = (min(xp + r, xn),min(yp + r, ym)).

(10)

For example, in Fig.3(b), |S′(p)| =
∑

q∈RB
A
I ′q and

RB
A ∈ R(S) is the corresponding rectangle with its two

diagonal vertexes: A = (xp − r, y0) and B = (xn, yp + r).

Finally, we employ the widely used linear boxfilter (or

known as integral histograms) [17,18] to calculate the sum-

mation of the pixel values in any size rectangle (|S′(p)| =
∑

q∈RB
A
I ′q). Then, we can get the filtering results by Eq.(1).

4. Algorithm Analysis and Extension

4.1. Effects of the Segment Graph

To take full advantages of our segment graph, during

the neighbor aggregation course (step 9∼12 in Algorith-

m 1), we set a threshold τ to cut off some of the edges be-

tween S0 and its neighborhood Si. If the connecting edge

Emin(S0, Si) > τ , we stop the aggregation from Si to S0.

(a) input (b) segmentation (c) SGF

(d) patch-SGF (e) patch-geodesic [5] (f) NLM [3]

Figure 6: (a) Input with strong noises (standard deviation of the

Gaussian noises σn = 100, PSNR=10.28dB), (b) unreliable SLIC

superpixel results influenced by the noises, (c) result of the orig-

inal SGF (r = 12, σ = 0.1, 2 iterations, PSNR=21.73dB), (d)

improved SGF using patch strategy in [5] (22.93dB). (e)∼(f) state-

of-the-art denoising methods (PSNR values: 22.37dB, 23.25dB)

Then, the filtering kernel (Eq.1) changes to Eq.(11).

Jp = 1
Kp

∑

0≤i<k

δi · ω2(p, Si)
∑

q∈Si

ω1(p, q)Iq

s.t. δi =

{

0 if Emin(S0, Si) > τ
1 otherwise

(11)

For example, in Fig.4 (b), by setting a reasonable threshold,

the red edges are cut off to stop the aggregation. As an ex-

tension of the original SGF, the new filtering kernel (Eq.11)

will contribute to better performance around edges and in-

crease the flexibility in different applications.

4.2. Smoothing Effects Analysis

The double weighted design of our SGF possesses

many superiorities which help to produce impressive edge-

preserving smoothing performance. Here, we analyze the

origins of these properties.

1) The SGF uses tree distance on the segment graph to

measure the similarity between two pixels. Unlike other

shortest path based geodesic approaches [5, 11], both local

MST in the superpixel and the connection between super-

pixel nodes choose edges with the minimum weights (Eq.4),

therefore, could avoid to cross the major object edges. So

for any two adjacent pixels separated by major edges, the

tree distance (Eq.3) will be large enough to avoid unwished

smoothing effects. While for the trivial details or textures,

the segment graph would connect them to the surrounding

regions and bring them the smoothing effects.

2) The supported smoothing effect region for each pixel

is adaptive. It’s similar but not identical to many other ap-

proaches [16,21] with variable support regions for filtering.

Our SGF is implemented on the superpixel based segment

graph. The shape-adaptive superpixels constitute a variable

supported region for each pixel. Furthermore, with a prop-

er threshold τ , such adaptive regions exclude pixels with

365

(a) input (b) (8, 0.1) (c) (8, 0.3) (d) (16, 0.3) (e) (32, 0.3)

(f) (16, 0.1) iteration 1 (g) iteration 3 (h) iteration 5 (i) iteration 15 (j) iteration 100

Figure 5: (a) natural iamge (resolution: 385× 580) as input. (b)∼(e) smoothing results with different parameter settings. (f)∼(j) iterative

filtering results. Note that the values of the subtitle gives the parameters (r, σ). τ is set as 30/255 for all the results.

Figure 7: Per-pixel intensity difference between two iterations by

using iterative SGF. Data are collected from test sample in Fig.5.

strong color differences and pick out the most relevant pix-

els to generate smoothing effects. As a result, it contributes

to structure-preserving performance.

3) The external weight ω2 properly balances and spreads

the smoothing effects along the segment graph. It limits the

effects of each superpixel on the target pixels, reduces the

influence of the shape and size of the superpixels and pre-

vents new false edges being generated at superpixel edges.

4) The local nature of our SGF further restricts the s-

moothing effects regions for each pixel to a rational local

area and enables the SGF to avoid “leaks” and “false edges”

appearing in some of the nonlocal approaches [2, 27].

Benefiting from the complementary effects of these

properties, our SGF achieves impressive performance for

structure-preserving smoothing. This also guarantees that

in some extreme cases, for example, where the superpixel

segment results used to build the segment graph are unreli-

able, the other three properties could still work together to

generate satisfactory results. For example, in Fig.4, we use

the superpixel segmentation results, a random segmentation

results and the square grids to construct three kinds of seg-

ment graphs and then run the filtering. The results of them

(Fig.4 (f)∼(b)) are slightly different and the major struc-

tures are all well preserved. This indicates that our SGF

does not heavily rely on the superpixel segmentation. Fur-

thermore, we test the performance of our SGF in extreme

conditions where the superpixel segmentation is influenced

by strong noises. As shown in Fig.6(b), the segmentation

results degenerate greatly for image with strong noises. As

a comparison, the output of the SGF are relatively satisfac-

tory even though it could not compete with the state-of-the-

(a) Textured input (b) Karacan et al. [14] (c) BTF [6]

(d) TF [2] (e) Xu et al. [24] (f) Our SGF

Figure 8: Texture suppression. (b)∼(e) usually overly smooth

some major edges in order to remove strong textures. Parameter-

s are adjusted to prove their best performance. (f) result of our

SGF (r = 12, σ = 0.15, τ = 30, 3 iterations iterative filtering).

art denoising algorithms [3, 5]. However, benefiting from

the special design of our SGF, other strategies, for exam-

ple, the effective patch strategy described in [5] could be

introduced directly to improve the denoising performance

without sacrificing the linear time complexity. Namely,

we could replace Eq.(4) with the patch based distance to

achieve the stronger patch-SGF for denoising. The result of

patch-SGF is given in Fig.6(d) which is even better than the

path-geodesic algorithm [5] with the same patch strategy for

strong noise removal.

4.3. Parameters

Our SGF contains three parameters (r, σ, τ). r and σ
can be adjusted as the BF [22]. While, for the threshold

τ (Eq.11) which is used to cut off some of the smooth-

ing aggregation on the segment graph, we recommend to

choose the value among (10/255, 60/255). We show the

results with different parameters in the first row of Fig.5.

As for SLIC superpixel algorithm,2 we choose random val-

ues from the allowed range as parameters. Namely, we set

the approximate size of the superpixels as random values

in ((2r + 1)2/3, (2r + 1)2/2) with r as the radius of the

2SLIC parameters are further analyzed in supplementary material.

366

(a) Input (b) GF [13] (c) CLMF [16] (d) Domain Transform [10] (e) L0-smoothing [23]

(f) TF [2] (g) WLS [7] (h) Xu et al. [24] (i) RGF [29] (j) Our SGF

Figure 9: Comparisons of high-contrast detail smoothing. The parameters of (b)∼(i) are adjusted with our best efforts. Results indicate

that (b)∼(e) could not smooth out some of the high-contrast details, while (f)∼(h) will overly smooth (blur) some of the major edges. (i)

RGF tends to round off the square corners. (Take a close look at the results in a high resolution display.) Only our SGF (r = 20, σ =
0.1, τ = 30/255, 3 iterations) could successfully smooth out high-contrast trivial details while preserving image structures very well.

Table 1: 1-pixel error results on Middleybury stereo benchmark

Methods Rank Average Error (%) Time (s)

Our SGF 27 4.91 4.9

CLMF-1 [16] 44 5.13 9.1

GF [19] 49 5.55 5.2

NonLocal [25] 55 5.48 3.1

BF [22] 96 6.67 109.5

Table 2: RMSE evaluations for 8× upsampling results

Test Views BF GF CLMF-1 [8] SGF

Art 7.91 8.67 7.79 4.61 4.23

Laundry 4.01 5.39 4.57 3.12 2.97

Moebius 3.19 3.24 3.44 1.96 2.00

Teddy 3.57 3.07 2.34 1.86 1.91

Time (s) 5.1 0.20 0.44 5.9 0.26

Table 3: Time consumption comparisons of different filters

Local Filters Time (s) Global Filters Time (s)

BF [22] 7.1 WLS [7] 7.9

GF [13] 0.10 L0-smooth [23] 9.7

CLMF-1 [16] 0.31 Xu et al. [24] 17.3

Karacan et al. [14] 23.4 TF [2] 3.1

BTF [6] 21.6

Our SGF 0.15

smoothing window, and we also use random values among

(10, 30) to control the compactness of the superpixels.

Iterative Filtering: We extend our SGF for iterative fil-

tering. For highly textured images, instead of using large

r and σ, we find the iterative smoothing is more effective.

Namely, we use the output as input to smooth the image

more than once. For most of the cases, 2 ∼ 4 iterations are

enough to remove the textures and high-contrast details. As

illustrated in the second row of Fig.5, even after many iter-

ations, the major edges of results are preserved very well.

Moreover, the iterative SGF converges rapidly. We plot the

Table 4: Average endpoint error evaluations for optical flow

Test Views NonLocal GF CLMF-1 Our SGF

Venus 0.2347 0.2177 0.2374 0.1571

Grove2 0.2453 0.1937 0.2016 0.1593

Grove3 0.9324 0.7851 0.7910 0.5442

Urban2 0.3391 0.3901 0.3321 0.3034

Urban3 0.2963 0.3759 0.3598 0.3276

Hydrangea 0.2803 0.2539 0.2606 0.2654

Dimetrodon 0.2531 0.2106 0.2310 0.1910

RubberWhale 0.2956 0.2164 0.2073 0.1687

Average 0.3596 0.3304 0.3276 0.2646

Time (s) 178 326 579 279

(a)

(b) (c)

(d) (e)

Figure 10: Depth map upsampling results. (a) low-resolution

input (upper right) and 8× upsampling result of our SGF. (b)∼(e)

close-up of the red window. (b) GF [13], (c) state-of-the-art, David

et al. [8], (d) our SGF (σ=0.05, r=16, τ =20/255), (e) ground truth.

difference between two successive filtering results in Fig.7.

Unlike the other filters, the iterative SGF could converge to

an image with only major structures left (Fig.5(j)).

5. Experiments

This section presents various applications of the pro-

posed SGF. To shorten the paper, only 3 applications (stere-

o, optical and depth map upsampling) are presented. Other-

s including texture editing, image abstraction, image/depth

367

map denosing, scene simplification/edges detection along

with more test results appear in the supplementary material.

5.1. Edge­Preserving Smoothing

Our SGF is designed for structure-preserving smoothing

and aims to smooth out high-contrast details and textures ef-

fectively. Using natural image with high-contrast details as

input, we demonstrate the performance of our SGF in Fig.9

which indicates that our SGF could keep the major edges

better than other 8 filters. We also prove the superiorities

of our SGF when used for texture smoothing by comparing

with other 4 state-of-the-art texture smoothing methods in

Fig.8. Unlike other approaches, our method will not overly

smooth edges during the texture removing. What’s more,

the flexibility of our SGF has also been proved. For exam-

ple, we could use a small window for structure-preserving

denoising (Fig.2(e)). While, by increasing the size of s-

moothing window, our SGF could remove undesirable triv-

ial contents in the images (Fig.2(f)).

5.2. Applications

Stereo Matching and Optical Flow: The accuracy of

some correspondence field estimation algorithms (stereo

matching and optical flow) is dependent on the cost ag-

gregation scheme. As prior methods employ BF [22] and

GF [13] for cost aggregation, our SGF can also be applied to

filter the cost volume while preserving edges. We embedded

our SGF into the CostFilter framework [19] and used it for

stereo matching and optical flow. We also compare our SGF

with several local filters and Yang’s non-local aggregation

algorithm [25] using Middlebury stereo benchmark [20].

Results in Table 1 show that our method ranked 27 among

more than 150 stereo approaches on the benchmark for 1-

pixel threshold errors, which is far better than other filtering

based methods. Also for optical flow, we compare their per-

formance using 8 test views from Middlebury optical data

set and adopt the average endpoint errors for evaluations.

The results shown in Table 4 indicate that our SGF performs

better in 6 of the 8 test views.

Joint Depth Map Upsampling: Given a low-resolution

depth map and a registered high-resolution, color image,

the resolution of the depth map can be enhanced by joint

filtering with the color image as the guidance. Table 2 com-

pares the performance of different filters when applied to

upsample a low resolution depth map by a scaling factor of

8. Compared with BF, GF and CLMF, our SGF significantly

improves the depth map accuracy, particularly for challeng-

ing depth discontinuities (Fig.10). Our SGF achieves the

results close to (or even better than) those of a state-of-the-

art method [8], moreover, it runs more than 10 times faster.

5.3. Time and Complexity Analysis

With N as the pixel number of the image, we begin to

analyze the time complexity of our SGF. For the internal ag-

gregation (step 5∼8 in algorithm 1), we need to run the lin-

ear cost aggregation [25] for all the superpixels once. This

can be finished in O(N). For neighbor aggregation (step

9∼12 in Algorithm 1), assuming there are K neighborhoods

for each superpixel (average K ≈ 7 in practice), the neigh-

bor aggregation will need O(KN). Finally, for the weight-

ed average calculation (step 13∼17), we must run boxfilter

for the minimum circumscribed rectangles R(S) of each su-

perpixel S to calculate the external weights ω2 for all pixels.

As a result,
∑

|R(S)| ≈
∑

|S| = N times calculations are

necessary.

For the segment graph construction, we use the linear

SLIC [1] for superpixel segmentation. We find that the o-

riginal SLIC runs 10 times iterative k-means which is a sig-

nificant increase in computational cost in exchange for a s-

mall increase in accuracy of the segmentation results. So we

just use 2 iterations for our SGF implementation. We also

find that even though we use the fast SLIC for implementa-

tion, more than 2/3 of the running time is cost on the pre-

segmentation. This means our SGF could run even faster if

new faster superpixel approaches are employed.

We compare the time consumption of different local and

global filters using 1-megapixel 24-bit color image as input.

All the algorithms are executed using C++ on a 3.40 GHz

Intel Core i7-3770 processor with 16 GB RAM (only one

core is used). The running time data are given in Table 3.

As shown in the test results, our SGF runs more than 10

times faster than the global counterparts and it could even

compete with the linear GF [13] in efficiency. In the ex-

periments, for some applications (like stereo matching and

optical flow [19, 25]) which need hundreds or thousands of

times of filtering processes, our SGF runs much faster than

the GF [13] (Table 1 and 4) because our SGF only need to

construct the segment graph once and the normalizing term

Kp in Eq.(11) is actually not needed in these applications.

6. Discussion and Future Work

We present in this paper our segment graph based double

weighted average image filter (SGF) and show its superior-

ities in many computer vision and graphics tasks. Our SGF

achieves competitive performance when used for smooth-

ing out high-contrast details and textures. Moreover, it pos-

sesses a linear running time. Our future work will focus on

finding faster superpixel approaches to improve the perfor-

mance. We will also try to implement the GPU version of

our SGF which may improve the efficiency significantly.

Acknowledgements

This work was supported by China 863 program with

No. 2015AA016402, and by NSFC with Nos. 61331018,

61332017, 91338202, 61271430.

368

References

[1] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and

S. Susstrunk. Slic superpixels compared to state-of-the-art

superpixel methods. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 34(11):2274–2282, 2012. 3, 8

[2] L. Bao, Y. Song, Q. Yang, H. Yuan, and G. Wang. Tree fil-

tering: Efficient structure-preserving smoothing with a min-

imum spanning tree. IEEE Transactions on Image Process-

ing, 23(2):555–569, 2014. 1, 2, 3, 6, 7

[3] A. Buades, B. Coll, and J.-M. Morel. A non-local algorithm

for image denoising. In IEEE Conference on Computer Vi-

sion and Pattern Recognition, volume 2, pages 60–65 vol. 2,

June 2005. 5, 6

[4] K. N. Chaudhury, D. Sage, and M. Unser. Fast bilateral fil-

tering using trigonometric range kernels. IEEE Transactions

on Image Processing, 20(12):3376–3382, 2011. 2

[5] X. Chen, S. B. Kang, J. Yang, and J. Yu. Fast patch-based

denoising using approximated patch geodesic paths. In IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), pages 1211–1218, 2013. 2, 5, 6

[6] H. Cho, H. Lee, H. Kang, and S. Lee. Bilateral texture filter-

ing. ACM Trans. Graphics, 33(4):128, 2014. 2, 6, 7

[7] Z. Farbman, R. Fattal, D. Lischinski, and R. Szeliski. Edge-

preserving decompositions for multi-scale tone and detail

manipulation. ACM Trans. Graphics, 27(3):67, 2008. 1, 2, 7

[8] D. Ferstl, C. Reinbacher, R. Ranftl, M. Rüther, and

H. Bischof. Image guided depth upsampling using anisotrop-

ic total generalized variation. In IEEE International Confer-

ence on Computer Vision (ICCV), pages 993–1000, 2013. 7,

8

[9] M. L. Fredman and D. E. Willard. Trans-dichotomous algo-

rithms for minimum spanning trees and shortest paths. Jour-

nal of Computer and System Sciences, 48(3):533–551, 1994.

2

[10] E. S. Gastal and M. M. Oliveira. Domain transform for edge-

aware image and video processing. ACM Trans. Graphics,

30(4):69, 2011. 7

[11] J. Grazzini and P. Soille. Edge-preserving smoothing using

a similarity measure in adaptive geodesic neighbourhoods.

Pattern Recognition, 42(10):2306–2316, 2009. 2, 5

[12] B. K. Gunturk. Fast bilateral filter with arbitrary range and

domain kernels. IEEE Transactions on Image Processing,

20(9):2690–2696, 2011. 2

[13] K. He, J. Sun, and X. Tang. Guided image filtering. IEEE

Transactions on Pattern Analysis and Machine Intelligence,

35(6):1397–1409, 2013. 1, 2, 3, 5, 7, 8

[14] L. Karacan, E. Erdem, and A. Erdem. Structure-preserving

image smoothing via region covariances. ACM Trans.

Graphics, 32(6):176, 2013. 2, 6, 7

[15] D. R. Karger, P. N. Klein, and R. E. Tarjan. A randomized

linear-time algorithm to find minimum spanning trees. Jour-

nal of the ACM (JACM), 42(2):321–328, 1995. 2

[16] J. Lu, K. Shi, D. Min, L. Lin, and M. N. Do. Cross-based

local multipoint filtering. In IEEE Conference on Comput-

er Vision and Pattern Recognition (CVPR), pages 430–437,

2012. 1, 2, 5, 7

[17] F. Porikli. Integral histogram: A fast way to extract his-

tograms in cartesian spaces. In IEEE Conference Comput-

er Vision and Pattern Recognition (CVPR), volume 1, pages

829–836, 2005. 5

[18] F. Porikli. Constant time o(1) bilateral filtering. In IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), pages 1–8, June 2008. 5

[19] C. Rhemann, A. Hosni, M. Bleyer, C. Rother, and

M. Gelautz. Fast cost-volume filtering for visual correspon-

dence and beyond. In IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), pages 3017–3024, 2011.

2, 7, 8

[20] D. Scharstein and R. Szeliski. A taxonomy and evalua-

tion of dense two-frame stereo correspondence algorithm-

s. International journal of computer vision, 47(1-3):7–42,

2002. http://vision.middlebury.edu/stereo/

eval/. 8

[21] X. Tan, C. Sun, and T. D. Pham. Multipoint filtering with

local polynomial approximation and range guidance. In

IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR), pages 2941–2948, 2014. 5

[22] C. Tomasi and R. Manduchi. Bilateral filtering for gray and

color images. In International Conference on Computer Vi-

sion, pages 839–846, 1998. 6, 7, 8

[23] L. Xu, C. Lu, Y. Xu, and J. Jia. Image smoothing via l0 gra-

dient minimization. ACM Trans. Graphics, 30(6):174, 2011.

1, 2, 7

[24] L. Xu, Q. Yan, Y. Xia, and J. Jia. Structure extraction from

texture via natural variation measure. ACM Trans. Graphics,

2012. 2, 6, 7

[25] Q. Yang. A non-local cost aggregation method for stereo

matching. In IEEE Conference on Computer Vision and Pat-

tern Recognition (CVPR), pages 1402–1409, 2012. 7, 8

[26] Q. Yang. Recursive approximation of the bilateral filter.

IEEE transactions on image processing, 2015. 2

[27] Q. Yang. Stereo matching using tree filtering. IEEE

Transactions on Pattern Analysis and Machine Intelligence,

37(4):834–846, April 2015. 2, 3, 4, 6

[28] Q. Yang, K.-H. Tan, and N. Ahuja. Real-time o (1) bilat-

eral filtering. In IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pages 557–564, 2009. 2

[29] Q. Zhang, X. Shen, L. Xu, and J. Jia. Rolling guidance filter.

In Computer Vision–ECCV 2014, pages 815–830. Springer,

2014. 2, 7

369

http://vision.middlebury.edu/stereo/eval/
http://vision.middlebury.edu/stereo/eval/

