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Abstract

This paper proposes a new incremental structure from

motion (SfM) algorithm based on a novel structure-less

camera resection technique. Traditional methods rely on

2D-3D correspondences to compute the pose of candidate

cameras using PnP. In this work, we take the collection

of already reconstructed cameras as a generalized cam-

era, and determine the absolute pose of a candidate pin-

hole camera from pure 2D correspondences, which we call

it semi-generalized camera pose problem. We present the

minimal solvers of the new problem for both calibrated and

partially calibrated (unknown focal length) pinhole cam-

eras. By integrating these new algorithms in an incremental

SfM system, we go beyond the state-of-art methods with the

capability of reconstructing cameras without 2D-3D corre-

spondences. Large-scale real image experiments show that

our new SfM system significantly improves the completeness

of 3D reconstruction over the standard approach.

1. Introduction

The standard incremental structure from motion (SfM)

is a widely used technique [16, 18, 15, 5]. During the

incremental reconstruction, cameras with estimated poses

are added to the 3D model repeatedly, which is a process

called camera resection. Traditionally, the pose estimation

step uses PnP algorithms, leveraging the correspondences

between the 3D points and 2D features [9, 20, 19]. How-

ever, such structure-based resection method requires suffi-

cient 3D points to be visible in the new cameras, which can-

not be always satisfied even when there are enough feature

matches. Figure 1 shows an extreme case of such a problem.

Each of the three images captures two out of three objects

in the scene, and no two-view reconstruction can be used

to resect a third camera, because there are no three-view

overlaps. In general, feature tracks are not always triangu-

lated to 3D points due to pose inaccuracy, outlier feature

matches, and threshold settings. This can easily lead to in-

complete reconstructions with the standard SfM approach,

even when there are sufficient feature matches.
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Figure 1. There are 3 objects in the scene: sugar (O1), blueberries

(O2) and vitamin (O3). Each of the three images on the left can

see only two out of the three objects, where the lack of three-view

overlap prohibits standard resection. Note there are not reliable

feature matches on the table due to the repeating patterns. The

right image shows the dense reconstruction [3] from our recon-

structed cameras using structure-less resection.

In this paper, we introduce a novel structure-less resec-

tion technique that exploits solely 2D matches for exact

camera pose estimation that maximizes the number of po-

tential 3D points. By taking the set of already reconstructed

pinhole cameras as a single generalized camera [14], we

register a new pinhole camera to the generalized camera

using the 2D image correspondences (see Figure 2a) be-

tween the multiple cameras. Given the example in Figure

1, we may first compute the two-view reconstruction of the

first two images (which reconstructs O2 only), use the two

cameras together as a generalized camera to resect the third

camera from the 2D matches on object O1 and O3, and then

reconstruct O1 and O3.

We name this new problem semi-generalized camera

pose estimation since it involves one generalized camera

and one pinhole camera. This paper presents the mini-

mal solvers for the semi-generalized camera pose estima-

tion problem, with the pinhole camera either calibrated or
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partially calibrated (unknown focal length). The calibrated

case has 6 degrees of freedom (3 in translation and 3 in

rotation), and the case with unknown focal length accord-

ingly has 7 degrees of freedom. The two cases respectively

require 6 and 7 2D correspondences to solve the minimal

problem. For convenience, we refer to the two problems as

the 6-point problem and 7-point problem respectively.

These semi-generalized camera pose problems become

more complicated than the fully generalized camera pose

problem [17], when considering the concentric rays from

the multiple pinhole cameras within the generalized camera

(e.g. Figure 2). Although the 6-point solver by Stewenius et

al. [17] works for the calibrated semi-generalized problem

when there are no concentric rays among the generalized

camera [7], its formulation leads to an infinite number of

trivial solutions for many other configurations of our 6-point

problems. Other non-minimal methods have been proposed

specifically for moving multi-camera rigs such as [8] and

[12], but cannot be directly applied as well. This paper han-

dles the previously unsolved 6-point problems with a set of

new polynomial constraints, and our solution to the 7-point

problems goes beyond the state-of-the-art generalized cam-

era pose methods by handling unknown focal lengths.

Our solutions to the semi-generalized pose estimation

problems enable structure-less resection and accordingly a

new incremental SfM system. Our method effectively deals

with challenging camera poses that were difficult for the

standard structure-based resection, and improves the com-

pleteness for incremental reconstructions.

The main contributions of this paper include:

• Theoretical analysis for a set of new semi-generalized

camera pose estimation problems.

• Minimal solutions to the new problems for calibrated

or partially calibrated pinhole cameras.

• An improved incremental structure from motion algo-

rithm that utilizes the new structure-less resection.

2. The Problem

We first introduce some notations for easy illustrations.

As shown in Figure 2a, we denote the generalized camera

and the pinhole camera as A and B respectively. Within

camera A, each pinhole camera is denoted as Ai, where i is

the camera index. Unlike previous methods that assume the

generalized camera as a set of arbitrary rays, we explicitly

model the number of viewing rays from Ai, denoted as |Ai|.
For convenience, we let A1 be the pinhole camera that has

the largest number of viewing rays.

In the context of registering a new pinhole cameras to

the existing camera system, it is important to deal with a

group of concentric rays, rather than assuming each ray is

from different cameras. Otherwise, a new camera need to

have matches with about 6 images in order to be resected,

Generalized camera A Pinhole camera B

(a) 6-point problem, |A1| = 1
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(d) 7-point problem, |A1| = 5

Figure 2. Illustration of several semi-generalized pose estimation

problems. A1 is the pinhole camera within A that has the largest

number of viewing rays. Xij is used to denote the unknown inter-

section of j−th viewing ray from camera Ai and its corresponding

ray from B. This paper presents solutions to (b), (c), (d) and the

7-point problem with |A1| = 6 .

6-Point
|A1| 6 5 4 3 ≤ 2

# of solutions - 20 40 56 64

7-Point
|A1| 6 5 4 3 ≤ 2

# of solutions 18 50 84 108 118

Table 1. The number of solutions for the 6-point and 7-point prob-

lem increases as |A1| decreases.

which significantly limits the applicability of the technique.

For instance, when registering B to two cameras A1 and A2

within A, the generalized camera A must have |A1| ≥ 3.

We formulate the 6-point and 7-point semi-generalized

pose problems in Macaulay2 [4] to investigate the num-

ber of solutions (Formulation details in Section 4 and 5).

We discover that the number of solutions is determined by

the largest number of concentric rays |A1|. Table 1 shows

how the number of solutions increases as the viewing rays

from camera A1 decreases. The semi-generalized camera

pose problem can be considered as a transitional problem

between the relative pinhole camera pose problem and the

fully generalized camera pose problem. It can be seen that,

as the number of concentric rays |A1| decreases, the prob-

lem becomes less ’pinhole’ and more ’generalized’.

In the following sections, we present our solvers for the

various semi-generalized pose problems. For convenience,

we use |A1|+ (|A| − |A1|) to denote the |A|-point problem

that has the largest number of |A1| rays from A1. Section 3
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Figure 3. The viewing ray from camera B and the up-to-scale

translation determine a 3D plane. The viewing ray from camera

A2 intersects the plane to determine the translation scale, but there

exists degeneracy if the ray is in the plane.

first presents the solutions to the 5 + 1 problem (Figure 2b)

and the 6+1 problem based on existing relative pose solvers

[13, 1]. Afterwards, we present the solutions to the 6-point

problems in section 4 and the 7-point problems in section 5.

3. The 5+1 and 6+1 solvers

The semi-generalized pose estimation becomes much

more simplified when there is a single ray not from A1, and

we develop these solvers by exploiting two existing relative

pose solvers.

For the calibrated 5 + 1 problem shown in Figure 2b,

the generalized camera A has five rays coming out of cam-

era A1 and one ray from camera A2. We first compute

the essential matrix for A1 and B using the 5 correspon-

dences [13] , which gives up to 10 solutions. Each essen-

tial matrix can then be decomposed into 2 rotations and 1

up-to-scale translation. For each rotation, the scale of the

translation is then determined in general by intersecting the

remaining rays from A2 and B (see Figure 3).

Similarly for the 6 + 1 problem with unknown focal

length, we apply the solver by [1] to recover the essential

matrix and focal length, which also has 10 solutions. The

rotation and translation are then recovered similarly as the

5 + 1 problem. Note that 1 out of 10 solutions from [1]

is always trivial, which accounts for the difference with the

minimal 18 solutions we show in Table 1.

It is clear from the algorithms and the number of solu-

tions that the 5 + 1 and 6 + 1 problems are not much more

than the pinhole camera pose problems, so in this case the

semi-generalized camera pose problem is quite ’pinhole’.

4. The 6-point solvers for |A1| ≤ 4

This section first discuss our parameterization for 6-point

problem, and then presents our polynomial system for the

the minimal solvers.

4.1. Parameterization

For a calibrated generalized camera, each 2D measure-

ment corresponds to a unique line in the camera coordinate

system. This line can be represented as a Plucker line vec-

tor L = (q⊤, q′⊤)⊤, such that the set of points X(λ) on the

line can be parameterized as

X(λ) = q′ × q + λq. (1)

q′ = 0 if and only if the line passes the origin of the coordi-

nate system. More details can be found in [14].

In our problem, the generalized camera A is composed

of multiple pinhole cameras {Ai}. The j-th 3D ray from

camera Ai is denoted as Lij = [q⊤ij , q
′

ij
⊤
]⊤. The k-th ray

from camera B is denoted as Lk = [q⊤k , q
′

k
⊤
]⊤. The 3D

point by the intersection of Lij and Lk is denoted as Xij .

See Figure 2 for the illustration. The relationship between

the 2D correspondences between A and B is given by the

well-known generalized epipolar constraint [14, 17]:

q⊤k RBR
⊤

Aq
′

ij + q⊤k (RBR
⊤

A[tA]× − [tB ]×RBR
⊤

A)qij

+ q⊤ijRAR
⊤

Bq
′

k = 0 (2)

where RA, tA, RB , tB are the rotation and translation of

camera A and B.

Without loss of generality, we may assume identity rota-

tion RA = I and origin position tA = 0 for the generalized

camera A. Since B is a pinhole camera, we may let the

camera center be the origin of its local coordinate system,

so that q′k = 0 for B. The semi-generalized epipolar con-

straint can be written as

q⊤k RB q′ij − q⊤k [tB ]×RB qij = 0. (3)

Moreover, we may define the plucker coordinate of A such

that q′
1j = 0 for viewing rays from A1. The relationship

between A1 and B is basically an essential matrix:

q⊤k [tB ]×RB q1j = 0. (4)

To build the polynomial systems, we parameterize

the rotation RB using a homogeneous quaternion vector

[s, vx, vy, vz] and set s = 1. Although this eliminates the

possibility of s = 0, it is typically fine in real applications

and has been widely used in minimal problems [6, 17, 8].

4.2. Polynomial system

Consider the j-th viewing ray from camera Ai intersects

the k-th viewing ray from camera B at 3D point Xij . Based

on Eq. (1), we have the following in the two cameras:

q′ij × qij + λijqij = Xij

λkqk = RB Xij + tB ,

from which we can eliminate Xij and obtain

tB = λk qk −RB (q′ij × qij + λij qij) (5)
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By substituting tB into Eq. (3), we may obtain five equa-

tions in unknown parameters RB , λij and λk from the re-

maining 5 correspondences. These equations are linear in

λij and λk, and can be written as













F11 F12 F13

F21 F22 F23

F31 F32 F33

F41 F42 F43

F51 F52 F53

















λij

λk

1



 = 0. (6)

Since Eq. (6) has non-trivial solutions, the left 5× 3 matrix

F5×3 has the rank constraint that rank(F5×3) < 3. Then the

determinant of any 3 × 3 submatrix, which is composed of

any three rows in F5×3, should equal to 0.

When i 6= 1. The determinant of each submatrix is a

polynomial in unknown parameters [vx, vy, vz], so we get

10 polynomial equations for all the 10 submatrices. Note

these polynomial are simplified version of the constraints

in [17], which corresponds to the generalized epipolar con-

straint. To differentiate with other polynomial constraints

that will be introduced later, we call these polynomial equa-

tions type E1 for convenience.

When i = 1. Since we choose the coordinate system

such that q′
1j = 0, the relationship is further simplified to

tB = λk qk − λ1j RB q1j , (7)

which leads to a special form of Eq. (6). For example in the

4 + 2 problem, the polynomial system is as follows:













F11 F12 0
F21 F22 0
F31 F32 0
F41 F42 F43

F51 F52 F53

















λ1j

λk

1



 = 0. (8)

The third elements of the first |A1| − 1 rows are 0, because

they correspond to the remaining rays from A1, and the rel-

ative relationship between A1 and B is up to scale. In the

case of 4 + 2, we may rewrite the first 3 equations as





F11 F12

F21 F22

F31 F32





[

λ1j

λk

]

= 0. (9)

Similar to F5×3 above, any 2×2 submatrix in the left matrix

must be rank deficient and have a determinant of 0. We call

these polynomial equations of type E2. These equations are

basically constraints between the two pinhole cameras A1

and B. Note these constraints do not exist in [17], which

considers fully generalized cameras.

For semi-generalized pose problem with |A1| ≤ 3, we

find that the type E1 equations are sufficient for solving the

camera poses, with a caveat that there are 8 = 64 − 56

Problem 6-point 7-point

Equation E1 E2 E3 E4 E5 E6

Degree 6 4 10 7 11 8

Monomials 84 35 382 129 440 162

Lin. indep. eqs 14 4 30 10 30 15

Table 2. The degree and the number of monomials of our polyno-

mials. The last row is the number of linearly independent polyno-

mials in the 4+2 and 5+2 solvers.

Matrix Multipliers

M1 1, vx, vy , vz
M2 1, vx, vy , vz , v2x, v2y , v2z

M3, M5 1, wc, ux, uy

M4, M6

1, wc, ws, ux, uy , w2

c , w2

s , u2

x, u2

y ,

wcws, wcux, wcuy , wsux, wsuy , uxuy

Table 3. The coefficient matrices and their multipliers for the 6-

point and 7-point solvers. Each matrix Mi corresponds to the ech-

elon form of the raw coefficient matrix of all type Ei equations.

trivial solutions when |A1| = 3. The minimal solvers for

the |A1| ≤ 3 6-point problems can then be built using only

E1 equations, which will be a simplified version of [17]

thanks to the pinhole camera B on one side.

We will focus on the 4 + 2 solver in this paper, which

requires both the E1 and E2 equations. After enumerating

all possible i, we have a collection of many equations of

type E1 and E2, which are not all linearly independent. It

turns out there are respectively 14 and 4 linearly indepen-

dent equations of type E1 and E2. We also find that the

equations of type E1 from Eq. (8) is linearly depedent and

do not need to be considered. Table 2 shows the properties

of the polynomial equations of different types. The 14 + 4
equations of type E1 and E2 gives a polynomial equation

system with exactly 40 solutions for our problem.

4.3. Gröbner basis solver

The standard approach for solving polynomial sys-

tems typically involves Gauss-Jordan (G-J) elimination

on elimination template, action matrix construction, and

eigenvector-based solution from the action matrix. Since

a detailed description of the method is beyond the scope

of this paper, we will briefly describe the key steps for

constructing our action matrix, and refer the readers to

[2, 10, 11] for more details.

By modeling the problem Macaulay2 [4], we first com-

pute the bases of the quotient ring, and use them to design

the following action matrix computation. For each type of

equations Ei, a coefficient matrix is first constructed, such

that each row corresponds to one polynomial equation of

type Ei and the columns are in the GRevLex monomial or-

dering. G-J elimination is then applied to the coefficient
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matrix to get the echelon form matrix, denoted as Mi. The

polynomial equations represented by Mi, i = 1, 2 are multi-

plied by each variable listed in Table 3, and stacked together

to get the elimination template. For instance, the multipli-

ers {1, vx, vy, vz} are used for M1. The action matrix can

be extracted from the echelon form of the elimination tem-

plate. Here the elimination template size can be slightly

reduced under the condition that the action matrix can still

be constructed [11].

5. The 7-point solvers for |A1| ≤ 5

This section presents the minimal solver for the 7-point

problems (e.g. Figure 2d). We will first extend the param-

eterization used in the 6-point problems to include the un-

known focal length, then introduce the polynomial systems

for the minimal solvers.

5.1. Parameterization

Let f be the unknown focal length of the pinhole camera

B. To avoid trivial solutions of f = 0, we define the inverse

of the calibration matrix K as

K−1 =





w 0 0
0 w 0
0 0 1



 , (10)

where w = 1/f . Let q̂k be an observed image point in B,

the corresponding ray direction is given by K−1q̂k. By in-

cluding this mapping in the generalized epipolar constraint

in Eq. (3), we obtain the following

(K−1q̂k)
⊤RBq

′

ij − (K−1q̂k)
⊤[tB ]×RB qij = 0. (11)

Let CB = −R⊤

BtB be the camera center of B, we have

−[tB ]×RB = RB [CB ]×, with which we can derive

q̂⊤k (K
−1RB) q

′

ij + (q̂k)
⊤(K−1RB)[CB ]× qij = 0. (12)

As recently demonstrated by [19], it leads to a solu-

tion doubling effect when parameterizing both focal length

and camera rotation. The redundancy is caused by mir-

rored solutions with negative focal lengths. In our prob-

lem, we find such a straightforward parameterization pro-

ducing 100 solutions instead of the expected 50, which is

unnecessarily complicated. Similar to the parametrization

in [19], we decompose rotation parameter into two compo-

nents RB = RθRρ, such that Rθ is a rotation around z axis,

and Rρ is a rotation around an axis in x-y plane. Rθ has

one degree of freedom, and Rρ, which is parameterized as

[1, ux, uy, 0], has two degrees of freedom. Now K−1RB

can be re-parameterized by combining K−1 and Rθ as the

following:

K−1RB = K−1RθRρ =





w cos θ −w sin θ
w sin θ w cos θ

1



Rρ

(13)

Let wc = w cos θ, and ws = w sin θ, Eq. (13) has

K−1RB =





wc −ws

ws wc

1



Rρ. (14)

Similar to the elimination of translation in the 6-point

problem, we may first reduce the number of variables by

eliminating the camera center. This results in a problem

with four unknown parameters {wc, ws, ux, uy}, as op-

posed to {ux, uy, yz} in the 6-point problem. Once wc and

ws are computed, the rotation angle θ and the focal length

w can be easily extracted.

5.2. Polynomial system

Using the same formula as the 6-point problems, we gen-

erate two similar types of polynomial equations. By using

a 3D point Xij to eliminate CB , the resulting polynomial

system has the following form:

















Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33

Q41 Q42 Q43

Q51 Q52 Q53

Q61 Q62 Q63





















λij

λk

1



 = 0. (15)

The determinant of any 3×3 submatrix is 0, and generates a

polynomial constraint in the four unknown parameters. We

call these polynomial equation type E3.

For the first camera A1, the third element of the first

|A1| − 1 rows would be 0, from which we can construct

polynomial constraints similar to E2. For example, in the

case of 5 + 2 problem, we have









Q11 Q12

Q21 Q22

Q31 Q32

Q41 Q42









[

λ1j

λk

]

= 0, (16)

Similarly, the polynomial equations from any of the 2 × 2
submatrices is defined as equation of type E4.

Nevertheless, we find the polynomial equation system

from the E3 and E4 equations has infinite number of trivial

solutions. To explain this, we discover that the left 6 × 3
matrix in Eq. (15) has the following structure

















Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33

Q41 Q42 Q43

Q51 Q52 Q53

Q61 Q62 Q63

















=

















Q11 Q1

12
wc +Q2

12
ws Q13

Q21 Q1

22
wc +Q2

22
ws Q23

Q31 Q1

32
wc +Q2

32
ws Q33

Q41 Q1

42
wc +Q2

42
ws Q43

Q51 Q1

52
wc +Q2

52
ws Q53

Q61 Q1

62
wc +Q2

62
ws Q63

















.

(17)
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Similar structure exits in the left matrix in Eq. (16),








Q11 Q12

Q21 Q22

Q31 Q32

Q41 Q42









=









Q11 Q1

12
wc +Q2

12
ws

Q21 Q1

22
wc +Q2

22
ws

Q31 Q1

32
wc +Q2

32
ws

Q41 Q1

42
wc +Q2

42
ws









. (18)

It can be seen that wc = ws = 0 is a trivial solution to the

polynomial system by making one column all zeros, and ux

and uy can be any values. To avoid such trivial solutions,

we can rewrite Eq. (15) as
















Q11 Q1

12
Q2

12
Q13

Q21 Q1

22
Q2

22
Q23

Q31 Q1

32
Q2

32
Q33

Q41 Q1

42
Q2

42
Q43

Q51 Q1

52
Q2

52
Q53

Q61 Q1

62
Q2

62
Q63

























λij

λkwc

λkws

1









= 0, (19)

from which the determinant of any 4 × 4 submatrices de-

fines a new polynomial constraint, which we call type E5.

Similarly, Eq. (16) can be rewritten as








Q11 Q1

12
Q2

12

Q21 Q1

22
Q2

22

Q31 Q1

32
Q2

32

Q41 Q1

42
Q2

42













λ1j

λkwc

λkws



 = 0. (20)

where determinant from any of the 3×3 submatrices defines

a new polynomial constraint, we call type E6.

As numerical stability decreases when the number of so-

lutions increases, it is worth focusing on the problems with

lower degrees. Here we will only detail for the 5 + 2 prob-

lem, while other solvers can be built similarly. It can be

verified with Macaulay2 that the polynomial system com-

prised of all the E3, E4, E5 and E6 type of equations gives

exactly 50 solutions for the 5 + 2 problem. The properties

of these equations are shown in Table 2.

5.3. Gröbner basis solver

The solver for the 7-point problems is developed similar

to the 6-point problems, but a special scheme is necessary

due to its very high polynomial degrees. Notice that some

of the polynomial equations represented by M3 and M5 are

of degree 10 and 11 respectively, corresponding to E3 and

E5 (Table 2). This high polynomial degree degrades the ac-

curacy and efficiency of the solver, and we find it prohibits

automatic solver generator [10] from finding the solutions.

Using Macaulay2, we discover that polynomials of degrees

9 and higher in M3 and M5 can be safely removed. This is

the key step to solve the polynomial equation system in 7-

point solvers. With the reduced set of polynomials, we com-

pute the elimination template and its echelon form, from

which the action matrix is then extracted. After recovering

the rotation and focal length, the translation vector tB can

be then computed according to Eq. (11) using SVD.
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Figure 4. Possible configurations with replicated rays in camera B,

where 4a still has 40 solutions, but 4b is unsolvable.

6. Incremental structure from motion

We integrate the 6/7-point solvers to incremental SfM

as a complementary camera resection method to the stan-

dard PnP-based one. Since the new scheme does not require

any 3D point position, we refer to it as structure-less resec-

tion. Incremental SfM is effectively improved by the more

chances of registering new cameras.

6.1. Integrating the structure­less resection

The selection of candidate camera for resection now

needs to consider potential ray intersections in addition to

visible 3D points. As structure-based resection is quite ac-

curate and fast, we first try the normal selection scheme that

selects the candidate camera if it sees sufficient 3D points.

If no camera sees sufficient 3D points, we will pick the cam-

era with the largest number of tracks that contain any recon-

structed cameras. These tracks could be either seen by only

one reconstructed camera (e.g. Figure 1), or not triangu-

lated due to baseline thresholds. The number of potential

new 3D points is basically the number of un-triangulated

tracks containing previously reconstructed cameras.

For each selected camera candidate, we first try standard

PnP-based resection, and if it fails, we use structure-less

resection. Each track shared by the camera candidate and

any previously reconstructed camera gives a 2D correspon-

dence. Given a set of 2D correspondences, we use the 6/7-

point solvers in a RANSAC framework to resect the candi-

date camera. Similar to PnP-based RANSAC, we recover

the camera pose that yields the largest number of ray in-

tersections. After each successful resection, we triangulate

more tracks, run bundle adjustment, and move to the next

camera candidate.

6.2. Our RANSAC

The sampling of 2D correspondences needs to provide

ray pairs of the expected configurations for the minimal

solver (e.g. 6+1). We also pay special attention to ray repli-

cation during the sampling. Since the generalized camera A
contains multiple pinhole cameras, it is possible that one ray
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from B intersects rays from multiple pinhole cameras in A
(See Figure 4), which happens in practice when 3D struc-

ture is seen by multiple cameras. In this case we say that

the viewing ray from camera B is (algebraically) replicated,

since we can consider that multiple rays from B coincide.

Although our solvers were originally intended to work

for ray correspondences without replication, we find them

working fine if the rays from B are either unique or repli-

cated at most twice. Figure 4 shows two possible cases of

ray replication for the 6-point problem. In fact, we can de-

termine if a problem is solvable by counting the number of

constraints from triangulated 3D points and rays. For the

problem in Figure 4a, the 3D point X11 (it coincides with

X21) can be triangulated using correspondences from A1

and A2, and similarly for point X14. The two 3D points

and two additional rays give exactly 6 constraints, which

makes the problem solvable [7]. On the contrary, the prob-

lem in Figure 4b is equivalent to having one 3D-2D corre-

spondence and 3 2D-2D correspondences, which only gives

5 constraints and is hence unsolvable.

7. Experiments

This section evaluates the performance of the 6-point and

7-point solvers on synthetic data and evaluates the effective-

ness of our SfM system on internet photo collections.

7.1. Solver speed

We evaluate the speed of the solvers on a Linux machine

with an Intel Xeon X5650 @2.67GHz CPU. The average

running time for the four solvers are listed in Table 4. All

the solvers have a reasonable speed for real applications,

and it can be seen that the 5+1 and 6+1 solvers are signif-

icantly faster than the corresponding 4+2 and 5+2 solvers

due to their simpler polynomial systems.

7.2. Stability and accuracy

We use synthetic data to quantitatively evaluate the nu-

merical stability on noise-free data and the accuracy on

noisy data. For the 6-point problem, 3D points and cameras

are uniformly generated in the cube [−2, 2]× [−2, 2]× [0, 2]
and [−2, 2] × [−2, 2] × [−1, 0]. The 3D points are then

projected into the cameras to produce the 2D image cor-

respondences. Camera rotations are random but with the

principal direction pointing to a random position in the cube

[−2, 2] × [−2, 2] × [0, 2]. The rotation, translation and fo-

Solver 5+1 4+2 6+1 5+2

Matrix 10× 20 73× 113 10× 20 378× 428
Time (ms) 0.048 1.2 0.046 13.6

Table 4. The comparison of speed for the four solvers, where the

second row is the size of their elimination template matrix.

Rotation Translation Focal length

δR = ∠(RgR
⊤) δt =

||t− tg||

||tg||
δf =

|f − fg|

fg

Table 5. The error definitions for rotation, translation and focal

length, where the subscript g means ground truth. Given multiple

solutions, the solution with the smallest translation error is used.

cal length errors are evaluated according to Table 5 on 10K

randomly generated testing samples.

We first run noise-free random problems with the four

solvers and evaluate their numerical stability. The focal

length for pinhole camera is randomly drawn within the

range of [200, 2000]. The resulting error distributions can

be found in Figure 5. As expected, the solvers with simpler

polynomial systems have better numerical stability since the

G-J elimination on the larger elimination template are more

likely to produce more numerical errors. Specifically, the

5 + 1 and 6 + 1 solvers have better stability compared to

4 + 2 and 5 + 2, and 4 + 2 also has slightly better stability

than 5+2. Nevertheless, all the solvers are accurate enough

for real applications with most errors less than 10−4.

An opposite advantage in accuracy is however discov-

ered for noisy data. We add zero-mean Gaussian noise with

different standard deviations to 2D measures, and again run

10K random problems with the four solvers. To make the

noise level corresponding to angular observation errors, we

fix the ground-truth focal length to 1000 in this experiment.

Figure 6 shows that the 4+ 2 and 5+ 2 solvers have higher

accuracy than the corresponding 5 + 1 and 6 + 1 solvers

for all the noise levels. This can be explained by the more

balanced distribution of viewing rays within the generalized

camera of configuration 4+2 and 5+2. Therefore, real ap-

plications should prefer the more accurate 4 + 2 and 5 + 2
solvers since the structure-less resection is used only spar-

ely and speed is not a concern.

7.3. Real images

We have shown earlier in Figure 1 that our method

is capable of incremental reconstruction without using 3-

view overlaps. 3-view overlap is a requirement that many

users often overlook when taking images for reconstruction,

while our SfM allows to relax the capture requirement a lit-

tle bit for 3D reconstruction.

To demonstrate its benefit on normal reconstruction

problems, we randomly select 800 datasets from pubic In-

ternet photos. Each dataset is a single connected component

of image graph, with size ranging from 32 to 8K. Ideally,

each connected component should produce a single model

(except for outliers), but incremental SfM often have incom-

plete reconstructions due to accumulated errors and some-

times weak three-view overlaps in the connected compo-
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(b) Rotation error δR (radian)
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Figure 5. The error distributions for noise-free data and the distribution for the number of solutions. To better handle large focal lengths,

the same 2D normalization is applied to 6+ 1 and 5+ 2 to make the mean squared norm 2. All the solvers exhibit reasonable small errors,

while the 5 + 1 and 6 + 1 solvers have lower errors because of their simpler polynomial systems.
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Figure 6. The accuracy under different level of Gaussian noise, where the horizontal axes are the noise levels. The 4 + 2 and 5 + 2 solvers

have better accuracy thanks to better distribution of viewing rays in A.
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Figure 7. The improvements by our SfM over standard SfM on 800

datasets. The left is the histogram of model size increase with a bin

size of 0.5%. The right is the histogram of completeness (model

size over connected component size) with a bin size of 0.01.

nents. Specifically for better accuracy, we use the 4+2 and

5+2 solvers for resection. Figure 7 shows that our new SfM

system effectively improves the completeness for incremen-

tal reconstruction by providing an alternative method to reg-

ister cameras when standard resection fails. Because stan-

dard SfM already produces reasonably large models, the in-

crease is expected to be small in the experiments. A few

examples of our reconstructions are shown in Figure 8.

We have observed a few bad cameras from the experi-

ments, which are caused by registering to already inaccu-

Figure 8. Four selected models from our experiments (The blue

dots are the camera positions).

rate cameras from Standard SfM. Our future work includes

robustness improvement for the structure-less resection.

8. Conclusion

Are 3-view overlap and 2D-3D correspondences indis-

pensable for incremental SfM (of pinhole cameras)? Not

anymore, with structure-less resection.
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