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Chen Zhou1,2 Fatma Güney3 Yizhou Wang1,2 Andreas Geiger3

1Nat’l Engineering Laboratory for Video Technology
2Cooperative Medianet Innovation Center, Peking University, China

3MPI for Intelligent Systems Tübingen
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Abstract

Despite recent progress, reconstructing outdoor scenes

in 3D from movable platforms remains a highly difficult en-

deavour. Challenges include low frame rates, occlusions,

large distortions and difficult lighting conditions. In this

paper, we leverage the fact that the larger the reconstructed

area, the more likely objects of similar type and shape will

occur in the scene. This is particularly true for outdoor

scenes where buildings and vehicles often suffer from miss-

ing texture or reflections, but share similarity in 3D shape.

We take advantage of this shape similarity by localizing ob-

jects using detectors and jointly reconstructing them while

learning a volumetric model of their shape. This allows us

to reduce noise while completing missing surfaces as ob-

jects of similar shape benefit from all observations for the

respective category. We evaluate our approach with respect

to LIDAR ground truth on a novel challenging suburban

dataset and show its advantages over the state-of-the-art.

1. Introduction

3D reconstruction is one of the fundamental problems in

computer vision and has consequently received a lot of at-

tention over the last decades. Today’s hardware capabilities

allow for robust structure-from-motion pipelines capable of

reconstructing sparse 3D city models from millions of in-

ternet images [10] or dense models from video sequences in

real time [42]. With the advent of the Kinect sensor, depth

information has become available indoors and approaches

based on volumetric fusion [31] or mesh optimization [46]

are able to produce reconstructions with fine details given a

large number of RGB-D observations.

However, obtaining accurate reconstructions outdoors

and in less constrained environments observed during urban

driving [13, 33] remains highly challenging: RGB-D sen-

sors (e.g., Kinect) can’t be employed outdoors due to their

very limited range and expensive LIDAR-based mobile so-

lutions result in relatively sparse 3D point clouds. Besides,

lighting conditions are difficult, occlusions are omnipresent

and many objects are only visible in a few frames as illus-

trated in Fig. 1. In this work, we address these difficul-

ties by taking advantage of a fact which hitherto has been

largely ignored: The larger the reconstructed area, the more

likely objects of similar type and shape (e.g., buildings or

vehicles) will occur in the scene. Furthermore, man-made

environments are designed to be visually pleasing. There-

fore, reoccuring structures like buildings often exhibit sim-

ilar shapes in local neighborings.

Inspired by the impressive capability of toddlers to learn

about objects from very few observations [3], we ask the

following question: Can we exploit recurring objects of

similar 3D shapes for jointly learning a shape model while

reconstructing the scene? Such a system would be useful in

many ways: First, we can expect increased completeness of

the 3D reconstruction by regularizing across shapes using

the principle of parsimony (i.e., by limiting the number of

models and parameters). Second, we obtain a decomposi-

tion of a scene into its constituent objects in terms of 3D

bounding boxes and segments. And finally, other tasks such

as recognition or synthesis could benefit from the learned

3D shape models as well.

Our approach is summarized as follows: We first obtain

an initial 3D reconstruction by structure-from-motion and

volumetric fusion of disparity maps using a memory effi-

cient representation based on voxel hashing [31]. Next, we

train several generic 3D object detectors by extending ex-

emplar SVMs [29] to truncated signed distance functions

(TSDF) in 3D. Given the 3D box proposals from these

detectors, we formulate a discrete-continuous optimization

problem which we solve using block coordinate descent.

More specifically, we minimize the difference between the

TSDF values of the initial reconstruction and the predicted

TSDF values by jointly assigning each proposal to a vol-

umetric 3D shape model, optimizing for the pose of the

3D proposals and the latent shape variables, and finding

the shape model parameters. Furthermore, we contribute
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(a) Fisheye Image (b) Lighting (c) Occlusions (d) Saturation (e) Reflections (f) Appearance

Figure 1: Challenges of 3D Reconstruction from Movable Platforms. We have collected a novel suburban dataset for

omnidirectional 3D reconstruction from fisheye images (a). Our dataset has been captured under normal daylight conditions

and poses a variety of challenges to current reconstruction pipelines, including uncontrolled light conditions (b), occlusions

(c), sensor saturation at bright surfaces (d), reflecting surfaces (e), and large appearance changes between successive frames

when driving at regular speeds (f). We propose to overcome these challenges by regularizing across objects of similar shape.

a novel multi-view reconstruction dataset recorded from a

moving platform on which we evaluate the proposed ap-

proach with respect to several state-of-the-art baselines. We

make our code, dataset and supplementary material avail-

able on our project website1.

2. Related Work

Existing works on multi-view 3D reconstruction can

be roughly grouped into three categories according to the

employed representation: Point-based approaches [12, 37]

which produce a set of (oriented) 3D points from which

a mesh is extracted in a second step using, e.g., Poisson

surface reconstruction [23]. Methods, which directly opti-

mize the vertices and faces of a textured 3D mesh [7,41] (or

geometric primitives [27] ) in order to minimize a photo-

consistency measure. And finally, volumetric techniques

[30, 39] which represent the surface implicitly as the zero-

crossing of a distance function or using a probability map

defined at regular voxel locations in 3D. In this paper, we

follow the third line of methods as volumetric representa-

tions are flexible in terms of surface topology and allow for

combining different shapes via volumetric fusion [6].

To overcome outliers in range maps obtained from stereo

vision, local regularization is typically employed. This

leads to smoother reconstructions by penalizing the perime-

ter of level sets [43] or encouraging local planarity [18].

For some scenarios, even stronger assumptions can be lever-

aged, such as piecewise planarity [13] or a Manhattan world

[11]. The model proposed in this paper can also be seen as

a prior on the reconstruction, but taking a different view-

point: Instead of encouraging smoothness of surfaces, we

encourage shape similarity across different instances of the

same object category. Our objective integrates observations

from several different instances which allows our model to

fill-in occluded parts or textureless regions. In contrast to

models assuming piecewise planarity or a Manhattan world,

our approach also applies to non-planar object classes such

1http://www.cvlibs.net/projects/similarity reconstruction

cars. In this sense, our ideas are related to the depth super-

resolution method of Hornacek et al. [21]. However, while

they tackle single depth images using a patched-base repre-

sentation, we model complete 3D scenes at the object level.

Lately, models integrating appearance information into

the reconstruction problem have gained popularity [9, 32].

Häne et al. [17] leverage the fact that semantics and surface

orientation are mutually dependent, e.g., the surface normal

of the ground is more likely to face upwards than down-

wards. This knowledge helps in particular for object classes

with a dominant orientation (e.g., ground) but has less ad-

vantages for classes with a more uniform normal distribu-

tion (e.g., building, car). Kundu et al. [24] directly constrain

the range of possible depth values by conditioning ray po-

tentials on the semantic class. To overcome shape ambigu-

ities, object knowledge has been leveraged by Güney et al.

[15] for stereo matching and by Häne et al. [16] for volu-

metric reconstruction. Prisacariu et al. [34,35] have demon-

strated impressive results by leveraging GPLVMs for learn-

ing a non-linear TSDF embedding of the object shape for

segmentation and reconstruction. While those approaches

typically rely on pre-trained appearance models of known

object classes, semantic classifiers or a dataset of 3D CAD

models, our approach learns these models “on the fly” while

reconstructing the scene. Apart from a generic object detec-

tor, no semantic annotation or 3D models are required. Fur-

thermore, most of the approaches for object-based recon-

struction focus on a single object while our method handles

several objects at the same time.

Related to our approach are also a number of tech-

niques which consider joint image alignment and segmenta-

tion or appearance estimation [5] with applications in face

recognition [8] and medical imaging [40] . Our approach

shares similarity with these methods in terms of estimat-

ing an instance specific transformation jointly with a low-

dimensional representation of the object. However, our fo-

cus is on 3D reconstruction rather than 2D segmentation

and we do not assume that objects are presented in a stereo-

typical pose. Instead, our method localizes objects accord-
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Figure 2: Spherical Rectification. Given two fisheye cam-

eras (x1, y1, z1) and (x2, y2, z2), we rectify the images

yielding an angular representation (θ, ϕ) where pixels in the

same row (i.e., same ϕ) are located on an epipolar plane Π.

ing to a discriminatively trained object proposal generator.

Furthermore, our model handles missing information (e.g.,

unobserved voxels) and is able to deal with a broad range of

shapes by clustering them into different model components.

Unfortunately, existing datasets such as KITTI [14] or

Google Street View [2] provide only a very limited field of

view [14] or sampling rate [2]. For evaluating our approach,

we therefore recorded a novel urban dataset with 3D ground

truth. Our setup comprises a combination of front-facing

perspective cameras, side-facing Fisheye cameras, a Velo-

dyne 3D scanner and a SICK pushbroom scanner, capturing

images and laser scans at roughly 10 fps.

3. Method

In this work, we are interested in volumetric 3D recon-

struction leveraging the fact that 3D objects with similar

shapes (such as cars or buildings) appear frequently in large

environments. In particular, we aim at jointly clustering ob-

jects into categories according to their 3D shape, learning a

3D shape model for each of these categories and complet-

ing the 3D reconstruction by filling-in missing information

via restriction to the jointly estimated 3D shape models. We

start with a basic volumetric reconstruction pipeline which

recovers a volumetric representation in terms of a truncated

signed distance function (TSDF) of the scene. Based on this

reconstruction, we apply an ensemble of exemplar-based

object detectors to find instances of objects in the scene.

The detected objects are then jointly optimized for their

shape and after convergence fused back into the original re-

construction to smoothly blend with non-object parts of the

scene such as road or sidewalk.

3.1. Volumetric Fusion

This section describes our basic volumetric reconstruc-

tion pipeline which serves as input and baseline to our

method. We leverage the truncated signed distance func-

tion (TSDF) representation [6] due to its generality and as

it makes no assumptions about the 3D surface topology,

which is unknown in our case. Surfaces are implicitly rep-

resented as the 0-level set of the TSDF and can be eas-

ily recovered using, e.g., the marching cubes algorithm by

Lorensen et al. [28].

Given a sequence of fisheye images, we first obtain the

intrinsic camera parameters as well as the camera poses us-

ing the approach of Heng et al. [19]. We rectify the images

of adjacent frames spherically (see Fig. 2) such that epipolar

lines become horizontal and run semi-global matching [20]

in order to obtain disparity maps. Taking advantage of the

efficient hashmap representation of Niesner et al. [31], we

perform volumetric fusion [6], i.e., we update the weights

w(p) and the truncated signed distance values d(p) via

di+1(p) =
wi(p)di(p) + ŵ(p)d̂(p)

wi(p) + ŵ(p)
(1)

wi+1(p) = wi(p) + ŵ(p) (2)

where p ∈ R
3 denotes the location of a cell in the volu-

metric grid, and d̂(·), ŵ(·) represent the truncated signed

distance value and weight of the current observation (i.e.,

disparity map), respectively. We use a truncation threshold

of 1.2 m and a weight that slowly decays behind the sur-

face. As we found that approximating the distances d̂(·) by

calculating them along the viewing ray [39] results in arti-

facts when the ray hits the surface at highly slanted angles,

we use a different strategy which approximates the TSDF

values more faithfully: We triangulate each disparity map

and convert the resulting meshes into volumes using a 3D

signed distance transform2. This leads to correct distance

estimates also for surfaces which are not fronto-parallel.

3.2. Object Detection

Given the volumetric 3D reconstruction from the previ-

ous section, we are interested in discovering objects of sim-

ilar 3D shape to form the basis for our joint optimization

in Section 3.3. Establishing correspondences in 3D space

has several advantages over correspondences in the image

domain: Besides the fact that similar 3D shapes can be

matched even if the appearance disagrees, 3D models must

not be scale invariant, thereby gaining robustness. A variety

of methods can be leveraged for object discovery in 3D, in-

cluding methods based on convexity/symmetry criteria [22],

discriminative approaches [44] or graph matching [45].

In this work, we use a discriminative approach to obtain

3D box proposals: For each object category (e.g., building

or car), we train an ensemble of linear exemplar SVMs [29]

directly on the TSDF volume using a small (≤ 3) number of

annotated instances. Compared to learning more complex

features [38], we found this simple approach sufficient for

our needs. First, we extract a small subsequence for train-

ing in which we label the relevant objects using 3D bound-

ing boxes. For efficient object labeling we developed a 3D

visualization tool based on WebGL, which allows to label

2http://grail.cs.washington.edu/software-data/ply2vri/
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Figure 3: Visualization of TSDF Model. This figure shows

a volumetric visualization of the learned TSDF model mean

for a building (left) and a car (right). Red colors indicate

voxels close to the estimated surface (i.e., 0-level set)

objects in 3D point clouds in a few seconds. Next, we de-

fine a feature vector by concatenating all voxels within the

3D box. Each voxel comprises the truncated signed distance

to the surface d(p) as well as a binary flag indicating if the

voxel has been observed or not (i.e., it is within the trun-

cation limit) as feature. We train exemplar SVMs on this

representation using several rounds of hard negative mining

and apply them in a sliding window fashion to the full 3D

reconstruction. As 3D representations offer the advantage

of scale invariance, we slide and rotate a 3D box of fixed

scale over the 3D reconstruction volume. Fig. 4 (left) illus-

trates our detection results.

3.3. Joint Object Reconstruction

Given the initial volumetric 3D reconstruction and the

box proposals, our goal is to jointly recover objects with

similar shape while learning an object model for each cat-

egory. More formally, let d(p) ∈ R denote the truncated

signed distance to the closest surface at point p ∈ R
3. Let

further w(p) ∈ R≥0 denote the weight at point p which

takes w = 0 in unobserved regions or outside the trunca-

tion band, and w = 1 close to the estimated surface. As the

TSDF representation estimated by volumetric fusion (Sec-

tion 3.1) yields only values at discrete voxel locations, we

use bilinear interpolation for calculating d(p) and w(p) at

intermediate points. We formulate our objective as mini-

mizing the distance between the TSDF values of the initial

reconstruction specified by the mappings d(p) and w(p),
and a set of jointly optimized 3D shape models. Fig. 3 illus-

trates two of the 3D shape models learned by our approach.

In the following, let N denote the number of observa-

tions (i.e., 3D bounding box proposals from Section 3.2)

and let M denote the number of shape models we want to

learn. Let further Ω ⊂ [0, 1]3 be the discrete domain of

our shape models. While many choices are possible, we

simply take Ω as an axis aligned 3D grid with equidistant

spacing between points. Let now π = {π1, . . . , πN} de-

note a set of affine mappings from the unit cube to R
3, i.e.,

πi : [0, 1]
3 → R

3. We may think of these mappings as spec-

ifying the location of an observed object i in terms of its 3D

bounding box, obtained by mapping the edges of the unit

cube [0, 1]3 via πi to coordinate system of the initial recon-

struction. In this work, we focus our attention on a subset of

affine mappings: We assume that all objects are located on

a common (and known) ground plane, and thus parametrize

each mapping πi in terms of the following 5 parameters:

• translation in the 2D ground plane: ti ∈ R
2

• rotation around the vertical axis: ri ∈ [0, 2π]

• scaling in all three dimensions: si ∈ R
3
≥0

To model the shape of the objects, many choices are pos-

sible. For simplicity, we consider a linear embedding. Let

φ = {φ1, . . . , φM} denote a set of D-dimensional linear

embeddings (D ≪ |Ω|) which specify a real value for every

p ∈ Ω given a coefficient vector x ∈ R
D:

φj(p,x) = µj(p) +

D∑

d=1

xd ξ
(j)
d (p) (3)

Here, the parameters µ ∈ R
|Ω| and ξd ∈ R

|Ω| specify the

mean as well as an orthonormal basis, respectively. Each φj
represents the shape (or TSDF) of model j by specifying a

signed distance value at each point p ∈ Ω, given an obser-

vation dependent coefficient vector x as input. We specify

one coefficient vector for each observation xi ∈ R
D, X =

{x1, . . . ,xN}. The complexity of the model varies with

the dimensionality D. For the simplest case (D = 0) we

obtain the mean model. Finally, we associate each model

with its average scale vj ∈ R
3
≥0, V = {v1, . . . ,vM} to

encourage scale consistency between different observations

associated to a model. The assignment of models to obser-

vations is determined by an index set k = {k1, . . . , kN}
with ki ∈ {1, . . . ,M}.

We are now ready to formulate our objective in terms of

a discrete-continuous optimization problem

argmin
π,φ,X,V,k

N∑

i=1

Ψi(π,φ,X,V,k) (4)

with energy function

Ψi(·) = ψshp(πi, φki
,xi) + λscale ψscale(si,vki

)

+λreg ψ
(i)
reg(πi) (5)

where ψshp(·) ensures that the shape of observation i fits

the associated model ki, ψscale(·) encourages agreement in

scale, and ψreg(·) is a regularizer which penalizes strong

deviations from the initial detections. λscale, λreg ∈ R≥0

are parameters controlling the influence of the different

terms. We define ψshp(·) as the weighted squared TSDF

difference between the associated model φ and the observa-

tion specified via π:

ψshp(π, φ,x) =
∑

p∈Ω

w(π(p)) [φ(p,x)− d(π(p))]
2

(6)
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Figure 4: Object Poses. This figure shows the initial 3D de-

tections (left) and the result after joint alignment and model

learning (right) overlayed with the initial reconstruction.

Scale discrepancy is measured by the squared distance be-

tween the observation scale s and the model scale v:

ψscale(s,v) = ‖s− v‖
2

(7)

Finally, strong deviations from the initial detection i are pe-

nalized as

ψ(i)
reg(πi) = (ri − r̂i)

2 + ‖ti − t̂i‖
2 + ‖si − ŝi‖

2 (8)

where (ri, ti, si) are the transformation parameters of ob-

ject i and (r̂i, t̂i, ŝi) denote the initial transformation pa-

rameters specified by the detection.

3.4. Inference

Optimizing Eq. 4 directly is a very difficult task due to

the large dimensionality of the parameter space. We there-

fore partition the set of variables into tractable blocks and

apply block coordinate descent (BCD) to find a local min-

imizer. Each block lowers the value of the objective func-

tion, thus our algorithm is guaranteed to converge. More

specifically, we initialize π, V and k according to the de-

tections, the mean of φ to a random observation, X = 0,

and iterate the following blocks:

Block {π,V}: The first block optimizes the object poses

π jointly with the model scales V while keeping the other

variables fixed. Due to the small number of parameters in-

volved, we leverage gradient descent in order to find a lo-

cal minimum. We first differentiate the objective function

in Eq. 4 with respect to {ti, ri, si} and V (see supplemen-

tary material for details), and then solve the non-linear least

squares problem in Eq. 4 using the Ceres solver [1]. Fig. 4

illustrates the object poses before (left) and after (right) con-

vergence.

Block {φ,X}: The second block optimizes the shape

models φ jointly with the coefficients X while keeping the

other variables fixed. Note that this optimization does not

depend on the scale term ψscale(·). Further, the object poses

π are fixed. Thus the objective in Eq. 4 reduces to M inde-

pendent weighted PCA problems which we solve using the

robust approach of Torre et al. [25]. For the case D = 0,

this becomes equivalent to computing the weighted mean.

Block {X,k}: The final block optimizes the coefficients

X jointly with the model associations k while keeping the

other variables fixed. We first note that this optimization

can be performed independently for each observation i ∈
{1, . . . , N}. We thus obtain xi and ki for observation i as

argmin
xi,ki

ψshp(πi, φki
,xi) + λscale ψscale(si,vki

) (9)

which can be found by minimization with respect to xi for

each ki ∈ {1, . . . ,M}. As ψscale(·) does not depend on

xi, the minimizer of ψshp(·) with respect to xi can be iden-

tified with the solution to an ordinary linear least squares

problem. For details, we refer the reader to the supplemen-

tary material.

4. Experimental Evaluation

This section presents results of the proposed approach

and compares our method to several baselines both quantita-

tively as well as qualitatively. As existing datasets for quan-

titative evaluation of multi-view reconstruction (e.g., Mid-

dlebury [36]) focus on small scenes of single objects where

our algorithm is not applicable, we have recorded a novel

suburban dataset for our purpose where objects of similar

shape such as buildings and cars occur frequently. Towards

this goal, we have equipped a station wagon with fisheye

cameras to the side as well as a Velodyne and a pushbroom

laser scanner in order to generate ground truth. All cameras

and laser scanners have been synchronized at a frame rate

of roughly 10 fps, yielding about one captured frame every

meter at typical driving speeds of 25 mph. For calibration

we used the approach proposed by Heng et al. [19].

Using this setup, we recorded a sequence of 320 frames

containing several buildings and cars. As the sequences

have been recorded under regular daylight conditions, they

are (unlike Middlebury [36]) highly challenging for current

reconstruction pipelines. Some of the challenges are high-

lighted in Fig. 1. For evaluation, we subsample the laser

scanner point cloud and the meshes produced by the meth-

ods equidistantly at 0.1 m, extrude incomplete planar sur-

faces, and clip all points in the ground truth as well as all

results at 20 m distance from the closest camera center. See

supplementary for an illustration of our 3D ground truth.

4.1. Methods

As baseline, we leverage the state-of-the-art reconstruc-

tion pipeline PMVS2 from Furukawa et al. [12] in combi-

nation with two meshing alternatives, namely Poisson re-

construction [23] and smooth signed distance surface re-

construction [4]. As those surface reconstruction methods

tend to produce closed surfaces, we clip large triangles as

suggested by Furukawa et al. [12]. In order to make our

data applicable to PMVS2, we projected the fisheye images
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All Buildings Cars

Comp. Acc. F1 score Comp. Acc. F1 score Comp. Acc. F1 score

PMVS2 (default) 12.24 % 79.26 % 21.20 % 16.35 % 85.70 % 27.46 % 0 % 0 % 0 %

PMVS2 (optimized) 26.65 % 78.31 % 39.77 % 30.57 % 91.59 % 45.84 % 7.31 % 96.97 % 13.59 %

PMVS2 (default) + Poisson 20.90 % 64.12 % 31.53 % 25.49 % 77.05 % 38.30 % 1.58 % 100.00 % 3.12 %

PMVS2 (optimized) + Poisson 27.38 % 51.93 % 35.85 % 29.39 % 75.50 % 42.31 % 1.46 % 100.00 % 2.88 %

PMVS2 (default) + SSD 25.27 % 54.21 % 34.47 % 34.12 % 66.32 % 45.05 % 0 % 0 % 0 %

PMVS2 (optimized) + SSD 39.27 % 61.51 % 47.94 % 44.07 % 81.19 % 57.13 % 6.94 % 100.00 % 12.98 %

Ours (Initial) 60.21 % 94.15 % 73.45 % 52.70 % 93.84 % 67.50 % 85.20 % 94.35 % 89.54 %

Ours (PC 0) 76.83 % 91.35 % 83.46 % 72.24 % 91.26 % 80.64 % 92.69 % 93.46 % 93.07 %

Ours (PC 1) 76.65 % 89.53 % 82.59 % 71.55 % 89.46 % 79.51 % 91.53 % 92.90 % 92.21 %

Table 1: Quantitative Evaluation. This figure shows the performance of the baseline methods (PMVS2 variants and initial

reconstruction) and our method (PC 0/1) with respect to completeness, accuracy and F1 score using a 0.5 m detection

threshold. We separately evaluate all regions within 20 m from the camera, as well as regions representing the categories

“buildings” and “cars”.

All Buildings Cars
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Figure 5: Varying the Evaluation Distance. This figure shows quantitative results in terms of completeness, accuracy and

F1 score when varying the evaluation distance τ between 0.2 and 1.0 m. To avoid clutter, we only show results for a subset

of the methods. We refer the reader to the supplementary material for the full plots.

onto virtual perspective image planes using an opening an-

gle of 120◦, such that the images cover all objects which ap-

pear in the ground truth. We realized that the performance

of PMVS2 depends heavily on the parameter settings. We

thus optimized all parameters of the baseline with respect to

the reconstruction metrics using grid search on our compute

cluster. For completeness we show both, PMVS2 results

using the optimized parameter settings as well as PMVS2

using the default parameters. In addition to the meshed re-

sults, we also directly evaluate the point cloud returned by

PMVS2. Furthermore, we compare the results of our full

model with respect to the initial reconstruction. We leverage

the marching cubes algorithm [28] to turn our volumetric re-

construction results into meshes. For all meshes, we remove

spurious isolated vertices created by the reconstruction al-

gorithm in a post-processing step. Throughout all experi-

ments, we set the parameters in our model to λsize = 1000
and λreg = 50 which we have been determined empirically.
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Figure 7: Model Completion. Our method fills in the oc-

cluded/unseen side of objects (left: input; right: our result).

Furthermore, as sky regions often lead to spurious matches,

we trained a sky detector using ALE [26] and removed sky

regions before processing the images for all methods.

4.2. Quantitative Experiments

For quantitative evaluation, we measure performance in

terms of completeness, accuracy and F1 score. We calculate

completeness as the percentage of ground truth 3D points

for which at least one reconstructed 3D point (i.e., vertex of

the subsampled mesh) is within a distance of τ = 0.5 m.

Similarly, we calculate accuracy as the percentage of recon-

structed 3D points for which at least one ground truth 3D

point is within a distance of τ = 0.5 m. Furthermore, we

provide the combined F1 score:

F1 = 2 ·
completeness · accuracy

completeness + accuracy
(10)

Our quantitative results are shown in Table 1, evaluated at

all 3D ground truth points (left column), as well as restricted

to buildings and vehicles3 (middle and right column). We

evaluate our initial reconstruction as well as our joint re-

construction results for D = 0 (PC 0) and D = 1 (PC 1).

As evidenced by our experiments, our initial reconstruction

is able to outperform all variants of PMVS2 [12] in terms

of both completeness as well as accuracy in almost all re-

gions. Note that for cars, PMVS2 recovers less than 10%
of the surfaces due to the challenges in matching texture-

less and specular surfaces. In contrast, our joint reconstruc-

tion (PC 0 / PC 1) transfers surface information from simi-

lar shapes in the scene, boosting completeness by more than

15% with respect to to our initial reconstruction baseline

with a moderate loss in accuracy. This leads to significant

improvements in F1 score for all three categories.

It may seem surprising that our weighted mean model

(PC 0) slightly outperforms the more expressive model

comprising one principal component (PC 1). After inspec-

tion, we found this effect to be caused by systematic errors

in the initial reconstruction. This systematic noise can be

partially overcome by our mean model (PC 0), which poses

a stronger regularization on our joint reconstruction. An

alternative for alleviating this effect would be to integrate

class-specific object knowledge into the process [34, 35].

Results for a subset of the methods when varying the

evaluation distance threshold τ are illustrated in Fig. 5.

3In order to evaluate buildings and vehicles separately, we have anno-

tated them with ground truth 3D bounding boxes.

While completeness and accuracy decreases for all meth-

ods with smaller detection thresholds, the relative gain in

performance of our method with respect to the baselines in-

creases. This indicates that our reconstructions are not only

more complete, but also metrically more accurate. The full

plot is provided in the supplementary material.

4.3. Qualitative Experiments

Our qualitative results are shown in Fig. 6-8. Fig. 6

demonstrates the variability of our learned models and

Fig. 7 illustrates the ability of our model to complete re-

gions of objects which have never been observed. Fig. 8

shows (from-top-to-bottom): the point cloud created by

PMVS2 [12] using the default parameter setting, the result

with optimized parameters, meshed results of the optimized

PMVS2 point cloud using Poisson [23] and SSD [4] surface

reconstruction, our initial reconstruction, and our final re-

sults (PC 0). The colors denote the height, normalized with

respect to the highest and the lowest point of the reconstruc-

tion. Note how our method is able to recover cars as well

as missing walls of the buildings. Furthermore, our recon-

structions convey much more detail than the baseline meth-

ods. As roofs in this sequence are barely observed from the

viewpoint of the vehicle, none of the algorithms was able

to reconstruct them. Additional results are provided in the

supplementary material.

5. Conclusions

We have presented a novel method for jointly recon-

structing objects with similar shapes in 3D by optimizing

their pose and shape parameters using a volumetric repre-

sentation. We demonstrated the value of our model with

respect to PMVS2 and our initial reconstruction on a novel

challenging suburban dataset. Our method improves in par-

ticular with respect to completeness as it transfers surface

knowledge between objects of similar shape. One weak-

ness of our model is that it is only little robust to outliers

in the detection. In the future, we thus plan to incorporate

outlier handling by optimizing a robust function. Further,

we want extend our method to more object categories and

combine it with external 3D shape knowledge by learning a

joint model from 3D CAD models as well as a collection of

automatically retrieved objects in large scenes.
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