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Abstract

In this paper we propose a global optimization-based ap-

proach to jointly matching a set of images. The estimated

correspondences simultaneously maximize pairwise feature

affinities and cycle consistency across multiple images. Un-

like previous convex methods relying on semidefinite pro-

gramming, we formulate the problem as a low-rank ma-

trix recovery problem and show that the desired semidefi-

niteness of a solution can be spontaneously fulfilled. The

low-rank formulation enables us to derive a fast alternating

minimization algorithm in order to handle practical prob-

lems with thousands of features. Both simulation and real

experiments demonstrate that the proposed algorithm can

achieve a competitive performance with an order of mag-

nitude speedup compared to the state-of-the-art algorithm.

In the end, we demonstrate the applicability of the proposed

method to match the images of different object instances and

as a result the potential to reconstruct category-specific ob-

ject models from those images.

1. Introduction

Finding feature correspondences between two images is

a fundamental problem in computer vision with various ap-

plications such as structure from motion, image registration,

shape analysis, to name a few. While previous efforts were

mostly focused on matching a pair of images, many tasks

require to find correspondences across multiple images. A

typical example is nonrigid structure from motion [3, 12],

where one can hardly reconstruct a nonrigid shape from two

frames. Furthermore, recent work has shown that leverag-

ing multi-way information can dramatically improve match-

ing results compared to pairwise matching [29, 16].

The most important constraint for joint matching is the

cycle consistency, i.e., the composition of matches along a

loop of images should be identity, as illustrated in Figure 1.

Given pairwise matches, one can possibly identify true or

false matches by checking all cycles in the image collection.

But there are many difficulties for this approach [10]. For

example, the input pairwise matches are often very noisy

Figure 1. An illustration of consistent multi-image matching.

with many false matches and missing matches, and the fea-

tures detected from different images may only have a par-

tial overlap even if the same feature detector is applied [27].

Therefore, it is likely that very few consistent cycles can be

found. Moreover, how to sample cycles is not straightfor-

ward due to the huge number of possibilities [16]. Recent

work on joint matching has shown that, if all feature corre-

spondences within multiple images are denoted by a large

binary matrix, the cycle consistency can be translated into

the fact that such a matrix should be positive semidefinite

and low-rank [18, 29, 16]. Based on this observation, con-

vex optimization-based algorithms were proposed, which

achieved the state-of-the-art performances with theoretical

guarantees [16, 10]. But these algorithms rely on semidefi-

nite programming (SDP), which is not computationally ef-

ficient to handle image matching problems in practice.

In this paper, we propose a novel algorithm for multi-

image matching. The inputs to our algorithm are original

similarities between feature descriptors such as SIFT de-

scriptors [25] and deep features [35], or optimized affinities

provided by existing graph matching solvers [22]. The out-

puts are feature correspondences between all pairs of im-

ages. Unlike many previous methods starting from quan-

tized pairwise matches [29, 10], we postpone the decision

until we optimize for both pairwise affinities and multi-

image consistency. Instead of using SDP relaxation, we

formulate the problem as a low-rank matrix recovery prob-

lem and employ the nuclear-norm relaxation for rank mini-

mization (Section 4.1). We show that the positive semidef-

initeness of a desired solution can be spontaneously ful-

filled (Section 4.2). Moreover, we derive a fast alternat-
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ing minimization algorithm to globally solve the problem

in the low-dimensional variable space (Section 5). Besides

validating our method on both simulated and real bench-

mark datasets, we also demonstrate the applicability of the

proposed method combined with deep learning and graph

matching to match images with different objects and recon-

struct category-specific object models (Section 6).

2. Related work

The early work on joint matching aimed to select cycle-

consistent matches and identify incorrect matches from bad

cycles [41, 28]. The assumption for this family of meth-

ods is that correct matches are dominant in the raw in-

put. Otherwise, it is difficult to find a sufficient number

of closed cycles [16]. Some works proposed to use the cy-

cle consistency as an explicit constraint for sparse feature

matching [38, 37, 39, 36] or pixel-wise flow computation

[42], but the resulting optimization problems are noncon-

vex and can hardly be solved globally. Recent results in

[18, 16, 29] showed that the consistent matches could be ex-

tracted from the spectrum (top eigenvectors) of the matrix

composed of all pairwise matches. The rationale behind this

spectral technique is that the problem can be formulated as

a quadratic integer program and relaxed into a generalized

Rayleigh problem. But the relaxation assumes full feature

correspondences (bijection) between images [29]. Recently,

Huang and Guibas [16] proposed an elegant solution based

on convex relaxation and derived the theoretical conditions

for exact recovery. The result is further improved in [10] by

assuming that the underlying rank of the variable matrix can

be reliably estimated. In these works, the problem is formu-

lated as SDP, which has a limited computational efficiency

in real applications.

Regarding methodology, our work is inspired by the re-

cent advances on low-rank matrix recovery which make use

of convex relaxation [8, 7] and explore the underlying low-

rank structure to accelerate computation [5, 15]. Our work

is also related to some other problems that aim to find global

estimates from pairwise estimates such as rotation averag-

ing [14, 34] and model fusion [40].

3. Preliminaries and notation

Suppose we have n images and pi features from each

image i. The objective is to find feature correspondences

between all pairs of images. Before introducing the pro-

posed method, we first give a brief introduction to pairwise

matching techniques and the definition of cycle consistency.

3.1. Pairwise matching

To match an image pair (i, j), one can compute similari-

ties for all pairs of feature points from two images and store

them in a matrix Sij ∈ R
pi×pj .

We represent the feature correspondences for image pair

(i, j) by a partial permutation matrix Xij ∈ {0, 1}
pi×pj ,

which satisfies the doubly stochastic constraints:

0 ≤Xij1 ≤ 1, ,0 ≤X
T
ij1 ≤ 1. (1)

To find Xij , we can maximize the inner product between

Xij and Sij subject to the constraints in (1) resulting in a

linear assignment problem, which has been well studied and

can be efficiently solved by the Hungarian algorithm.

In image matching, spatial rigidity is usually preferred,

i.e., the relative location between two features in an im-

age should be similar to that between their correspondences

in the other image. This problem is well known as graph

matching and formulated as a quadratic assignment prob-

lem (QAP). While QAP is NP-hard, many efficient algo-

rithms have been proposed to solve it approximately, e.g.,

[22, 1, 11]. Those solvers basically relax the binary con-

straint on the permutation matrix, solve the optimization,

and output the confidence of a candidate match being cor-

rect. We refer readers to the related literature for details.

Here we aim to emphasize that the outputs of graph match-

ing solvers are basically optimized affinity scores of can-

didate matches, which consider both feature similarity and

spatial rigidity. We will use these scores (saved in Sij) as

our input in some cases.

3.2. Cycle consistency

Some recent work proposed to use the cycle consistency

as a constraint to match a bunch of images [29, 37, 10]. The

cycle consistency can be described by

Xij = XizXzj , (2)

for any three images (i, j, z) and can be extended to the case

with more images.

The recent results in [16, 29] show that the cycle con-

sistency can be described more concisely by introducing a

virtual “universe” that is defined as the set of unique fea-

tures that appear in the image collection. Each point in the

universe may be observed by several images and the cor-

responding image points should be matched. In this way,

consistent matching should satisfy Xij = AiA
T
j , where

Ai ∈ {0, 1}
pi×k denotes the map from Image i to the uni-

verse, k is the number of points in the universe, and k ≥ pi
for all i.

Suppose the correspondences for all m =
∑n

i=1
pi

features in the image collection is denoted by X ∈
{0, 1}m×m:

X =











X11 X12 · · · X1n

X21 X22 · · · X2n

...
...

. . .
...

Xn1 · · · · · · Xnn











, (3)
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and all Ais are concatenated as rows in a matrix A ∈
{0, 1}m×k. Then, one can write X as

X = AA
T , (4)

From (4), it is clear to see that a desired X should be both

positive semidefinite and low-rank:

X � 0, rank (X) ≤ k. (5)

Using (5) the cycle consistency can be effectively im-

posed without checking all cycles of pairwise matches.

Moreover, partial matching is allowed, while bijection

needs to be assumed in (2).

4. Joint matching via rank minimization

Given affinity scores {Sij | 1 ≤ i, j ≤ n}, we aim to

find globally consistent matches X . Note that Sij can be

all-zero if matching is not performed for a pair (i, j). More-

over, affinity scores can be computed from either feature

similarities or graph matching solvers according to specific

scenarios, as described in Section 3.1.

4.1. Formulation

We formulate the problem as a low-rank matrix recovery

problem. We maximize the inner product between Xij and

Sij for all i and j as multiple linear assignment problems.

At the same time, we minimize the rank of X to enforce

the cycle consistency. We ignore the positive semidefinite

constraint on X and will explain the reasons later.

To make the optimization tractable, we make the follow-

ing relaxations: (1) X is treated as a real matrix X ∈
[0, 1]m×m instead of a binary matrix, which is a general

practice in solving matching problems. Experimentally, we

found that the solution values were very close to 0 or 1 and

could be stably quantized by a threshold of 0.5. This might

be attributed to the existence of a linear term in the cost

function [26]. (2) Rank of X is replaced by the nuclear nor-

m ‖X‖∗ (sum of singular values), which is a tight convex

relaxation proven to be very effective in various low-rank

problems such as matrix completion [8] and robust princi-

pal component analysis [7].

The estimated X should be sparse since at most one val-

ue in each row of Xij can be nonzero. To induce sparsity,

we minimize the sum of values in X . Combining all three

terms, we obtain the following cost function:

f(X) = −
n
∑

i=1

n
∑

j=1

〈Sij ,Xij〉+ α〈1,X〉+ λ‖X‖∗,

= −〈S − α1,X〉+ λ‖X‖∗, (6)

where 〈·, ·〉 denotes the inner product and S ∈ R
m×m is the

matrix collecting all Sijs. α is the weight of sparsity, which

can be interpreted as a threshold to remove small scores in

Sijs. In our implementation, we normalize the scores to let

them lie between 0 and 1 and empirically set α = 0.1. λ
controls the weight of the nuclear norm. We will discuss λ
in Section 4.2 and Section 6.1.2.

Besides the doubly stochastic constraints in (1), addi-

tional constraints shall be imposed on X after relaxation:

Xii = Ipi
, 1 ≤ i ≤ n, (7)

Xij = X
T
ji, 1 ≤ i, j ≤ n, i 6= j, (8)

0 ≤X ≤ 1, (9)

where (7) constrains self-matching to be identity, (8) con-

strains X to be symmetric, and (9) constrains the values in

X to lie in [0, 1].

Finally, we obtain the following optimization problem:

min
X

〈W ,X〉+ λ‖X‖∗,

s.t. X ∈ C, (10)

where W = α1 − S and C denotes the set of matrices

satisfying the constraints given in (1), (7), (8) and (9).

Upon our experimental observation, the result doesn’t

degrade noticeably when removing the doubly stochastic

constraints in (1). This might be attributed to the existence

of the sparsity regularizer. Therefore, we remove (1) in im-

plementation to accelerate the computation.

4.2. Positive semidefiniteness

We ignore the positive semidefinite constraint for two

reasons: (1) solving SDP is generally unscalable; (2) with

the constraints in (7) and (8), the solution to (10) turns out

to be nearly positive semidefinite if λ is sufficiently large.1

Suppose σ1, · · · , σm are eigenvalues of X . From (7),

we have Xii = 1 for all i, and
∑m

i=1
σi = trace (X) = m,

which implies that the sum of σis is fixed. From (8), we

have X is symmetric, and σis are all real numbers. When

we choose a large λ, ‖X‖∗ =
∑m

i=1
|σi| dominates the cost

function, and a solution with all nonnegative σis will give

the lowest cost, because
∑m

i=1
|σi| ≥

∑m

i=1
σi = m and

the equality holds iff. σi ≥ 0 for all i.

The boundness ‖X‖∗ ≥ m also implies that the solu-

tion to (10) will be insensitive to λ when λ is sufficiently

large, and then minimizing the nuclear norm is equivalent

to adding a positive semidefinite constraint. The effect of λ
is experimentally illustrated in Section 6.1.2.

1We use the term “nearly positive semidefinite” to refer to the proper-

ty that the negative eigenvalues of a matrix, if there exist, are negligible

compared to the norm of the matrix.
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[n, p] m = np MatchLift Partial SVD MatchALS

[5, 20] 1.0× 102 0.005 0.016 0.001

[10, 20] 2.0× 102 0.009 0.016 0.003

[20, 20] 4.0× 102 0.034 0.033 0.009

[20, 100] 2.0× 103 1.472 2.023 0.283

[20, 500] 1.0× 104 166.8 219.3 9.804

Table 1. The CPU time (seconds) for one iteration of MatchALS,

MatchLift [10] and partial SVD [21]. n, p, and m denote the num-

ber of images, the number of points per image, and the dimension

of X , respectively. We set k = 2p for MatchALS.

5. Fast alternating minimization

5.1. Optimization in the lowrank space

The nuclear norm minimization in (10) is convex and the

state-of-the-art methods to solve this family of problems

are the proximal method [30] or ADMM [2] based on it-

erative singular value thresholding [6]. However, singular

value decomposition (SVD) needs to be performed in each

iteration, which is extremely expensive even for a medium-

sized problem. For instance, if there are 20 images with

500 features per image to match, we have to optimize for an

10, 000 × 10, 000 matrix. A single SVD for such a matrix

takes hundreds of seconds on a typical PC even if a partial

SVD solver [21] is used. See Table 1 and Section 5.3.

Fortunately, recent results on low-rank optimization have

shown that one can solve the problem more efficiently via

a change of variables X = AB
T [5, 15], where A,B ∈

R
m×k are new variables with a smaller dimension k < m.

More importantly, the change of variables will not introduce

additional local minima if k is larger than the rank of the

original solution. This result was originally derived for low-

rank SDP [4, 20] but also applies here since a nuclear-norm

minimization problem can be rewritten as SDP [31].

Inspired by these works, we propose the following low-

rank factorization-based formulation in order to leverage

the underlying low dimensionality of our problem:

min
A,B

〈W ,AB
T 〉+ λ‖AB

T ‖∗,

s.t. AB
T ∈ C. (11)

Moreover, with the following equation [31],

‖X‖∗ = min
A,B:ABT=X

1

2

(

‖A‖2F + ‖B‖2F
)

, (12)

we finally obtain the following formulation:

min
A,B

〈W ,AB
T 〉+

λ

2
‖A‖2F +

λ

2
‖B‖2F ,

s.t. AB
T ∈ C. (13)

The selection of matrix dimension k is critical to the success

of change of variables, while it directly affects the compu-

tational complexity. We will first provide the algorithm, an-

alyze its complexity and then discuss the selection of k.

5.2. Algorithms

The problem in (13) is not straightforward to solve due

to the constraint on the product of variables. Instead, we

rewrite the problem as

min
X,A,B

〈W ,X〉+
λ

2
‖A‖2F +

λ

2
‖B‖2F ,

s.t. X = AB
T , X ∈ C, (14)

and apply the ADMM [2] to solve (14).

The augmented Lagrangian of (14) reads:

Lµ (X,A,B,Y ) =〈W ,X〉+
λ

2
‖A‖2F +

λ

2
‖B‖2F (15)

+〈Y ,X −AB
T 〉+

µ

2
‖X −AB

T ‖2F

where Y is the dual variable and µ is a parameter control-

ling the step size in optimization. We keep the constraint

X ∈ C since it can be easily handled as we will show later.

Then, the ADMM alternately updates each primal variable

by minimizing Lµ and updates the dual variable via gra-

dient ascent while fixing all other variables. The overall

algorithm is summarized in Algorithm 1.

Algorithm 1: Multi-Image Matching via Alternating

Least Squares (MatchALS)

Input: Pairwise affinity scores S

Output: Globally consistent matches X

1 randomly initialize A and B, Y = 0 ;

2 W = α1− S ;

3 while not converged do

4 A←
(

X + 1

µ
Y

)

B

(

B
T
B + λ

µ
I

)†

;

5 B ←
(

X + 1

µ
Y

)

A

(

A
T
A+ λ

µ
I

)†

;

6 X ← PC

(

AB
T − 1

µ
(W + Y )

)

;

7 Y ← Y
k + µ

(

X −AB
T
)

;

8 end

9 quantize X with a threshold equal to 0.5.

Minimizing Lµ over A turns out to be a regularized least

squares problem with a closed-form solution given in Step

4 in Algorithm 1. The update of B can be solved similarly.

The update of X requires to solve:

min
X∈C
‖X −AB

T +
1

µ
(W + Y ) ‖2F , (16)
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and the solution turns out to be a projection to C. Since the

constraints in C are all linear, the projection can be solved

conveniently. We denote the solution by PC (·) and leave

the details to the supplementary material.

5.3. Computational complexity

The time complexity of an iteration in Algorithm 1 is

dominated by matrix multiplication that requires O(m2k)
flops2. We compare it to the state-of-the-art algorithm

MatchLift [10], which is based on SDP. The time complexi-

ty of an iteration in MatchLift is dominated by the eigenval-

ue decomposition that requires O(m3) flops. As m is much

larger than k, MatchALS has a lower complexity compared

to MatchLift. Moreover, matrix multiplication is paralleliz-

able and has been inherently multithreaded in Matlab, while

the parallelization of eigenvalue decomposition is an open

problem. Both MatchALS and MatchLift are based on AD-

MM and require similar numbers of iterations to converge

upon our observation.

The CPU time for some problem sizes is shown in Ta-

ble 1. The algorithms are implemented in Matlab and tested

on a PC with an Intel i7 3.4GHz CPU and 8G RAM. We

also compare the time cost of partial SVD using PROPACK

[21], a toolbox widely used to solve large-scale matrix com-

pletion problems [24]. In partial SVD, only r leading sin-

gular vectors are computed, which is much faster than full

SVD when r/m is extremely small. But it is not efficient

for a relatively large r. In our problem, r should be larger

than the true rank and we test partial SVD with r = p in

Table 1.

5.4. Selection of k and rank reduction

From the previous subsections we see that k determines

the complexity of MatchALS and k should be larger than

the rank of true solution, i.e. the size of universe. While

some spectral techniques have been proposed in previous

work for rank estimation [10], we found that the estimation

was inaccurate when the input was noisy and incomplete.

Fortunately, our solution doesn’t depend on k if k is larger

than the underlying true rank (demonstrated later in Fig-

ure 3). A heuristic choice is to set k = 2r̂, where r̂ is a

rough estimate of the size of universe.

In real applications, there are likely to be many isolat-

ed features in each image which don’t have any correspon-

dence in other images. However, the constraint in (7) im-

plies that every image feature must be matched to a point in

the universe. To see this, recall that we hope X = AA
T in

(4). If diagonal values of X are all ones, every row of A has

a unit norm, which indicates a match to the universe. There-

fore, the size of universe is dramatically increased by those

isolated features, and consequently a very large k needs to

2The detail is given in the supplementary material

be selected, which severely increases the computation. To

address this issue, we loose the constraint in (7) to be

trace (X) = m′,

off-diagnal values{Xii} = 0, 1 ≤ i ≤ n, (17)

where m′ ≤ m is a predefined constant. When m′ = m,

(17) is reduced to (7). When m′ < m, we allow some

rows and columns in X to be null, which is most likely

to happen for the rows and columns corresponding to the

isolated features, since “switching” them off will not lose

many affinity scores but be able to reduce the nuclear norm

immediately. By using such a “rank reduction” strategy, the

algorithm can automatically prune the isolated features and

reduce the size of universe, which enables us to select a

smaller k for better computational efficiency. We set m′ =
m in simulation since there is no isolated feature and m′ =
0.7m in real experiments.

6. Experiments

6.1. Simulation

We evaluate the performance of the proposed method us-

ing synthesized data. Given a permutation matrix X and the

ground truth X
∗, we measure the error rate by intersection

over union:

1−
|τ(X) ∩ τ(X∗)|

|τ(X) ∪ τ(X∗)|
, (18)

where τ denotes the matches defined by a permutation ma-

trix and | · | means the size of a set.

6.1.1 Matching errors

We follow the settings in [10] to evaluate the performance of

MatchALS and compare it to alternative methods. The size

of universe is fixed as 20 points and in each image a random

sample of the points are observed with a probability denoted

by ρo. The number of images is denoted by n. Then, the

ground-truth pairwise matches are established, and random

corruptions are simulated by removing some true matches

and adding some false matches to achieve an error rate of

ρe. Finally, the corrupted permutation matrix is fed into

Algorithm 1 as the input affinity scores.

We evaluate the performance of MatchALS under var-

ious ρo, ρe and n. We compare MatchALS to two relat-

ed methods: MatchLift [10] and the spectral method [29].

Both of the alternative methods require to know the size

of universe and we provide the true value r∗ = 20. For

MatchALS parameters, we set k = 2r∗ and λ = 50.

The output error rates under various settings are shown

in Figure 2. When the number of images is sufficiently

large, all methods can achieve nearly exact recovery even
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Figure 2. The 2D plot of matching errors under various problem

settings for the spectral method [29], MatchLift [10] and the pro-

posed MatchALS. In the left column, the number of images n

and the input error rate ρe are varying, while the observation ra-

tio ρo = 0.6. In the right column, ρo and ρe are varying, while

n = 20. Lower intensity indicates smaller error and overall a

larger dark region indicates a better performance.
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Figure 3. The estimation error versus the input rank r̂ and the

weight of nuclear norm λ. The true rank r∗ = 20. Here we set

k = r̂ for MatchALS.

if the input error rate is larger than 50%, which demon-

strates the power of joint matching. MatchALS and Match-

Lift achieve very similar performances and outperform the

spectral method especially when the observation ratio is s-

mall. Compared to MatchLift, the proposed method obtains

a competitive performance without exactly knowing the true

rank and requires much less computation time.

6.1.2 Sensitivity to parameters

The sensitivity of MatchALS to the parameters in (13) is il-

lustrated in Figure 3. The figure shows that MatchALS is

insensitive to the predefined dimension of factor matrices k
when k is larger than the true rank r∗, as we explained in

Section 5.1. When k < r∗, the problem in (13) is no longer

equivalent to the original convex problem in (10), and con-

sequently the alternating minimization fails. In practice, we

choose k = 2r̂ as a compromise between safety and effi-

ciency. The right panel in Figure 3 illustrates that the al-

gorithm is insensitive to λ when λ is sufficiently large as

we explained in Section 4.2. In all our experiments, we set

λ = 50.

6.2. Real experiments

6.2.1 Graffiti datasets

We evaluate the performance of our algorithm on six bench-

mark datasets from the Graffiti datasets3. In each dataset,

there are six images of a scene with various image transfor-

mations such as viewpoint change, blurring, illumination

variation, etc.

We detect 1000 affine covariant features [27] with SIFT

[25] descriptors from each image using the VLFeat library

[32]. For each image pair (i, j), we compute the inner prod-

ucts between feature descriptors as affinity scores and only

keep the scores larger than 0.7 and collect them in Sij . If

the ratio between the first and the second largest scores in

a row/column is smaller than 1.1, we set all scores in this

row/column to be zero in order to remove indistinctive fea-

tures. After computing all Sij , we remove the features that

have candidate matches in less than two images since they

have no contribution to joint matching. Finally, we input the

affinity scores to Algorithm 1 to obtain the optimized joint

matches.

For evaluation, we adopt the metric used in [10]: for a

testing point in an image, we calculate the distance between

its estimated correspondence and the true correspondence

in another image. If the distance is smaller than a thresh-

old, we regard that a correct match is found for this test-

ing point. Then, we plot the percentages of testing points

with correct matches versus the threshold values and obtain

a curve analogous to a precision-recall curve. If a testing

point is not aligned with any detected point, its estimated

correspondence is obtained by interpolation. In this experi-

ment, we use all detected feature points in the first image as

testing points and evaluate the matches from the first image

to the other five images. True correspondences are comput-

ed from the homography matrices provided in the datasets.

The performance curves on three datasets are shown in

Figure 4. A curve closer to the upper-left corner indicates

a better performance. The area under curve and computa-

tion time for all datasets are summarized in Table 2. All of

the joint matching methods achieve obvious improvements

compared to the original pairwise matching. MatchALS

and MatchLift perform similarly and outperforms the spec-

tral method, which coincides with the observation in sim-

ulation. Regarding computation time, MatchALS achieves

3http://www.robots.ox.ac.uk/ vgg/data/data-aff.html
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