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Abstract

The state-of-the-art salient object detection models are

able to perform well for relatively simple scenes, yet for

more complex ones, they still have difficulties in highlight-

ing salient objects completely from background, largely due

to the lack of sufficiently robust features for saliency pre-

diction. To address such an issue, this paper proposes a

novel hierarchy-associated feature construction framework

for salient object detection, which is based on integrating

elementary features from multi-level regions in a hierarchy.

Furthermore, multi-layered deep learning features are in-

troduced and incorporated as elementary features into this

framework through a compact integration scheme. This

leads to a rich feature representation, which is able to repre-

sent the context of the whole object/background and is much

more discriminative as well as robust for salient object de-

tection. Extensive experiments on the most widely used and

challenging benchmark datasets demonstrate that the pro-

posed approach substantially outperforms the state-of-the-

art on salient object detection.

1. Introduction

Saliency detection is important to many applications,

such as object segmentation, object recognition, content-

based image retrieval, and adaptive image/video coding.

The original task of saliency detection aims to predict fix-

ation points in an image, where the earliest study on this

topic is motivated by the observation from cognitive scien-

tists that the inherent visual attention mechanism enables

humans to identify rapidly and effortlessly the visually out-

standing (salient) regions/objects in complex scenes.

Following the fixation prediction, saliency detection has
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Shenzhen Key Project for Foundation Research (No. JC201105170613A).

been recently extended to mean highlighting the whole

salient object in an image. The focus of the present paper is

exactly on this task (usually also referred to as salient object

detection in the computer vision literature), which is essen-

tially equivalent to solving a binary foreground/background

segmentation problem.

A common characteristic of most existing methods for

salient object detection is that they generally simplify the

original images by partitioning them into blocks or seg-

menting them into regions through image segmentation al-

gorithms or pixel clustering methods. This is done for effi-

ciency but, most importantly, for computing visual features

of wider image support with the hope that these features will

thus be more robust. The fixed block partition inevitably

merges object pixels into background for those blocks sur-

rounding the object boundaries, while image segmentation

methods are typically boundary-preserved and ensure that

the pixels within the same region share certain visual char-

acteristics. Thus the state-of-the-art salient object detection

models typically compute visual features based on regions

for saliency evaluation, where it is important to note that the

robustness and richness of these features also determine to

a large extent performance of saliency detection.

However, one problem from this is that the features ex-

tracted from small regions might be not sufficiently discrim-

inative for detecting salient objects in complex scenes. A

suggestion might be to adjust the segmentation parameters

so that an object is composed of very few regions to facil-

itate the salient object detection task. Unfortunately, natu-

ral images may contain a variety of complex scenes, and

the state-of-the-art image segmentation methods are still

far from separating the whole objects with the well-defined

boundaries from background regions. For some images, ad-

justing the segmentation parameters to decrease the number

of regions may result in under-segmentation, where salient

object regions are merged into background, and lead to in-
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Figure 1. Saliency maps generated by seven state-of-the-art saliency models , and by the proposed model with HARF1 and HARF2

description respectively. Most previous models suffer from their limited robustness to highlight the whole salient object in complex scenes.

accurate salient object detection. As a result, even the

state-of-the-art saliency models still have significant diffi-

culties in completely highlighting salient objects in com-

plex scenes (see Figure 1). Therefore, given the above dis-

cussion, a fundamental question that needs to be addressed

is the following: “how can we extract features that are both

more robust and also richer based on the over-segmented

regions for salient object detection?”.

To that end, this paper proposes a novel hierarchy-

associated feature construction framework for salient ob-

ject detection, which integrates various elementary fea-

tures from both the target region and super-regions in a

hierarchy. Our hypothesis is that features computed in

this manner are able to represent the context of the en-

tire object/background and are much more discriminative

as well as robust for salient object detection. In such a

context, the paper also introduces the use of enriched ele-

mentary features, which are computed from the outputs of

multiple hidden layers of a deep convolutional neural net-

work (CNN). By regional contrasts evaluation, these CNN

features and other typical elementary features are effec-

tively incorporated into the proposed feature construction

framework to generate hierarchy-associated rich features

(HARF). With such a rich feature representation, we are

able to cast saliency detection as a regression problem for

which a boosted predictor is trained to estimate regional

saliency scores. Extensive experiments on the most widely

used benchmark datasets demonstrate that the HARF rep-

resentation achieves higher performance of salient object

detection and the proposed approach substantially outper-

forms the state-of-the-art models.

In summary, the paper contributions are as follows:

1. We propose a novel hierarchy-associated feature con-

struction framework for salient object detection that

allows much more robust and discriminative features,

which utilize information from multiple image regions.

2. Furthermore, we introduce the use of multi-layered

deep learning features, which are incorporated into the

above framework through a compact feature integra-

tion scheme that allows to efficiently use multiple ele-

mentary features of high-dimensionality.

3. Last, we show that the proposed approach outperforms

the state-of-the-art saliency models by a large margin,

both quantitatively and qualitatively.

2. Related work

Regarding the early problem of fixation prediction, Itti

et al. [13] proposed a well-known saliency model which

was implemented based on the biological attention mech-

anisms and feature integration theories. In this model, ele-

mentary features, e.g., color and luminance computed from

different scales, are integrated using a center-surround oper-

ator to generate the saliency map, in which visually salient

points are highlighted, as the prediction of fixations. After

that, a number of fixation prediction models are proposed

(e.g., [12, 25]). A comprehensive survey on the fixation

prediction models can be found in [5].

Concerning the salient object detection problem, which

is the focus of this paper, in [36] it was defined as a bi-

nary segmentation problem for application to object recog-

nition. Since then, plenty of saliency models have been pro-

posed for detecting salient objects in images based on vari-

ous theories and principles, such as information theory[37],

graph theory [15, 23, 41], statistical modeling [8, 34, 39],

low-rank matrix recovery [35, 44], partial differential equa-

tions [26], and machine learning [17, 20, 27, 29, 42]. More-

over, a variety of effective measures and priors are ex-

plored to achieve a higher performance of salient object

detection, e.g., local and global contrast measures [1, 9,

16, 28, 30, 33, 40], center prior [19], boundary connectiv-

ity prior [38, 43, 44], focusness prior [18, 22], objectness

prior [7, 14] and background prior [15, 24, 26, 41]. Apart

from detecting salient objects in a single image, salient ob-

ject detection also has been extended to identifying com-

mon salient objects shared in multiple images and video

sequences. For a comprehensive survey on salient object

detection models, the interested reader is referred to [3].

Some recent models have exploited hierarchical archi-

tectures for salient object detection. In [41], hierarchical in-

ference framework is proposed to fuse multi-scale saliency

cues, while in [28] the most confident regions in a saliency

tree are selected to improve the performance of salient ob-

ject detection. In contrast, we focus on extracting discrim-

inative and robust features through hierarchical representa-

tion for detecting salient objects in complex scenes.

3. Hierarchy-associated feature construction

framework

This section describes how the hierarchy-associated fea-

tures are constructed. This construction starts by first build-
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Figure 2. Hierarchy-associated feature construction: this figure illustrates how to compose basic regional features for constructing HARF

descriptors for regions Rk, Rm and Rn (here we use hi to denote the basic regional feature of region Ri).

ing a binary segmentation tree (Section 3.1), which al-

lows us to extract hierarchical image regions and to sys-

temically analyze their neighborhood relationships. Section

3.2 explains how HARF features are generated by combin-

ing multiple basic regional features, whereas Section 3.3

presents the computation of the basic regional features that

is achieved through a compact integration of multiple ele-

mentary features.

3.1. Binary segmentation tree generation

To construct a binary segmentation tree for an input im-

age, we exploit the gPb (globalized probability of boundary

based contour detection) method [2] to generate an ultra-

metric contour map (UCM), which contains a set of real-

valued contours. We normalize the UCM into the range

of [0, 1] and generate a segmentation containing approxi-

mately 100 regions by thresholding with appropriate con-

tour values. Then the generated regions Ri(i = 1, . . . ,K)
are the basis to construct a binary segmentation tree, in

which each leaf node represents a region and each non-leaf

node represents a super-region.

For generating super-regions in the segmentation tree,

the merging order is determined by contour values of ad-

jacent regions, i.e.,

Rs = argminC(Rn, Rj), Rn ∈ Nj (1)

where Nj denotes the set of neighbors of the target region

Rj , and C(Rn, Rj) denotes the contour value between re-

gions Rn and Rj in the UCM. This means that the pair of

regions with the lowest contour value are merged first to

generate a new super-region Rs. The merging process is

performed iteratively to generate the binary segmentation

tree until the final two super-regions are merged to com-

pose the entire image. Figure 2 illustrates the segmentation

tree generated for the example image.

3.2. Hierarchical feature construction

Based on the constructed binary segmentation tree illus-

trated in Figure 2, we propose a novel feature construction

framework from the following observations.

To begin with, the image regions (segments) at leaf-

nodes in the segmentation tree are typically small, even

humans are not able to efficiently recognize most of them

while only looking at a single one. Thus the extracted

features only from the small regions would be not suffi-

ciently discriminative for salient object detection. Second,

the whole object (the little girl) is not completely separated

from the background in any regions or super-regions in the

segmentation tree. However, the main parts of the object be-

come increasingly clear when we look from the leaf-nodes

to the root though the segmentation hierarchy, such as the

arms, the skirt and the head. This suggests that the binary

hierarchical representation is able to capture global context

of objects. Based on the above observations, we propose

the following two methods to compute hierarchy-associated

rich features (HARF) for regions at leaf-nodes.

HARF1: In this case, we propose combining basic re-

gional features, whose exact form will be detailed in the
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next section, from both the local region and more global

super-regions to form HARF. Specifically, basic regional

features are computed first for both the target region to be

represented and for super-regions corresponding to its β an-

cestor nodes in the segmentation tree. Then the extracted

basic regional features from them are stacked into a single

feature vector. For abbreviation, the feature extracted in this

form is denoted as HARF
β
1 (R), where R represents the tar-

get region and β is the number of levels of super-regions

in the segmentation hierarchy included to compute HARF.

Therefore, assuming that the basic regional feature for each

region or super-region is represented by a d-dimensional

feature vector, the dimensionality of the generated HARF
β
1

feature is d + d × β. An illustration of computing feature

HARF2
1(Rk) is shown in Figure 2.

HARF2: Alternatively, given a region Rm, we pro-

pose to compute a richer HARF feature, denoted by

HARF
β
2 (Rm), by considering not only ancestor super-

regions but also sibling regions (in the binary segmenta-

tion tree). More specifically, if {R
(i)
m }βi=1 are the β ances-

tor regions of Rm, to compute HARF
β
2 (Rm) we then con-

sider all of the regions used in HARF
β
1 (Rm) plus regions

sibling(Rm) and {sibling(R
(i)
m )}β−1

i=1 , where sibling(R) de-

notes the sibling region of R. The basic regional features

from all these regions are stacked to form HARF2
2(Rm),

which has dimensionality d + 2d × β. Figure 2 provides a

visual illustration of constructing feature HARF2
2(Rm).

Notice that, the whole image at the root-node is not in-

cluded for HARF computation because it certainly contains

both salient object and background regions. Furthermore,

not all regions at leaf-nodes have the same levels of hier-

archy to reach the root-node, and therefore some regions

may not have sufficient levels to compute HARF. In this

case, the basic regional feature from the super-region at the

highest level is duplicated and combined with other features

from lower levels to generate the HARF feature of the tar-

get region, such as HARF2
1(Rn) and HARF2

2(Rn) in Fig-

ure 2. Experimentally, 8 levels of hierarchy (i.e., β = 8)

were found to be sufficient for all the images we tested.

Due to the way they have been constructed, the proposed

features have the following nice properties:

1. Context-aware: HARF is computed from both the tar-

get local region and super-regions in a hierarchical seg-

mentation tree, thus global context is encoded for the

target region representation.

2. Discriminative: Due to its wider support, HARF is

more discriminative and robust compared to the tra-

ditional features that are computed directly from the

target region only.

3. Efficient: HARF is a combination of multiple basic re-

gional features, thus its computation is efficient.

3.3. Compact integration of rich elementary fea­
tures for HARF construction

It remains to describe how the basic regional features

are formed (which are used for the HARF construction pre-

sented in the previous section). To that end, given a re-

gion Rj , its local regional feature hj is estimated in two

stages: (i) the elementary features computation, where (pos-

sibly high-dimensional) elementary features of several dif-

ferent types, say {f1j , f
2
j , . . . , f

Q
j }, are computed for re-

gion Rj , and (ii) the compact feature integration, where the

estimated elementary features are compactly integrated to

produce two low-dimensional feature vectors, the local re-

gional contrasts h
l
j = [hl

j,1; . . . ;h
l
j,Q] and the border re-

gional contrasts h
b
j = [hb

j,1; . . . ;h
b
j,Q]. These, together

with a regional property descriptor h
p
j (describing geomet-

ric properties of region Rj), are used to form the basic local

regional descriptor hj , i.e., hj = [hl
j ;h

b
j ;h

p
j ].

3.3.1 Using CNN features as rich elementary features

In our framework, different types of elementary features can

be used to capture different visual characteristics of an im-

age region. Salient object detection aims to highlight ob-

jects that standout from background regions, which essen-

tially is a contrast modeling problem. Thus most of the pre-

vious saliency models define regional saliency based on the

regional contrasts of traditional low-level features, such as

color and texture. Although such low-level features may be

able to address relatively simple scenes, however for more

complex scenes they suffer from their limited robustness.

Therefore, here we propose to also combine deep learning

features from convolutional neural networks (CNN).

CNN-based deep learning features have been recently

applied to semantic-level vision tasks, e.g., image classi-

fication, object recognition and semantic segmentation, yet

they are rarely exploited in saliency detection domain. The

CNN generally consists of several convolutional layers and

fully-connected layers. Typically, the outputs of the last

layer of CNN are used as features in semantic-level tasks,

which makes sense for these applications because the last

layer carries the highest semantic information. However,

salient object detection focuses on highlighting salient ob-

jects from background, and does not need to assign seman-

tic labels to any objects. The semantic-sensitive last layer

may be insufficient for the low-semantic task. Therefore,

we propose to exploit all earlier hidden layers for saliency

evaluation.

Specifically, we use the CNN model of [11], which is

implemented based the architecture of [21] and contains

five convolutional layers and two fully connected layers.

The CNN parameters are trained from a large dataset of

the 2012 ImageNet large scale visual recognition challenge

with image-level annotations. The CNN model requires in-
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Figure 3. The outputs of each layer of CNN are used as features.

puts of a fixed 224× 224 pixel size. Therefore, for regional

feature extraction, we first warp the bounding box surround-

ing the target region to an image of size 224 × 224 and

subtract from it the mean of training images (for normaliza-

tion), then propagate it through the network. As illustrated

in Figure 3, each CNN hidden layer output vector is used

as a separate elementary feature, thus leading to 7 different

types of elementary features, {f1j , . . . , f
7
j }. These are com-

bined with traditional low-level elementary features as in

[17], which consist of LBP texture descriptors and color de-

scriptors ( mean of color values and color histograms from

RGB, HSV and Lab spaces).

3.3.2 Compact feature integration

Let {f1j , . . . , f
Q
j } denote the set of elementary features com-

puted for the target region Rj . Due to their high dimension-

ality, it is impractical to directly combine all of them into a

feature vector. Therefore, for a compact representation and

reasonable saliency evaluation, we compute local regional

contrasts and border regional contrasts for each elementary

feature type as follows.

The local regional contrasts evaluate dissimilarities be-

tween the target region Rj and its adjacent neighbors Nj in

terms of each elementary feature (including CNN features,

color features and texture features). The local contrast of

feature f
q
j (q = 1, . . . , Q) for region Rj is defined as

hl
j,q =

∑

n∈Nj

µnλnD(fqn, f
q
j ) (2)

where f
q
n denotes the feature of neighbor region Rn; D(·)

is a distance function; µn and λn are the normalized area

weight and spatial weight for neighbor region Rn, respec-

tively. The area weight µn is defined based on the assump-

tion that the larger neighboring regions have more contribu-

tions to compute the local contrast value hl
j,q , i.e.,

µn =
|Rn|∑

i∈Nj
|Ri|

(3)

Similarly, those neighboring regions more near to the target

region are assigned larger spatial weight λn, i.e.,

λn =
1/‖xn − xj‖2∑

i∈Nj
1/‖xi − xj‖2

(4)

where xj denote the centroid coordinates of target region

Rj ; xn and xi represent the centroid coordinates of neigh-

bor regions Rn and Ri, respectively. The distance function

D(·) in Eq. (2) is defined according to the used elementary

features. For example, the chi-squared distance is typically

a good choice for histogram-based features, while for most

other features, Euclidean distance can be used.

The border regional contrasts are defined based on the

observation in previous work [44] that background regions

generally connect with image borders while most object re-

gions do not connect with them. We compute the border re-

gional contrasts between target region Rj and bordering re-

gions Rb (b = 1, . . . , B) for each feature f
q
j . The border re-

gional contrasts may be computed by taking all the border-

ing regions as a whole or considering them independently.

In the former case, the bordering regions are grouped into a

single region Rg . Thus the contrast hb
j,q of the elementary

feature f
q
j from region Rj to bordering region Rg is defined

as

hb
j,q = D(fqg , f

q
j ) (5)

where f
q
g denotes the feature computed from region Rg . In

the latter case, the border regional contrast hb
j,q is computed

as the distance between the feature f
q
j and the feature aver-

age of all bordering regions, i.e.,

hb
j,q = D(fqj ,

1

B

B∑

b=1

f
q
b ) (6)

where f
q
b (b = 1, . . . , B) denotes the features of bordering

regions. In our experiments, Eq. (5) is applied to border re-

gional contrasts for color and texture features, while Eq. (6)

is used for CNN features. This is because the input to the

CNN model needs to be a rectangular image block, which

for the case of the grouped border region Rg would lead to

using an image block with a big empty region at its interior.

Last, as in [17], a regional property descriptor h
p
j , which

encodes geometric properties and the variances of the ele-

mentary features, is also included for region description.

To summarize, the basic regional feature hj of re-

gion Rj is a combination of local regional contrasts,

h
l
j = [hl

j,1; . . . ;h
l
j,Q], border regional contrasts, h

b
j =

[hb
j,1; . . . ;h

b
j,Q], and regional property descriptors h

p
j .

4. Saliency prediction through regression

With the HARF representation for each leaf region of

the binary segmentation tree, we cast salient object detec-

tion as a regression problem that predicts the saliency of a

region. For the regression, we used the AdaBoost algorithm

in our experiments due to its efficiency in both training and

testing. Such a method iteratively assembles weak decision

trees to generate a single composite strong learner. In this

case, given a set of training regions represented by HARF

{H1, . . . ,HT } along with their ground-truth labeling, we

learn a boosted regressor of the form

w(Hk) =
∑

u

αuTu(Hk) , (7)
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where αu and Tu(Hk) are the trained coefficient and the

weak decision tree, respectively. We use Eq.( 7) to obtain

the predicted score of the boosted regressor for a test region

Rk, represented by HARF descriptor Hk. For reasonable

saliency precision, we compute the saliency score sk of Rk

by further fitting the output of the boosted regressor into the

range of [0, 1] with a sigmoid function, i.e.,

sk =
1

1 + e−w(Hk)
(8)

5. Experiments

We performed an extensive evaluation of our method by

applying it to the most commonly used benchmark datasets

and by also comparing it to several state-of-the-art salient

object detection methods.

5.1. Datasets

We perform experiments on MSRA-B [27], PASCAL-

1500 [44] and SOD [32] datasets.

MSRA-B includes 5000 images, most of which contain a

single salient object from a variety of scenes. the manually

segmented ground truths provided by [17] are used for an

accurate evaluation. It should be noted that, the widely used

and relatively simpler ASD (or MSRA-1000) dataset [1] is

a subset of MSRA-B dataset. Thus ASD dataset is not in-

cluded for performance evaluation.

PASCAL-1500 includes 1500 images from PASCAL

VOC 2012 segmentation challenging [10]. Many images

in PASCAL-1500 contain multiple salient objects with var-

ious scales, locations and or highly clustered backgrounds,

which are challenging in salient object detection.

SOD contains 300 images from Berkeley segmentation

BSD300 [31] dataset. This dataset includes many images

with complex natural scenes making it challenging as well.

As in [17] we train our saliency model using the train-

ing set that contains 2500 images in MSRA-B dataset, split

by [17]. The trained model is then tested on all datasets.

5.2. Evaluation criteria

We adopt the most widely used precision-recall (PR) cri-

terion, where saliency maps, normalized into the range of

[0, 255], are binarized at each integer in the range of [0,255]

for computing precision and recall values, which are aver-

aged over all images in each dataset for saliency evaluation.

For quantitative evaluation, we also compute the maximal

F-measure of the average precision-recall curve, as in [4].

F-measure is a harmonic mean of precision and recall, and is

defined as Fβ = (1+β2)×precision×recall

β2precision+recall
, where β2 is set to

0.3 to emphasize on precision as previous works [1, 4, 41].

Furthermore, we also use the recently suggested mean

absolute error (MAE) criterion [33] between a continuous

saliency map S and the binary ground truth G for all pixels

xi, i.e.,

MAE =
1

|S|

∑

i

|S(xi)− G(xi)| (9)

where |S| denotes the number of pixels in the image.

5.3. Performance analysis for the proposed model

To analyze different configurations of the proposed ap-

proach as well as different baselines, we plot their gener-

ated PR curves on the three benchmark datasets in Figure 4

and show the Fβ scores and MAEs in Table 1. As one of the

baselines, we consider using the traditional features (includ-

ing color, texture and regional property) with our compact

feature integration scheme, but without HARF representa-

tion. As can be seen from the results, with the use of the

HARF1 or HARF2 description over the traditional features,

the PR curves on the three datasets are consistently elevated,

thus Fβ scores increase correspondingly (e.g., with HARF2

description, the Fβ on SOD dataset increases from 0.699 to

0.714). In Table 1, we can further observe the decrease of

MAEs thanks to the use of HARF (e.g., with HARF1 rep-

resentation, the MAE on MSRA-B decreases from 0.092 to

0.073).

We also validate the saliency performance for the combi-

nation of CNN and traditional features. In this case we ob-

serve that a higher performance is achieved by combining

the two types of features, compared to using one of them

only. With the HARF1 or HARF2 representation over the

CNN and traditional features, the performance of salient ob-

ject detection increases even further, yielding a substantial

improvement. Overall, compared to using traditional fea-

tures only, the full HARF1 (HARF2) description decreases

MAE by 20.6% (22.8%) and improves Fβ score by 5.6%

(4.6%) on average. The saliency maps generated for the

example image by using different configurations of the pro-

posed approach are shown in Figure 5. Clearly, the quality

of saliency maps is gradually improved as more components

are integrated.

To explore if the last two fully-connected layers of CNN

(which carry more semantic information than the lower

ones) contribute to salient object detection or not, we gen-

erate saliency results by using only the lower CNN layers

(layer 1 to 5) as well as all CNN layers (layer 1 to 7). From

Figure 4 and Table 1, we can directly see that using all CNN

layers achieves higher performance than using the lower

ones only, which validates the proposed CNN feature de-

scription for saliency detection.

To analyze the sensitivity of HARF construction with re-

spect to the number of super-regions in the segmentation

tree (parameter β), we compute the saliency performance

for increasing values of β. As shown in Figure 6, perfor-

mance is improved when β increases and almost reaches

saturation at value 7.
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Figure 4. PR curves of the proposed model using different configurations on MSRA-B, PASCAL-1500 and SOD datasets.

Configuration
MSRA-B PASCAL-1500 SOD

Fβ MAE Fβ MAE Fβ MAE

Traditional features (without HARF) 0.853 0.092 0.718 0.141 0.699 0.180

HARF1 over traditional features 0.864 0.073 0.732 0.121 0.706 0.162

HARF2 over traditional features 0.865 0.072 0.730 0.121 0.714 0.159

Lower CNN layers (layer 1 to layer 5) 0.747 0.211 0.573 0.295 0.531 0.321

All CNN layers (layer 1 to layer 7) 0.768 0.193 0.612 0.279 0.569 0.308

HARF2 over lower CNN layers 0.799 0.134 0.653 0.212 0.611 0.255

HARF2 over all CNN layers 0.811 0.130 0.672 0.209 0.634 0.246

CNN and traditional features (without HARF) 0.868 0.085 0.745 0.131 0.735 0.167

HARF1 over CNN and traditional features 0.878 0.067 0.760 0.112 0.759 0.149

HARF2 over CNN and traditional features 0.879 0.064 0.759 0.109 0.737 0.146

Table 1. Fβ (higher is better) and MAEs (smaller is better) of the proposed model using different configurations on the three datasets.
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Figure 5. Saliency maps generated by the proposed approach using

different configurations: (b) traditional features, (c) HARF1 over

traditional features, (d) HARF2 over traditional features, (e) CNN

and traditional features, (f) HARF1 over CNN and traditional fea-

tures, (g) HARF2 over CNN and traditional features.
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Figure 6. MAE on MSRA-B dataset by varying β for HARF2 con-

struction.

Run-time: Our current unoptimized MATLAB code for

the proposed model on a PC with a GTX Titan X GPU

(for CNN feature computation) and an Intel i5 3.2GHz CPU

(for all other components) takes around 30h for training and

22s for testing on an image of resolution 400 × 300. The

most time-consuming component is gPb region segmenta-

tion, which takes 17s on CPU while setting the resizing fac-

tor for eigenvector computation to 0.5. However, it can be

significantly accelerated by use of GPU computing [6].

5.4. Comparison to the state­of­the­art models

For performance comparison, the proposed approach is

compared to the top 6 models ranked in the recent bench-

mark report [4], including DRFI [17], RBD [43], DSR [24].

MC [15], HDCT [20] and HS [40], and ST model [28]

which is not covered in [4]. All the salient object detec-

tion results of the compared models are generated using the

authors’ implementations with their default parameters.

5.4.1 Quantitative comparison

The saliency performance of different models on the three

datasets is show in Figure 7 for PR curves and in Table 2 for

Fβ scores and MAEs. Obviously, all models achieve con-

siderable higher performance on MSRA-B dataset, com-

pared to the experiments on the other two more challenging

datasets. Moreover, the proposed approach whether using

HARF1 or HARF2 consistently outperforms previous mod-

els in terms of all criteria on each dataset. Notice that the PR

curves of the proposed model are always higher than oth-

ers at the top-right corners, which suggests that our model

highlights salient objects in a more complete manner thanks

to the HARF representation. Quantitatively, compared to

the best of the reference models, our proposed model with

HARF1 (HARF2) description increases Fβ score by 4.9%

(3.94%) and decreases MAE by 31% (32.8%) on average,

which is a very significant improvement.
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Figure 7. PR curves of different models on MSRA-B (left), PASCAL-1500 (middle) and SOD (right) datasets.
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Figure 8. Saliency maps generated by seven state-of-the-art models, and by the proposed model with HARF1 and HARF2 respectively.

Model
MSRA-B PASCAL-1500 SOD

Fβ MAE Fβ MAE Fβ MAE

HS 0.814 0.161 0.674 0.224 0.628 0.273

MC 0.827 0.144 0.690 0.194 0.649 0.244

HDCT 0.833 0.152 0.695 0.190 0.661 0.226

DSR 0.820 0.116 0.683 0.163 0.648 0.213

RBD 0.821 0.110 0.697 0.154 0.639 0.207

ST 0.844 0.129 0.708 0.178 0.663 0.229

DRFI 0.855 0.119 0.735 0.158 0.695 0.198

HARF1 0.878 0.067 0.760 0.112 0.759 0.149

HARF2 0.879 0.064 0.759 0.109 0.737 0.146

Table 2. Fβ scores (higher is better) and MAEs (smaller is better)

of different models on the three benchmark datasets.

5.4.2 Qualitative comparison

Figure 8 shows some saliency maps generated by different

models. These clearly demonstrate that the proposed model

outperforms other state-of-the-art models not only quanti-

tatively but also qualitatively. Based on these examples we

make the following observations:

Heterogeneous appearances: For some images con-

taining salient objects with heterogeneous appearances

(e.g., the first row), previous models tend to highlight only

part of salient regions, whereas the proposed model with

HARF1 or HARF2 representation is able to pop out the

whole salient object from background regions.

Low contrast: For some images showing low contrast

to salient objects (e.g., the 2nd row), the proposed model

can suppress irrelevant background regions and can high-

light salient objects that have more well-preserved bound-

aries compared to the other reference models.

Multiple salient objects: The proposed model generates

better looking saliency maps for those images containing

multiple salient objects (e.g., the last two rows).

6. Conclusion

We proposed a novel hierarchy-associated rich features

(HARF) construction framework, which incorporates vari-

ous elementary features from both the target region to be

described and super-regions in a segmentation hierarchy.

The HARF structure is able to represent the global con-

text of the whole salient object or background, which allows

much more robust and discriminative features. To enrich the

elementary features for HARF construction, multi-layered

deep learning features are introduced to complement tradi-

tional features. With regional contrast evaluation, all these

elementary features are effectively incorporated into the

proposed HARF framework. Based on the HARF repre-

sentation, regional saliency scores are estimated through a

boosted predictor. Experiments on the most widely used

and challenging benchmark datasets demonstrated that the

proposed approach substantially outperforms the state-of-

the-art salient object detection models both quantitatively

(over 31% MAE decrease) and qualitatively.
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