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Abstract

We introduce a novel method of video matting via sparse

and low-rank representation. Previous matting methods

[10, 9] introduced a nonlocal prior to estimate the alpha

matte and have achieved impressive results on some data.

However, on one hand, searching inadequate or excessive

samples may miss good samples or introduce noise; on the

other hand, it is difficult to construct consistent nonlocal

structures for pixels with similar features, yielding spatially

and temporally inconsistent video mattes. In this paper, we

proposed a novel video matting method to achieve spatially

and temporally consistent matting result. Toward this end, a

sparse and low-rank representation model is introduced to

pursue consistent nonlocal structures for pixels with similar

features. The sparse representation is used to adaptively

select best samples and accurately construct the nonlocal

structures for all pixels, while the low-rank representation

is used to globally ensure consistent nonlocal structures

for pixels with similar features. The two representations

are combined to generate consistent video mattes. Ex-

perimental results show that our method has achieved

high quality results in a variety of challenging examples

featuring illumination changes, feature ambiguity, topology

changes, transparency variation, dis-occlusion, fast motion

and motion blur.

1. Introduction

Video matting is to accurately extract a moving fore-

ground matte from an input video while avoiding spatial

and temporal artifacts. It is a fundamental and important

computer vision problem with many applications, including

hair modeling [7], dehazing [19] and so on. In the past few

years, various video matting methods [14, 3, 23, 25] have

been presented and achieved impressive matting results.

Despite of much progress on video matting, it is still

very challenging to achieve temporal consistency due to

topology variation, motion blur, transparency changing and
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dis-occlusion.

Most video matting methods use optical flow to generate

temporally consistent video mattes. However, optical flow

can not guarantee to estimate an accurate motion for videos

with complex scenes, resulting in temporal artifacts in video

matting. Methods [10, 9] introduce a nonlocal prior to

estimate the alpha matte. However, on one hand, searching

inadequate or excessive samples may miss good samples or

introduce noise; on the other hand, it is difficult to construct

consistent nonlocal structures for pixels with similar fea-

tures, yielding spatially and temporally inconsistent video

mattes.

In fact, the nonlocal prior proposed in [10, 25] implies

that nonlocal pixels with similar features are generated from

the same subspace. Thus these pixels can be represented

by several bases or atoms according to the sparse and low-

rank representations [35, 8, 39]. Accordingly, if we can

discover some subspaces that well represent the foreground

and background of all frames, and build the relationships

between pixels within the same subspace, the spatial and

temporal relationships between pixels would be obtained.

According to the analysis above, it is reasonable to

assume that pixels from the same object in different frames

are drawn from one identical low-rank feature subspace,

and all pixels in several successive frames lie on a union

of multiple subspaces. This assumption can be justified by

natural statistic and observations of videos. Therefore, if

each pixel can be represented as a linear combination of

atoms, we can pursue a low-rank and sparse representation

for all pixels. With the sparse constraint, each pixel in

the video will be only represented with several related

atoms, which in theory is consistent with the principle

of nonlocal matting methods [10, 9]. With the low rank

constraint, pixels with similar features in the same frame are

represented with the same atoms in a dictionary, thus spatial

consistency is achieved. Moreover, under this constraint,

pixels with similar features from successive frames are

represented with the same atoms too. Low-rank constraint

contributes to ensuring temporally consistent mattes.

In this paper, we propose a novel video matting method

via sparse and low-rank representation in this paper. With
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some sparse inputs on some key frames, we first learn a

dictionary which consists of two sub-dictionaries. These

two sub-dictionaries describe the contents of known fore-

ground and background regions in key frames, respectively.

With the learned dictionary, we then represent all pixels in

the input video while pursuing a low-rank and sparse repre-

sentation to obtain a coefficient matrix. Finally, coupled

with multi-frame Laplacian used for enhancing the local

smoothness of alpha values, the alpha matte of each frame

is solved.

The key contributions of this work include: 1) A novel

video matting method via sparse and low-rank representa-

tion is proposed. Our method achieves spatial and temporal

consistency and overcomes the matte artifacts caused by

topology changing, feature ambiguity and motion variation.

2) A novel dictionary learning algorithm is proposed to well

represent the foreground and the background regions in the

target video, which contributes to improving the matting

accuracy. We demonstrate the superior performance of our

method on standard databases by comparing with state-of-

the-art methods.

2. Related Work

In this section, we review only the most relevant works

to ours. A more comprehensive survey on image and video

matting can be found in [30].

Sparse Representation. In the past few years, the sparse

representation has been applied to the problem domain

of image processing, such as image super-resolution [37],

image and video denoising and inpainting [27], cross-style

image synthesis [33]. Sparse representations have also

been applied to face recognition [36], image background

modeling [6], and image classification [26]. More related

works can be found in the comprehensive surveys [35]

and [17]. Recently, Jubin et al. [20] proposed a sparse

coding image matting method, in which the sum of the

sparse codes of foreground pixels is regarded as the estimate

of the alpha matte. Different from this matting method

[20], our method further constraints that pixels with similar

features should have similar alpha values through low-rank

representation. Besides, instead of directly using all known

pixels as a dictionary for alpha matting, we propose to learn

a discriminative dictionary to better represent the pixels in

unknown regions.

Low-Rank Representation. Comparing to sparse repre-

sentation, low-rank representation has a better performance

in discovering global structures of data. The low-rank

representation can reveal the relationships of the samples:

the within-cluster affinities are dense while the between-

cluster affinities are all zeros. The low-rank representation

has been applied to many applications of image processing

including image denoising [34], face recognition [8], clas-

sification [39] and so on [28]. To the best of our knowledge,

no work, however, has applied the low-rank representation

to solve video matting problems, we adopt the low-rank

representation for video matting for the first time.

Video Matting. The effectiveness of existing video

matting methods is dependent on accurate optical flow or

special hardware systems. Chuang et al. [14] interpolated

the trimaps across the video by using forward and backward

optical flow. [22, 4] applied the optical flow to generate

the trimaps for each frame according to the trimaps of

key frames. Eisemann et al. [16] proposed a spectral

video matting method which warps matting components

using optical flow. Lee et al. [23] extended the robust

matting [31] into a temporally coherent video matting

method by using optical flow to define an anisotropic kernel.

Wang et al. [32] proposed a co-matting method which

propagates a trimap to other images by using the optical

flow. Affinity motion was introduced in [15, 25] to obtain

temporally consistent video mattes. Different from optical

flow based methods, hardware-assisted systems [21] focus

on automatically generating trimaps for all video frames.

Different from these methods, we apply the sparse and

low-rank representation to construct nonlocal structures for

pixels to solve video mattes. Our method is also related

to some image matting methods such as KNN matting

[10], Learning based image matting [12] and Closed-form

matting [24].

3. Sparse and Low-Rank Constraints

3.1. Sparsity on Matting

Chen et al. [10] proposed a nonlocal smooth prior guided

image matting method, which estimates the alpha value

of each pixel by preserving the nonlocal structure of each

pixel. Later, Chen et al. [9] proposed a KNN matting

which capitalizes on matching K nonlocal neighborhoods

for solving alpha matte. The basic idea of these two

nonlocal prior guided image matting methods is to search K
samples {xi}

K
i=1 to represent pixel j with a set of weights

{wi}
K
i . The estimated alpha value of pixel j is calculated

as αj =
∑K

i wiαi, and αi = 1 if pixel i is in foreground

regions, 0 otherwise. Obviously, the selected K nearest

samples for each pixel are sparse in the image, so the

nonlocal prior to image matting can be equally transformed

into a sparse representation problem. That is, the pixels in

known foreground and background regions of an image X

can be treated as the dictionary D, a corresponding sparse

code matrix W which subjects to X=DW can be calculated.

As a result, the alpha value of each pixel j in unknown

regions can be estimated according to the corresponding

sparse codes Wj ∈ W, namely, αj =
∑

i Wi
jδ(Di),

δ(Di) = 1 if Di represents foreground, 0 otherwise.

Specifically, let Xi represent the image i in RGBXY

space, if the appropriate dictionary D representing known
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Figure 1. It is difficult to get good nonlocal structures by using previous methods [9, 10]. In the first row, the matting results are obtained

with recommended parameter K by these two methods. In the second row, a large K is required to capture the more information by [10].

The last column shows the result by our method.

pixels is available, the KNN searching problem in matting

can be defined as such a sparse representation problem,

arg
Wi

min ||Xi − DWi||0 + ||Wi||0, (1)

where || • ||0 denotes zero-norm, which is used to count

the number of non-zero entries in representation matrix

Wi. The atoms in D corresponding to non-zero weights

in Wi are the expected samples. The sum of those weights

corresponding to foreground atoms is the estimated alpha

matte.

The sparsity constraint can benefit the sample selection

for matting. Previous methods [10, 9] fixed the number

of nearest neighbors during samples searching, which may

result in bad mattes for some images. As shown in

Figure 1, for methods [10, 9], inadequate neighbors will

result in incorrect alpha values for some pixels, while

excessive neighbors will introduce noise. In comparison,

by applying the sparse representation, best samples which

could reconstruct each pixel can be selected for alpha

estimation. Moreover, appropriate number of samples for

each pixel can be automatically computed, and the number

of samples for different pixels can be different, which

helps to remove noise while improving accuracy of alpha

estimation, yielding good results.

3.2. Low­Rankness on Matting

In image matting, a good matting result expects that

pixels with similar features have similar alpha values. Ac-

cording to the nonlcoal image matting methods [10, 9], pix-

els with similar features are expected to be represented by

K similar neighbors, so they should have similar nonlocal

structures in a feature space. Such nonlocal structure con-

straints in sparse representation require pixels with similar

features to have similar representations over the learned

dictionary. As a result, the representation matrix Wi in

Eq. (1) is expected to be low-rank. The sparse and low-rank

constraint is defined as,

arg
Wi

min ||Xi − DWi||0 + ||Wi||0 + ||Wi||∗, (2)

where the || • ||∗ denotes the matrix nuclear norm, which is

used to find lowest possible rank of a matrix.

Analogously, we can get similar conclusion on video

matting. Since frames in a video shot usually describe the

same scene, all frames {X1, ...,Xn} in a video shot lie

on low-dimensional subspaces [35], too. Therefore,

the concatenation of corresponding representation

matrixes {W1,W2, ...,Wn} over the dictionary D is

expected to be low-rank. The representation matrix

W = {W1,W2, ...,Wn} can be obtained by minimizing

min

n
∑

i

(||Xi − DWi||0 + ||Wi||0) + ||W||∗,

∀p, q, (wi)p,q ∈ Wi, s.t. (wi)p,q >= 0.

(3)

where the (wi)p,q represents the response of pixel q in ith
frame over pth atom in dictionary D, and the non-negative

constraint on (wi)p,q is set to avoid generating negative

alpha values. Let t denote the number of atoms in learned

dictionary D, n represent the number of frames and m
represent the number of pixels in a frame, the W in Equation
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3.3. Optimization

To solve the Equation 3, we first convert it into the

following equivalent problem:

min
n
∑

i

(||Wi||1 + λ||Ei||1) + γ||W ||∗

s.t. Xi = DSi + Ei; Wi = Ji;
Wi = Si; Wi = Ti, Ti >= 0.

(4)

where the parameters Ji, Si, Ti are auxiliary variables used

to solve this equation. Specifically, this energy function can

be solved with the inexact augmented Lagrange multiplier

method or alternating direction method (ADM) [29], which

equivalents to minimize the following augmented Lagrange

function:

min(γ||W ||∗ +

n
∑

i

(||Ji||1 + λ||Ei||1) +

n
∑

i

(〈Ai,Wi − Ji〉

+ 〈Yi, Xi −DSi − Ei〉+ 〈Vi,Wi − Si〉+ 〈Ui,Wi − Ti〉

+
µ

2
||Xi −DSi − Ei||

2
F +

µ

2
||Wi − Ji||

2
F

+
µ

2
||Wi − Si||

2
F +

µ

2
||Wi − Ti||

2
F ))

where A1, ..., An, Y1, ..., Yn, V1, ..., Vn, U1, ..., Un are La-

grange multipliers, and µ > 0 is a penalty parameter.

The inexact ALM method for this equation is outlined in

Algorithm 1. Note that the sub-problems of the algorithm

are convex and they all have closed-form solutions.

4. Video Matting

Since the obtained representation matrix W encodes the

spatially and temporally consistent nonlocal structures for

all pixels, the nonlocal structures hold for alpha values of

all pixels according to [10, 25]. To get the representation

matrix of the input video, we first learn a dictionary,

which consists of two sub-dictionaries, from known fore-

ground and background regions in key frames. With the

obtained representation matrix, we construct the nonlocal

relationships between alpha values to enhance temporal

consistency. Finally, we extend the matting Laplacian

to multi-frame matting Laplacian to enhance the local

smoothness of alpha values.

Algorithm 1 Optimization of problem (4) by ADM.

Input: Data {Xi}, dictionary D, parameters λ and γ.

Initialize: A = U = V = Y = 0, S = T = J =
0, µ = 10−6.

while not converged do

1. Fix the others and update J1, ..., Jn by

Ji = argmin
Ji

1

µ
||Ji||1 +

1

2
||Ji − (Wi +

Ai

µ
)||2F .

2. Fix the others and update S1, ..., Sn by

Si = (DTD + I)−1(DT (Xi − Ei) +Wi

+
(DTYi + Vi)

µ
).

3. Fix the others and update T1, ..., Tn by

Ti = Wi +
Ui

µ
, Ti = max(Ti, 0).

4. Fix the others and update W by

W = argmin
W

γ

2µ
||W ||∗ +

1

2
||W −M ||2F .

where M is a matrix formed as follows:

M = [F1, F2, ..., Fn],

in which Fi =
1
3 (Ji + Si + Ti −

(Ai+Vi+Ui)
µ

).
5. Fix the others and update the E1, ..., En by

Ei = argmin
Ei

λ

µ
||Ei||1+

1

2
||Ei−(Xi−DSi+

Yi

µ
)||2F .

6. Update the multipliers

Ai = Ai + µ(Wi − Ji),

Yi = Yi + µ(Xi −DSi − Ei),

Vi = Vi + µ(Wi − Si),

Ui = Ui + µ(Wi − Ti).

7. Update µ by µ = min(1.1µ, 1010).
(ρ=1.9 in all experiments).

8. Check the convergence condition: Xi−DSi−Ei →
0, Wi − Ji → 0, Wi − Si → 0 and Wi − Ti → 0.

end while

return W .

4.1. Discriminative Dictionary Learning

A dictionary D, which consists of two sub-dictionaries

{Df ,Db}, is first learned from the users labeled key frames
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to represent the target video. Besides D is required to have

powerful reconstruction ability, a good dictionary D should

have powerful discriminative ability. The discriminative

ability of the dictionary D means that the corresponding

sub-dictionary has good representation ability to the associ-

ated class while poor representation ability for other classes.

Accordingly, the within-class weights in the representation

matrix should be non-zero while the between-class weights

should be all zeros. The rationality of this assumption for

D attributes to the fact that most alpha values of pixels are

1 in foreground, while 0 in background. According to the

fact that the alpha value of a pixel is proportional to the sum

of corresponding coding coefficients over D, a dictionary

D with powerful discriminative capability is expected to

learned to achieve a better matting result.
Let Xf and Xb denote the pixels from foreground and

background in selected key frames, respectively. Let Zf =

{Z
f
f ,Zb

f} denote the coefficient matrix representing Xf

over D, and Zb = {Z
f
b ,Zb

b} denote the coefficient matrix

representing Xb over D. {Z
j
i |i, j = f, b} is the coding coef-

ficient of Xi over the sub-dictionary Dj . The discriminative
dictionary learning model is defined as,

min
(D,Zi)

∑

i

(||Xi − DZi||
2
F + ||Xi − DiZ

i
i||

2
F +

∑

j 6=i

||DjZ
j
i ||

2
F ), (5)

where the first two terms are reconstruction terms, which

expects that the Xi should be well represented by the

dictionary D and corresponding sub-dictionary Di. The

last term constrains that the coefficients Z
j
i of Xi over sub-

dictionary Dj should approach to zero, such that ||DjZ
j
i ||

2
F

is small. The Eq. (5) can be solved by using the quadratic

programming algorithm [38].

Figure 2 shows a comparison between using and without

using the discrimination constraint for matting. The matte

Iα = Zf ∗ 1+Zb ∗ 0. Figure 2 (b) is the matting result with

the represent matrix of the learned dictionary without using

discrimination constraint, wherein the alpha values of some

pixels in background regions are incorrectly estimated.

This is because some pixels in background are represented

by some atoms in foreground subdictionary Df , which

results in lots of positive corresponding sparse codes in Z
f
b ,

yielding incorrect alpha values. In contrast, by considering

the discrimination constraint during dictionary learning, our

method can correctly distinguish the foreground from the

background, leading to an accurate alpha matte, as shown

in Figure 2 (c).

4.2. Temporally matting

Nonlocal Structure. Given the dictionary

D = {Df ,Db} with discriminative ability, we construct the

nonlocal low-rank and sparse relationships between pixels

for video matting. Specifically, given a video with n frames

{X1, ...,Xn}, we obtain the nonlocal low-rank and sparse

Figure 2. Comparison between using and without using discrim-

ination constraint for dictionary learning. (a) is the target scene,

(b) is the matting result with representation matrix of the learned

dictionary without using discrimination constraint, (c) is the result

obtained by using our discriminative dictionary.

Figure 3. Multiframe local matting Laplacian. The 2m×2m

matting Laplacian encodes the relationships across successive two

frames to enhance local smoothness.

relationship W = {W1,W2, ...,Wn} between all pixels by

using Equation 3. The nonlocal relationships are used to

measure the affinities for all alpha values of corresponding

pixels, which is defined as,

min

n
∑

i

m
∑

j

(αij − αDwij)
2, (6)

where αij represents the alpha value of the pixel j in ith
frame, m denotes the number of pixels in a frame, and

αD = {αf , αb} represents the alpha values of all atoms

in dictionary D. αf = 1 for the corresponding atoms in

foreground sub-dictionary, and αb = 0 for the all atoms in

background sub-dictionary. wij = [(wi)1,j , ..., (wi)t,j ]
T is

the jth column weights vector in Wi ⊂ W.
Multi-frame Local Laplacian. As pointed out by Chen

et al. [11], nonlocal prior alone for image matting will fail in
capturing local structures of semitransparent objects, result-
ing in spatial incoherent matting results. By combining the
nonlocal prior with the local Laplacian, good results will be
obtained. We thus are inspired to extend the image matting
Laplacian to multi-frame Laplacian to complement the
nonlocal structure for video matting. Specifically, following
the principles in previous works [25, 13], we assume that
the color line model for a local 3 × 3 window also holds
for a 3× 3× 2 cube formed with pixels in two consecutive
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Figure 4. Comparisons with [5, 9, 24] on the video city. This example demonstrates that our matting method can handle illumination

changes and feature ambiguity.

frames, as shown in Figure 3. Therefore, for the pixel i and

j in a cube ck, the multi-frame local Laplacian Wmlap
ij is

defined as,

W
mlap
ij = δ

(i,j)∈ck
∑

k

1 + (Ci − µk)
(
∑

k
+ ǫ

18
I
)−1

(Cj − µk)

18
. (7)

Here, the parameter δ controls the strength of the local

smoothness. µk and
∑

k represent the color mean and

variance in each cube. ǫ is a regularization coefficient which

is set to 10−5. Ci is the feature of pixel i. Our cube size is

fixed as 3× 3× 2 for all examples.

Closed-form Solution. Pixels with known alpha values

{gi} from the trimap and dictionary D are first collected

to form a subset S. The energy function for solving alpha

values for the input video is defined as:

E = λ
∑

i∈S

(αi − gi)
2
+

n
∑

i=1

m
∑

j=1

(αij − αDwij)
2

+

n
∑

i=1

m
∑

j=1

(
∑

k∈Nj

Wmlap
jk (αij − αk))

2

(8)

where the set Nj is the set of neighbors of the pixel j,

including neighboring pixels in 3×3 × 2 cube. Equation

8 can be further rewritten into a matrix form as:

E = (α−G)
T
Λ (α−G) + αTLα, (9)

in which

L =

[

LD −W

−WT Lu

]

(10)

Here, W is the representation matrix for the video, and

LD = W ∗ WT . Lu is a block diagonal matrix consisting

of multi-frame Laplacian matrixes for all frames, namely,

Lu = diag(L1
u; ...;L

n
u). The matrix L is symmetric and

can be solved with the Nystrom method [18].

The Equation 10 is a quadratic function about α, which

can be minimized by solving the linear equation in closed-

form solution:

(Λ + L)α = ΛG. (11)

In fact, instead of solving the alpha values for all frames,

we can reduce to solve only two successive frames at a time.

In this way, the alpha mattes of next coming frames are

solved progressively along the time axis until all frames are

processed. The 2-frame affinity matrix is effective to ensure

temporal information, since both forward and backward

affinities are taken into consideration when defining Lu.

Moreover, comparing to solving all frames, a matrix of size

2m × 2m is built, where m is the total number of pixels to

be processed in one frame, which will drastically reduce the

running time and memory consumption.

5. Experiment

We demonstrate our method on various videos and com-

pare it to state-of-the-art methods to show the effectiveness

achieved by our video matting method. Due to space

limitations, we are only able to show selected results in the

paper as a demonstration. More results can be found in the

supplementary material.

We compare our method to KNN matting [9], Close-

formed matting [24], and Video Snapcut [5] to demonstrate

the performance of our method. For fairly comparing the

matting performance, we use the professional datasets for

video matting [1] and image matting [2] to perform com-

parison. Each test video in this dataset is coupled with cor-
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Figure 5. Comparisons with [5, 9, 24] on the video snow. This example demonstrates that our method can handle transparency variation.

responding temporally consistent trimaps (the groundtruth

is not publicly available).

5.1. Qualitative Comparison

Illumination changes and feature ambiguity. As

shown in Figure 4 (a), when the illumination is changing

over the sequence, low contrast and feature ambiguous

regions around objects will arise, feature based nearest

neighbors searching will result in an inaccurate estimation

of alpha mattes for the foreground, as the results shown

in Figure 4 (c) produced by [9]. Local smoothness priors

alone results in blurry and unclear boundaries, as the results

shown in Figure 4 (b) (d) generated by [5, 24]. Figure 4 (e)

by our method shows that sparse and low-rank constraints

are effective in constructing consistent and good nonlocal

structures, thus producing better results in the presence of

illumination changes and feature ambiguity.

Transparency variation. Transparency variation of

the foreground will result in large variation of feature

values for the corresponding pixels in different frames,

yielding incorrect mattes and temporal incoherence in video

matting, as the results by [5, 9, 24] shown in Figure 5. In

contrast, our method is robust to the transparency variation

and achieves an accurate and temporally consistent video

matting result.

Dis-occlusion and Changing topology. Figure 6

demonstrates that our method is able to handle dis-

occlusion via obtaining best nonlocal atoms from learned

dictionary. In comparison, video snapcut [5] fails in

distinguishing background from the foreground when

topology changes, resulting in a bad video matte, as the

matting result on frame 137 shown in Figure 6.

Shape changes. Figure 7 demonstrates that our method

can handle shape changes via sparse and low-rank con-

straints. KNN matting [9] produces a spatially inconsistent

result in which alpha value of some pixels in foreground are

estimated incorrectly, Snapcut [5] generates temporally in-

consistent mattes, as shown in Figure 7 (b)(c), respectively.

Our method generates a spatially and temporally consistent

video matte, as shown in Figure 7 (d).

Figure 6. Comparisons with [5] on the video slava. This

example demonstrates that our method can handle dis-occlusion

and topology changes.

Figure 7. Comparisons with [9, 5] on the video concert. This

example demonstrates that our method can handle shape changes.

Fast motion and motion blur. Figure 8 shows an ex-

ample to demonstrate the ability of our method on handling

the foreground with fast motion and motion blur. In this

example, the woman repeatedly and briskly swings her arm

up and down, and thus generating large motion blur. The

ability of KNN matting [9] degrades so greatly for this case

that it is hard to extract the regions between foreground

and background. Our method works well in this complex

situation.

Sparse inputs. Our method can generate spatially

and temporally consistent matting results with limited user

interactions. As shown in Figure 9, we only treat the first

frame as the only keyframe with a sparse trimap, and run our

method automatically on the other frames without any user

interaction. Our method generates the temporally consistent

results while the Snapcut [5] fails to accurately extract the

foreground object with the sparse inputs.
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Figure 8. Comparisons with [9] on the video rain. This example

demonstrates that our method can handle fast motion and motion

blur.

Figure 9. Comparisons with [5] when using sparse inputs. Only

strokes on the first frame are input and our method gets a better

matting result.

5.2. Quantitative Comparison

We perform quantitative comparison to evaluate tem-

poral coherence, by measuring differences in alpha values

between successive frames according to [23]. The measure

of the difference dif(i) for the ith pixel in tth frame is

defined as,

dif(i) =
αi(t+ 1)− αi(t)

Ii(t+ 1)− Ii(t)
,

where the αi(t) represents the alpha value of ith pixel in tth
frame, and its RGB color feature is denoted by Ii(t+ 1).

Table 1 shows the comparisons between our matting

method and the KNN matting [9], video snapcut [5], and

Closed-Form matting [24] on five videos. These five videos

are city, concert, snow, slava, and rain. Obviously, our

method generates more coherent results on each video than

previous methods. Here, due to space limited, we only show

the average alpha difference
∑n

t=1

∑m
i=1 dif(i)/(m∗n) of

the whole video. The difference of alpha values frame by

frame can be found in our supplementary file.

We also use the benchmark database for image matting

to evaluate the performance of our method [2]. Our method

ranks first according to the measurement of gradient error,

ranks fifth and sixth according to connectivity error and

MSE, respectively, and ranks tenth according to the SAD.

KNN [9] Snapcut[5] Closed-form[24] Ours

city 0.2677 0.1466 0.1507 0.1391

concert 0.0440 0.0345 0.0337 0.0243

snow 0.4362 0.3972 0.8724 0.2578

slava 0.1422 0.1374 0.1335 0.0947

rain 0.6627 0.8626 0.9538 0.2560

Table 1. Comparisons of error rates of different methods on five

videos.

Figure 10. Quantitative evaluation of our method and the methods

of KNN matting [9], Closed-form matting [24] and nonlocal

smooth prior guided image matting [10].

Our method is promising to get better performance by

using some pre-optimization or post-optimization, as some

previous methods did. We compare the quantitative error

of our work with some related image matting methods

(including KNN mating [9], Closed-form matting [24]

and nonlocal smooth prior guided image matting [10]) in

Figure 10. Our method generates smallest errors.

6. Conclusion

In this paper, we proposed a novel video matting method

via sparse and low-rank representation. We are the first to

apply sparse and low-rank representation to construct con-

sistent non-local structures for pixels from different frames.

Our method generates spatially and temporally consistent

video matting results, and alleviated the interactions for

users. Comparisons on standard benchmark databases show

that our work outperforms state-of-the-art methods.
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