
 

 

 
Abstract 

 
A scalable open systems and standards derived software 

ecosystem is described for computer vision analytics (CVA) 

assisted exploitation of full motion video (FMV).  The 

ecosystem, referred to as the Advanced Video Activity 

Analytics (AVAA), has two instantiations, one for size, 

weight, and power (SWAP) constrained conditions, and the 

other for large to massive cloud based configurations.  The 

architecture is designed to meet operational analyst 

requirements to increase their productivity and accuracy 

for exploiting FMV using local cluster or scalable cloud-

based computing resources.  CVAs are encapsulated within 

a software plug-in architecture and FMV processing 

pipelines are constructed by combining these plug-ins to 

accomplish analytical tasks and manage provenance of 

processing history.  An example pipeline for real-time 

motion detection and moving object characterization using 

the flux tensor approach is presented.  An example video 

ingest experiment is described.  Quantitative and 

qualitative methods for human factors engineering (HFE) 

assessment to evaluate cognitive loads for alternative work 

flow design choices are discussed.   This HFE process is 

used for validating that an AVAA system instantiation with 

candidate workflow pipelines meets CVA assisted FMV 

exploitation operational goals for specific analyst 

workflows.  AVAA offers a new framework for video 

understanding at scale for large enterprise applications in 

the government and commercial sectors. 

1. Introduction 
Armed forces and police agencies across the world have 

made a significant in-vestment in fielding a wide variety of 
full-motion video (FMV) electro-optical and infrared 
sensors to provide superior situational awareness and 
surveillance.  These sensors collect an increasingly 
unmanageable amount of data, up to terabytes per hour 
from a single wide area motion imagery sensor. Even with 

conventional FMV sensors, the data being produced often 
far exceeds the manpower available to manually exploit the 
data.  

While automated computer vision algorithms exist, the 
software solutions are often proprietary, fragmented, 
incompatible, and unable to work at scale on massive data 
sets. Motion imagery is a rapidly developing technology 
area that has the potential for providing unprecedented 
situational awareness and intelligence information to 
warfighters in the field.  This potential as yet is far from 
being fully tapped.  A great many motion imagery sensor 
systems are “stove-piped.”  That is, they are vertically but 
not horizontally integrated.  Video from the field can only 
reach operators and analysts with immediate access to their 
control stations and operators with remote viewing 
receivers.  Also, many motion imagery transmission data 
formats do not adhere to established standards.  This greatly 
inhibits interoperability for data sharing and analysis since 
custom non-standard interfaces must be provided.  In 
addition (but by no means intended to be inclusive of all 
issues), the volume of anticipated motion imagery data in 
future systems will, if not so already, over-whelm operators 
and analysts especially as new sensors and systems such as 
body-worn cameras are widely deployed [1].  Motion 
imagery data processing exploitation tools must be 
provided to allow operators and analysts to deal with the 
volume of motion imagery data and to provide actionable 
outputs.  Organizations invest vast amounts of resources to 
address their unique imagery exploitation needs.   It is very 
difficult to collaborate on these efforts or share new 
capabilities and algorithms that have been built by other 
groups. 

1.1.  High Level Requirements for a Full Motion 
Video (FMV) Computer Vision Analytics 
Assisted Exploitation Architecture 

Most instantiations of a FMV computer vision analytic 
aided exploitation architecture will be as a component in an 
integrated system that will enable the information extracted 
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from the FMV data to be combined with information from 
other systems in order to produce knowledge and context 
[2]. Many electro optical infrared (EO-IR) FMV sensors for 
military and surveillance applications will have a size, 
weight, and power (SWAP) constrained computer system 
on a disadvantaged network for operators to control the 
sensors.  The former, larger architecture, has forensic 
exploitation as a focus, whilst the latter has near real-time 
(e.g., low exploitation latency relative to the frame rate of 
the sensor), typically defined as less than 200 ms for a 
complete computer vision analytic stream processing 
pipeline. This is the upper temporal latency limit where 
humans may maintain control of the sensor without 
experiencing a high cognitive burden and frustration level. 

The operational goals for a FMV computer vision aided 
exploitation architecture, relative to conventional manual 
exploitation, are: 

1. Reduce the human factors burden for exploiting FMV 
to extract information from geo-spatially disperse and 
temporally rare low observable activities of interest in 
a high clutter environment. 

2. Increase the amount of FMV data that may be 
exploited per unit of human labor. 

3. Increase the rate of actionable intelligence produced 
from FMV exploitation. 

4. Facilitate the use of FMV exploitation into a multi data 
source exploitation environment. 

The high level operational requirements above result in a 
series of implicit technical requirements that define the 
resulting material solution architecture towards: 

1. An open architecture with open and extensible 
application programming interfaces. 

2. An open and extensible data model for the information 
extracted from the FMV data. 

3. An open compartmentalized computer vision analytic 
plug-in architecture to encapsulate unique intellectual 
property associated with many computer vision 
analytics. 

4. Compliance with relevant industry standards (e.g., 
Motion Imagery Standards Board [MISB], NATO 
Standardization Agreement [STANAG], World Wide 
Web Consortium [W3C]), and industry best 
engineering practices (e.g., Representational State 
Transfer [REST]). 

2.  A Scalable FMV Computer Vision Analytics 
Assisted Exploitation Architecture 

The architecture developed to meet the requirements in 
Section 2.1 is the Advanced Video Activity Analytics 
(AVAA).  The principal sub-components of this 
architecture are: 

1. The Video Processing and Exploitation Framework 
(VPEF) with VBench and VProfiler. 

2. The VPEF Distribution Server and Client (VDSC). 
3. The Video Data Model (VDM). 

4. The VDM Annotation Web Service (VAWS). 
The sub-sections below describe AVAA and its sub-

components in more detail. 

2.1. AVAA 

AVAA is instantiated in both a large, scalable cloud and 
a small system virtual machine architecture.  Table 1 and 
Table 2 list the external software dependencies for both 
AVAA instantiations.  

Figure 1 shows sub-component processing flow 
diagrams of the AVAA architecture for ingest (a); on 
demand computer vision analytic processing (b); and 
querying the enriched analytic results (c).  In Figure 1a, 
upon ingest, the files are placed in a directory or the streams 
are passed directly to the VDSC.  The original files and 
streams are written either to the Hadoop Distributed File 
System (HDFS) or the VM filesystem.  The VDSC sends 
the files and streams to the AVAA clients for both 
transcoding to MP4 format, using H.264/AVC 
compression, compliant to MISB RP 0802.2, and for 
performing the ingest pipelines.  The analytic data from the 
ingest pipelines are written to the VDM.  The VAWS 
exposes the original videos, transcoded videos, and the 
analytic data to external systems and user interfaces. On 
demand processing (Figure 1b) is launched through the web 
service where the VDSC brokers the requested pipelines, 
unique pipeline configuration parameters, and selected files 
to the system clients.  Querying the system (Figure 1c) 
occurs through VAWS, which executes W3C and OGC 
compliant SPARQL and GeoSPARQL queries to the VDM 
and returns the query results and associated videos. 

2.2. VPEF Distribution Server and Client (VDSC) 

The VPEF Distribution Server and Client is responsible 

Table 1: AVAA Cloud Instantiation Software Dependencies 
Component Version 
Accumulo  1.5.0 
CentOS Linux 64 bit 6.5 
Hadoop 2.0.0 
httpd main proxy 2.4.10 
JBoss 7.2.0 
Puppet 2.7.22 
RabbitMQ 3.2.2 
Zookeeper   3.4.5 

Table 2: AVAA Small system instantiation software 
dependencies 

Component Version 
CentOS Linux 64 bit 6.5 
Hibernate-release 4.3 
Hibernate-spatial  4.3 
JBoss 7.2.0 
Postgis2_93   2.1 
Postgresql 9.3 
RabbitMQ-server 3.5 
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for managing the cluster of virtual machine and cloud nodes 
that are running VPEF.  It is based on the RabbitMQ open 
source enterprise middleware message broker. FMV file 
and stream ingest requests are passed through RabbitMQ, 
where the requested VPEF pipelines to perform ingest and 
on-demand processing are managed. 

2.3.  Video Processing and Exploitation Framework  

The agile, modular based architecture of VPEF greatly 
facilitates the construction of pipelines to achieve the 
operational objectives for computer vision analytic assisted 
FMV exploitation. VPEF is based on the open source 
GStreamer 0.10.35.0 baseline [3], with enhancements and 
plug-ins to process MISB standards compliant metadata, 
perform utility operations, sub-component APIs, and helper 
applications to facilitate the development, optimization, 
and configuration of complex stream pipelines, and create 
JavaBeans class compliant pipelines that are distributed 
among the nodes for execution via the VDSC.  VPEF 
compartmentalizes computer vision analytics as plug-ins 
with standardized inputs (sinks) and outputs (sources).  
VPEF outputs (sources) from a pipeline include 
annotations, camera transformations, overlays, salient 
regions, objects, and image chips.  VPEF enables 
standardization, integration, and parallelization of 
computer vision algorithms, thereby making them 
interoperable and testable.  

Numerous automated computer vision algorithms, 
including FMV preprocessing, filtering, super-resolution, 
image-registration, metadata correction (such as camera 
pose), precise geo-registration, image quality and 
interpretability measurement, object detection and 
classification, object tracking, face detection and 
recognition, optical character recognition, scene 
classification, overlay masking, event and activity detection 
are being matured and integrated as plug-ins into VPEF.  
Macro level operations such as video shot detections, 
summarization, etc., are realized using two or more of these 
modules, with localized shared-context buffers. The VPEF 
2.0 Beta 3.6 release contains 935 plug-ins, and an additional 
85 or so advanced computer vision and metadata processing 
plug-ins from commercial, government, and academic 
sources are under current development; but it is expected 
that not all of them will pass the rigorous software 
engineering tests to be verified and integrated into the 
AVAA environment.  

VPEF uses industry and government accepted standards 
whenever possible, and extends these standards when 
required to meet performance objectives.  Table 3 shows 
the current list of standards supported by VPEF. 

VPEF has two important developmental applications, 
VBench and VProfiler.  VBench is a GUI for creating, 
debugging, and tuning pipelines of plug-ins that extract 
information in FMV and enhance and correct the metadata. 

VProfiler provides a GUI based tool for determining 
processing latency at the plug-in granularity. Figure 2 
shows an example VBench display of a VPEF pipeline 
using the Flux Tensor and Blob Extractor plug-ins [4]. The 
flux tensor motion detection algorithm is a computational 
vision technique for robustly detecting moving objects in 
cluttered scenes using a temporal variation extension of the 
optical flow constraint equation. The implementation uses 
the trace of the flux tensor matrix and is computed using 
windowed integration kernels as, 

where Ixt, Iyt and Itt are spatiotemporal partial derivatives of 
the image and W(x-y) is the local smoothing kernel for the 
integration operator [5-7].  The flux tensor has been 
extended with a split Gaussian approach to detect very slow 
moving and stopped objects [8].  The flux tensor can also 

(1)

 
(a) 

 
(b) 

 
 (c) 

Figure 1: (a) Processing schematic for the ingest process; (b) 
Processing schematic for on demand FMV exploitation; and 
(c) Processing schematic for querying the analytic results.
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be incorporated as part of motion plus appearance-based 
object tracking algorithms for aerial and ground-based 
FMV [9-12].  

Both VPEF and VBench in combination produce a more 
powerful environment to rapidly prototype a task flow, 
using an ecosystem of algorithmically diverse, functionally 
similar modules. Higher level composition allows for 
competing methods to be concurrently tried, and reconciled 
downstream.  VPEF is being used to develop a near real-
time on the move multi-sensor exploitation system [13]. 

2.4.  Video Data Model (VDM) 

The design of the VDM facilitates the incorporation of 
FMV exploitation products in a multi-source exploitation 
computing environment.  

The outputs from VPEF pipelines are written in AVAA 
to the VDM as Resource Description Framework (RDF) 
V1.1 triples [14].  The VDM itself is implemented either in 
an object - relational database, for the small computer 
system implementation, or as entries into an Accumulo 
column store for the cloud architecture instantiation.  The 
VDM uses the motion imagery ontology, compliant to the 
web ontology language (OWL) specification, and is 
hierarchically mapped to the Actionable Intelligence 
Retrieval System (AIRS) as a domain-specific ontology 
[15].  The AIRS set of ontologies contains the Basic Formal 
Ontologies [16].  The taxonomy of the motion imagery 
ontology is shown in Figure 3.  The brown lines pointing to 
the observer box in Figure 3 illustrate an important concept 
for a data model to support CVAs.  CVA pipelines that are 
not robust, or with improperly adjusted object detection 
analytic parameters, or applied to ill-suiting FMV content, 
will potentially generate a large number of VDM entries of 
little or no value.  The combination of CVA suggested, and 
analyst confirmed objects reduce this clutter to a potentially 

manageable level. 

2.5. VDM Annotation Web Service (VAWS) 

VAWS is an extensible representative state transfer 
(REST) interface with an application programming 
interface. VAWS calls are the means by which external 
systems and user interfaces interact with the AVAA 
architecture.  Table 4 lists the services currently available 
through VAWS. 

3. Implementation Results  
An instantiation of the AVAA architecture is sized 

according to the number of FMV streams it is required to 
ingest, and the amount of FMV to be stored, the peak 
number of analysts that will be using the system, and the 
workflows that will be typically executed.  A thorough 
analysis of the architecture performance is required to 
develop the engineering data to support instantiation sizing, 
including individual plug-in latencies, pipeline latencies, 
CVA plug-in and composite pipe-line accuracies, errors, 
and confidence levels as a function of input data quality and 
FMV scene conditions.  Thorough human factors 

Table 3: Standards supported by VPEF 
Standard Description 
MISB 0102.11 Security Metadata Universal and Local 

Sets for Digital Motion Imagery 
MISB RP104 Predator Metadata Set 
MISB RP210  SMPTE Metadata Set 
MISB 0601.8 Unmanned Aerial System (UAS) 

Datalink Local Set 
MISB 0602.4   Annotation Metadata Set 
MISB 0801.5 Photogrammetry Metadata Set for 

Digital Motion Imagery 
MISB 0901.2 Video-National Imagery  

Interpretability Rating Scale (VNIIRS) 
NITF 2.1 PRI Portable Reference Image 
STANAG 4676 V1 NATO ISR Tracking Standard  

 
Figure 2: VBench GUI of a pipeline using the Flux Tensor [4 - 7] 
and Blob Extractor VPEF plug-ins.  The real-time plug-in 
configuration properties are shown in the sliders in the upper left
of the image. The upper right of the display is the graphical
representation of the pipeline where the individual plug-ins are 
connected together.  The three lower images show the
intermediate and final results of the pipeline, which are updated
on a per frame basis. 

Figure 3: Taxonomy of the motion imagery ontology. 
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engineering assessments of workflows are required for 
validating how a given instantiation satisfies the operational 
requirements and goals for FMV exploitation, described in 
Section 1.1.     

Initial results of an example VPEF plug-in testing, scale 
testing ingest performance, and human factors engineering 
assessments are presented.   

3.1. VPEF Plug-In Testing 

The flux tensor based motion detection and morphology-
based blob extraction plug-ins were benchmarked for 
performance within an aerial video processing pipeline as 
part of an object tracking analytics framework. Aerial 
imagery acquired from a moving platform first needs to be 
stabilized to compensate for background motion. An 
OpenCV stabilization module was included as part of the 
benchmarking pipeline. Table 5 summarizes the 
performance of each plug-in combination within the 
pipeline in terms of the latencies involved for each 
algorithm and the overall pipeline throughput or sustained 
framerate. The flux tensor and blob extraction plug-ins take 
about 5.1ms and 3.1ms respectively for small 352x240 
pixel video frames and 24.6ms and 10.5ms for larger 
720x480 frames. The stabilizer plug-in uses a buffer of ten 
frames and its latency is high at 682 ms and 1400ms for the 
small and larger video frames, respectively. The sustained 
framerate, once the pipeline plug-in buffers are filled, is 

near real time at about 25ms for small 352x240 pixel FMV 
frames and 51ms for larger 720x480 sized video frames; 
this includes all three plug-in modules for frame 
stabilization, flux tensor and blob extraction. The pipeline 
is essentially being executed in parallel with plug-ins 
distributed across multiple threads. So the overall 
performance of the pipeline is bounded by the module 
requiring the longest time to complete which in this case is 
the stabilization module.    

3.2. Scalability Testing  

Preliminary scale testing of the AVAA architecture was 
reported previously [17].  The results showed that the VDM 
is scalable to massive levels and query times for text 
annotations and date time groups were less than 0.5 seconds 
for an ingested data store of 2160 hours of FMV.   Geo-
spatial queries took substantially longer, up to about 3.75 
seconds for 2160 hours of FMV, indicating that this was an 
area that warranted additional development work.   

Scale testing of ingest performance is currently 
underway to quantify the hardware requirements needed by 
an installation in order to support a given FMV collection 
rate.  A key consideration is to identify the hardware 
requirements such that the rate of ingesting and processing 
FMV is equal to or faster than the rate of collection.   

The testing is identifying issues that affect ingest 
performance and accuracy, such as the optimum number of 
cores per VPEF ingest client, required time-out values, and 
minimum required batch sizes, as well as FMV file 
conditions that result in ingest plug-in failures.  

The ingest pipelines used for this testing reads the Key-
Length-Value (klvSpring) and video info 
(ImprovedVideoInfoProcessor) metadata, copies 
(fastUnreliableTranscoder) or transcodes the FMV file or 
stream to H.264 (Back-upMp4Transcoder) if it is not 
already encoded in this standard, computes the MISB 
0901.2 values, and writes out this stream to the VDM (i.e., 
input and enriched metadata) and HDFS or VM file system 
(i.e., input data and H.264 MP4 file).  These pipelines are 
wrapped as JavaBeans classes for execution within the 
VPEF clients.  

The AVAA ingest nodes used for this testing are dual 
processor Intel Xeon E5-2670 (2.6 – 3.3 GHz, 20 MB L3 
cache, 8 cores, 16 threads) 2U servers configured with 128 
GB RAM and a NVidia TESLA M2090 Graphical 
Processing Unit (GPU) module.  Table 6 shows the test 
configuration and example results from one of the ingest 
experiments.  All of the pipelines used in this experiment 
did not utilize the GPU to accelerate the processing.  The 
FMV resolution used for testing was 480p.  A 30-minute 
timeout occurred 61 times during KLV extraction within 
the klvSpring pipeline.  This represents 0.47% of the time 
in this experiment and is the principal cause for the large 
standard deviation in execution time for this pipeline. 

Table 4: VAWS Available Services
Name Purpose 
Video Links Service Displays a list of links for all the 

transcoded videos available 
Video Stream Service Provides services for streaming 

videos 
Camera Positions 
Service 

Provides services for the camera 
positions of an ingested video 

Video Quality Service Provides services for the video 
quality of an ingested video 

Video Frame Rate 
Service 

Provides services for the video 
frame rate of an ingested video 

Video Frame Size 
Service 

Provides services for the video 
frame size of an ingested video 

Video KLV Packet 
Service 

Provides services for the Key-
Length-Value (KLV) Packet of 
an ingested video 

Annotation Service Provides services for the 
annotations of an ingested video 

Attribute Service Provides services for the 
attributes of an ingested video 

Comment Service Provides services for the 
comments of an ingested video 

Search Service Provides services for searching 
analytics 

Metrics Service Provides services for collecting 
metrics on service usages 

Classification Service Provides services for 
classifications 
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3.3.  Human Factors Engineering 

A human factors engineering (HFE) process was 
developed to access and validate the ability of an 
architecture instantiation to achieve the operational goals 
described in Section 2 for desired analyst workflows [18].  
A process of continuous evaluation is followed in the 
capability development. Insight gained from the HFE 
evaluations influence the developmental requirements and 
priorities for software development sprints.   
  The procedure includes quantitative, qualitative, and 
computational modeling measurements of analyst 
performance executing workflows.  The quantitative 
measurements include mouse click analytics, eye tracking, 
physiological and electroencephalogram (EEG) 
measurements of neural activity.  The qualitative 
measurements include four questionnaires and surveys.  
Figure 4 shows a photograph of the EEG and gaze tracking 
data collection station. 

The participants were experienced imagery analysts with 
recent deployments conducting operational imagery 
analysis. The analysts had a mean of 9.85 (SD = 5.75) years 

of experience in the Imagery Analysis military operational 
specialty (MOS). Two assessments have been completed 
thus far, concentrating on the impact of a single video 
quality metric the VNIIRS (MISB 0901.2) [18].  The test 
scenario FMV data had various elements of military 
intelligence significance that the participants were asked to 
identify.  Each analyst was given four scenarios to search 
through and given a short synopsis of the importance of the 
operational tasking for each scenario. They saw two 
scenarios in the baseline condition and two that were 
filtered using the MISB 0901.2 value set at a threshold.  
Four of the eight participants completed the scenarios while 
using the EEG and eye-tracking equipment. 

The EEG data analysis used the B-Alert classification 
model for cognitive work-load metrics [18-21]. This model 
utilizes a discriminant function derived from a large 
normative database and then refines this model for each 
subject based on their unique patterns of EEG acquired 
during three baseline task conditions. The user-specific 
workload classification model uses power spectral density 
(PSD) from 1-40 Hz in 1 Hz bins across all electrodes to 
produce a score indicating the probability of a high state of 
work-load.  

Eye movement data were recorded using the Tobii X120 
eye-tracker. Prior to testing each operator performed a nine 
point calibration. Eye tracking data were used to measure 
fixation and blink frequency as well as provide estimates of 
gaze distribution. Eye fixations were calculated using the 
ILAB toolbox and the Widdel algorithm [22, 23].  

The baseline condition had a mean of 14.07 videos 
returned from each participant’s search. Incorporating the 
video quality VNIIRS MISB 0901.2 metric improved the 
mean number of retrieved videos to 6.27, a reduction of 55 
percent compared to the baseline condition.   The VNIIRS 
filtered condition resulted in a reduction of 30 percent in the 
number of FMVs viewed compared to the baseline 
condition, 3.73 versus 5.36 mean FMVs, respectively.  

The analysts found 40 percent more primary targets and 
16 percent more total targets when using the MISB VNIIRS 
quality metric to filter videos selected for viewing, 
compared to not using this CVA module. Analysts took 

Table 5: Flux tensor, blob extraction and stabilization motion analysis plug-in performance using an 
Intel Core i7-3960X 3.3 GHz processor with 12 cores and 32 GB of memory 

 
 

 

352x240 Video Frames

Test Count Min Max Avg Std Dev Min Max Avg Std Dev

Flux only 1192 4.767 5.324 5.114 0.067 7.770 36.164 25.366 3.494

Blob only 1188 2.810 3.808 3.125 0.086 7.705 35.998 25.190 3.494

Flux and Blob 1192 7.504 9.925 8.304 0.228 7.649 35.928 25.143 3.519

Stabilizer only 1196 281.069 817.298 682.151 59.831 0.604 35.968 25.105 3.994

Stabilizer, Flux and Blob 1192 397.203 828.795 692.580 54.363 7.692 36.083 25.175 3.490

Plug-In Performance (ms) Pipeline Throughput (ms)

720x480 Video Frames

Test Count Min Max Avg Std Dev Min Max Avg Std Dev

Flux only 1790 20.357 27.042 24.675 1.914 31.089 61.363 51.875 2.671

Blob only 1786 10.192 12.962 10.544 0.405 36.117 60.878 51.470 2.270

Flux and Blob 1790 35.266 38.887 36.204 0.478 35.812 61.000 51.426 2.287

Stabilizer only 1794 706.774 1779.029 1399.641 62.296 2.146 66.802 51.575 4.648

Stabilizer, Flux and Blob 1790 1180.032 1811.558 1431.875 47.485 35.805 60.972 51.504 2.295

Plug-In Performance (ms) Pipeline Throughtput (ms)

Table 6: Example ingest experiment configuration and results 
Input Value 
AVAA Version 1.7.3-1 
Total Hours Ingested 1000.02 
Total Files Ingested 13017 
Number of Nodes Running VPEF_client 8 
Number of VPEF client per Node 4 
Output  
Test Duration, hours 37.49 
Effective Number of Streams 26.68 
Average Bit Rate, KB/s 6405.21 
FMV Ingest Statistics, seconds of VPEF client per file 
 
Java Beans 

 
Mean Median 

Std. 
Dev.

ImprovedVideoInfoProcessor 1.99 0.88 3.00
fastUnreliableTranscoder 16.45 20.15 11.60
BackupMp4Transcoder 94.62 70.97 88.26
klvSpring 114.15 42.99 224.28
MISB 0901.2 v2.0.3-193 93.35 84.04 80.54
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longer to find the primary targets when low quality videos 
are pre-filtered, by an average of three and a half minutes, 
compared to the base case without using VNIIRS due to the 
presence of more targets and faint targets; this is expected 
to be task and analyst dependent.  

Figure 5 shows the cumulative sum of the standardized 
(Z-score) workload scores over the course of the test for two 
participants. Scores were standardized using the mean and 
standard deviation from both the Baseline and VNIIRS 
conditions. The data depict the workload fluctuations over 
time for each mission in each condition.  Figure 6 shows 
the average eye blink and fixation frequency during the 
target search with much longer fixation times for videos 
that have been screened using VNIIRS.  Figure 7 shows the 
gaze distribution from one subject during one of the 
missions using VNIIRS filtering. The gaze distribution map 
is generated from fixation duration. 

4. Analysis and Discussion  
The ingest experiment described in Table 6 sometimes 

exhibited a rare (0.47%)  pipeline failure (30 minute 
timeouts) during klv extraction, which normally ought to 
execute quite quickly because it does not involve any 
complex mathematical operations.  Ingest pipelines are 
required to be absolutely stable, because all subsequent 
analysis of the data relies on accurate ingestion.   Ingest 
failures typically result in data that either is not ingested at 
all, or is ingested and may not be discoverable during 
subsequent annotation queries.  Development is ongoing to 
optimize the multi-source multi-format media stream 
ingestion pipelines described in Table 6 and make them 
more robust. The results listed in Table 6 show that about 
59 percent of the total median ingest times are spent in 
pipelines that involve extensive mathematical operations, 
the H.264 MP4 transcoding and the MISB 0901.2 VNIIRS 

quality computations.  Both of these operations may be 
speeded-up considerably by utilizing many core GPU 
hardware at the ingest nodes in future versions of compute 
intensive VPEF plugins. Typical performance 
improvements by moving these operations from the CPU to 
the GPU (using CUDA) are expected to be a factor of 5 to 
7. 
 The modular and scalable nature of this agile plug-in 
based CVA assisted FMV exploitation architecture 
provides a great deal of adaptability for meeting the 
operational requirements described in Section 1.1 for 
specific analyst workflows and sensor streaming data 
content.  Optimization of the increased analyst productivity 
due to incorporating CVA exploitation modules requires an 
iterative process of pipeline design and refinement, CVA 
algorithm parameter tuning, and human factors design and 
engineering evaluation for specific analyst workflows using 
candidate pipelines on relevant sensor data scene content.  
The HFE procedure developed to support this process, 
described in Section 3.3, provides the quantitative data 
required to understand and estimate the labor required to 

 
Figure 4: Experimental configuration. (Green) Primary task 
monitor used to view full-motion video from the AVAA software 
environment. (Red) Remote desktop eye-tracker provided ocular
metrics during software interaction. (Yellow and Purple) A touch 
screen monitor was used as a response input device during an
auditory probe task as well as a digital version of the NASA TXL.
(Blue) Wireless EEG system used to derive neural estimates of
cognitive workload and provide auditory-evoked potentials. 

 
Figure 5: Workload classification estimates derived from EEG 
for each mission within the Baseline and with VNIIRS 
(shaded) conditions. The top panel shows data from observer 
S01 and the bottom panel represents data from observer S05.  

 

 
Figure 6: Average blink and fixation frequency during target 
search. Error bars equal standard error. 
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achieve FMV exploitation mission objectives, and assess 
the amount of improvement CVA assistance provides in 
meeting the operational goals described in Section 1.1.  The 
example assessment described in Section 3.3, which 
included a single CVA, the VNIIRS MISB 0901.2 video 
quality metric, quantified a significant improvement in 
analyst productivity towards meeting the test mission 
objectives.  The longer time the analysts took to find the 
primary targets when using the VNIIRS filtered condition 
is because the analysts found so many more targets in the 
higher quality videos, including hard to find targets. In 
contrast, the smaller number of targets found in the baseline 
condition were more obvious and quicker to locate. The 
eye-tracking data revealed that observers tended to make 
fewer blinks and more fixations on average on higher 
quality VNIIRS screened video with respect to the baseline.  
The gaze data shown in Figure 7 suggest this analyst 
primarily searched for targets in the center of the video feed 
and continuously monitored or interacted with the timing 
parameters of the video.  The EEG data and behavioral 
performance indicated similar workload levels between the 
baseline and VNIIRS filtered conditions. The eye-tracking 
data suggest a trend toward higher cognitive workload in 
the VNIIRS filtered condition. 

The HFE assessments highlighted numerous areas for 
system improvement that have been incorporated into the 
spiral software development cycles. An example are the 
improvements made to the architecture instantiation 
between the first and second assessments, spaced three 
months apart, that resulted in an increase in favorable 
ratings from 43 to 74 percent between the first and second 
evaluations. The cognitive impact of one software issue is 
shown in Figure 5, for participant S01, VNIIRS filtering, 
mission one, which shows a large, broad peak in cognitive 
workload when the system became unresponsive. 

5. Conclusions 
AVAA is a scalable open system and standards derived 

software ecosystem for computer vision analytics (CVA) 
assisted exploitation of FMV that will continue to evolve 
and mature as it is deployed. The ecosystem is targeted for 
highly scalable enterprise level video analytics with cloud 
computing and large scale data.  The predecessors, such as 
VSIPL and the Interactive Image Spread Sheet (IISS), etc., 
focused on workstation based analytics with high 
performance computing [24-25]. The new AVAA software 
ecosystem for multimedia stream processing is designed to 
meet operational analyst requirements and increase their 
productivity and accuracy for exploiting FMV.  The CVA 
encapsulated plug-in architecture protects unique 
intellectual property with standardized inputs and outputs 
and makes alternative algorithmic approaches readily 
testable.  FMV processing pipelines constructed by 
combining these plug-ins to achieve an analytical outcome 
are modular and easily adapted using the GUI based 
VBench tool.   

A quantitative and qualitative human factors engineering 
(HFE) assessment process is used for validating that a 
system instantiation with candidate workflow pipelines 
meets CVA assisted FMV exploitation operational goals for 
specific analyst workflows. This HFE assessment process 
involves discrete subjective NASA TLX ratings, 
augmented with multiple continuous objective measures 
including electrophysiology, eye-tracking, behavioral 
performance, and computational modeling. The 
measurement approach can be implemented in different 
settings and can be used to assess various cognitive states. 
A benefit of this approach is that it provides evaluators the 
ability to continuously track fluctuations in cognitive state 
during system interaction with higher temporal resolution 
than that provided by traditional self-assessment 
approaches.  Evaluators may leverage this information to 
understand how system implementations may impact 
cognitive state and in turn operator performance within the 
system. The human factors evaluations of adding a single 
video analytics component for quality assessment using 
VNIIRS to screen videos, resulted in less work to be done 
per target, more targets found, and a longer search time to 
find the primary target when there are many targets to 
assess. 
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