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Abstract

In this paper we propose a method for joint estimation

of depth, reflectance and illumination from a single RGB-D

image for depth refinement. This is achieved by a simple op-

timization based approach with smoothness constraints on

depth, reflectance and illumination. We introduce an adap-

tively weighted local similarity constraint for reflectance,

a normalized spherical-harmonic model for illumination,

and an edge-aware local smoothness constraint for depth.

This allows us to generate high quality depth without addi-

tional processes such as pre-training of stochastic models

or image segmentation. Experimental results demonstrate

that our method estimates high quality depth in comparison

with ground-truth data not only for laboratory conditions

but also for complex real-world scenes.

1. Introduction

3D modelling has become attractive due to recent ad-

vances in Structure from Motion [19, 29], Multiple View

Stereo [7, 16], as well as sensor devices [1, 35]. Commer-

cial RGB-D sensors like Kinect has made it easier for non-

experts [15] to explore computer vision applications [28].

Since RGB-D sensors can acquire both 2D images and

relatively rough depths, it also attracts researchers tackling

the problem of estimating shape, reflectance and illumi-

nation which is known to be an extremely ill-posed prob-

lem [12, 21]. The estimation becomes more tractable by

assuming that one or two of the parameters are given. This

has been well studied in the context of shape from shad-

ing [13, 14, 21] and extended in photometric stereo [11, 31].

Using the depth image obtained from an RGB-D sensor

as an initial rough estimate, recent works [2, 33] jointly or

sequentially estimate reflectance, lighting and depth in high

quality. Such methods work well in scenes with relatively

simple objects. However, for general scenes with complex

textures and object-shapes, high quality joint estimation re-

mains a major challenge.

In this work, we aim to fill the quality gap between a

high quality 2D image and a low quality depth image (fig-

(a) Input RGB (b) Estimated shading

(2472× 1648 pixels) / reflectance

(c) Input depth (d) Refined depth

(372× 248 pixels) (2472× 1648 pixels)

Figure 1: Joint estimation of depth, reflectance and il-

lumination from a single RGB-D image. Given a pair of

high-quality RGB image (a) and a noisy low-quality depth

(rendered as 3D shape (c)), we decompose the RGB im-

age into reflectance, illumination (b) and depth using the

low-quality depth as the initial guide. This enables us to

generate a high quality shape (d).

ure 1). The main contribution is the design of a cost func-

tion with constraints for each component: depth, reflectance

and illumination. We propose an adaptively weighted local

similarity constraint for reflectance, a normalized spherical-

harmonic model for illumination, and an edge-aware local

smoothness constraint for depth as described in section 3.

The proposed approach is able to handle scenes including

objects with complex textures which are problematic for

image-segmentation based approaches. Furthermore, our
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method requires no pre/post processing for depth refine-

ment. We demonstrate that such a simple formulation is

already efficient at improving depth quality of real-world

data in section 4.

We next describe fundamental works and important al-

gorithms closely related to our work.

2. Related works

Shape from X. One of the earliest work for geometry

estimation is Shape From Shading (SFS) introduced by

Horn [13] that estimates surface normals (as geometry)

from a single image under known-illumination and known-

reflectance using a simple rendering model: I = S(N)R
where I is intensity, S is shading as a function of a surface

normal N and R is reflectance. Forsyth [6] extended this

simple rendering model to a more flexible model: spatially

varying shading model. This allows them to handle varia-

tions in illumination resulting from inter-reflections, com-

plex light sources, etc. Johnson and Adelson [18] showed

that the restriction on reflectance can be relaxed by approx-

imating natural illumination as a low order quadratic func-

tion.

Photometric Stereo (PS) can relax the restrictions in re-

flectance and illumination on SFS by using multiple images

captured under varying illuminations. For a fixed view-

point, Woodham [31] demonstrated that shape can be esti-

mated under calibrated illuminations. Basri and Jacobs [3]

then extended this to the uncalibrated case by represent-

ing illuminations as a low-order spherical harmonics model.

Hernandez et al. [11] relaxed the fixed view condition to the

non-fixed view condition by using visual hull information.

In another scope, given feature correspondences, Struc-

ture From Motion (SFM) estimates camera poses and

(sparse) depths of feature points, which can be densified by

Multiple View Stereo (MVS) [7]. SFM and MVS have been

studied as a different context to SFS and photometric stereo

but, recently, are often used as initial input for performing

PS [27] and intrinsic image decomposition as described be-

low.

Intrinsic image decomposition. Our work is also related

to the intrinsic image decomposition which decomposes an

image into reflectance and shading. As an earlier work,

Horn [12] used gradient of magnitude to derive reflectance

and illumination from a single image. Zhao et al. [36]

showed that non-local texture similarity can be used for re-

ducing decomposition ambiguity in intrinsic image decom-

position. Bell et al. [4] proposed a novel algorithm based

on the conditional random fields formulation. They also in-

troduced large scale public data set for decomposition eval-

uation.

Intrinsic image decomposition, given shapes can be used

for relaxing decomposition ill-posedness. Yu and Ma-

lik [34] used an inverse rendering approach for estimating

reflectance with shape. Haber et al. [9] estimated a com-

plex BRDF component and illumination from multiple im-

ages and a given shape. Laffont et al. [20] estimates relative

diffuse reflectance using surface normals from MVS. They

calculate relative reflectance by using the ratio of pixel val-

ues that have the same normals.

After commercial RGB-D sensors were introduced, sev-

eral intrinsic image decomposition approaches using an

RGB image and depths were introduced. Lee et al. [22],

Chen and Koltun [5] and Jeon et al. [17] used a non-local

smoothness term on reflectance. They assumed that if pixels

have close normals, the pixels have similar shadings.

Shape refinement. To obtain high quality shape, there are

various methods that use the data fusion approach. Nehab et

al. [24] showed that precise shape can be obtained by refin-

ing position using surface normals. Boxin et al. [27] and

Park et al. [25] showed that high quality shape can be ob-

tained by a combination of photometric stereo and MVS.

Barron and Malik [2] presented a novel statistical approach

to decompose an RGB-D image into reflectance, illumina-

tion and refined depth. They used pre-trained GMM to re-

solve decomposition ambiguities on each component. They

also represented shape and illumination as a combination

of multiple segments to handle object occlusions and local

variations of illumination.

Yu et al. [33] and Han et al. [10] introduced a shading

based approach for shape refinement from an RGB-D im-

age. Yu et al. [33] estimated scene illumination using initial

depth and refine depth using estimated illumination. For

reflectance, they used mean-shift clustering to segment the

RGB image into small areas that have a uniform albedo.

The relative albedo is then calculated between each segment

in the same manner as [20]. Han et al. [10] proposed a sim-

ilar depth refinement method for a uniform albedo object.

They then estimate local lighting parameters for illumina-

tion which cannot be represented with a single spherical-

harmonic illumination model. However they still require

explicit image segmentation for handling multi-albedo ob-

jects. Wu et al. [32] proposed a real-time depth refinement

algorithm from an RGB-D image with the GPU-accelerated

Newton method.

Our method. Our method is closely related to [2] which

jointly estimates depth, reflectance and illumination by for-

mulating it as an energy minimization framework. How-

ever, we focuses on estimating high-quality shapes as the

motivation as done in [10, 33]. Our method can be ap-

plied to general scenes while requiring neither pre-training

nor explicit segmentation to deal with multiple reflectances.

In the energy function, we propose a new smoothness con-

straint for reflectance where their weights are adaptively de-
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fined from chromaticity and intensity changes. This clearly

differs from the low intensity suppression idea used in [17].

We also use a soft constraint for the image fidelity term in

contrast to the hard constraint used in [2].

The details of our method are described in next section.

3. Joint estimation of depth, reflectance and il-

lumination

Given a high-quality 2D image and a corresponding

(noisy) low-quality depth, we aim to estimate the refined

high-quality depth by joint estimation of depth, reflectance

and illumination. To achieve this, we assume that the input

2D image can be decoupled to diffuse reflectance (albedo)

R, illumination L and depth D in the similar manner to the

intrinsic image decomposition [2]:

arg min
R,D,L

PI(R,D,L) + PR(R) + PD(D) (1)

PI , PR, and PD are the costs defined using R, D, and L. We

seek the best combination that separates each component

while minimizing the total cost defined in equation 1. We

next describe each cost in detail.

3.1. Data fidelity term

As with other works [2, 10], we enforce that the input

RGB image Î ∈ R
3 and the rendered image I(R,D,L) ∈

R
3 (obtained using the estimated reflectance R, illumina-

tion L and depth D) have the same appearance. Then, the

data fidelity term is:

PI(R,D,L) = wdf

n
∑

i

‖Ii(R,D,L)− Îi‖
2 (2)

where i indicates the index of pixels and wdf is the weight-

ing parameter.

Assuming Lambertian reflectance and spherical-

harmonic lighting model [26], the rendering function

(engine) I can be formulated as multiplication of the re-

flectance R ∈ R
3 for three color channels and the shading

S,

Ii(R,D,L) = S(Ni(D), L)Ri (3)

where Ni(D) ∈ R
3 is the surface normal at a pixel i com-

puted from the depth D, and L ∈ R
9 is the light basis.

Since the shading S is computed using a surface nor-

mal and illumination, we compute the surface normal as

follows. For robust yet simple computation of the surface

normal Ni, we form four triangle patches using depths of

the neighboring pixels t(i), compute the normals N̂j from

them, and compute the mean normal Ñi as

Ñi(D) =

∑

j∈t(i) N̂j(D)

4
. (4)

Finally we obtain Ni(D) as the L2-normalized vector of Ñi.

Notice that we use the depths directly in the optimization

process because we aim to produce high quality depths after

the optimization. This differs from using and optimizing the

surface normals [10, 33] which require a post-processing

step that uses the estimated normals for depth refinement.

Using the surface normal N(D) = (Nx, Ny, Nz)
⊤ ∈

R
3, the normalized lighting basis L = L̂ / ‖L̂‖, and the

spherical harmonics lighting model [26], the shading can

be represented as

S(N,L) = L0 + L1Ny + L2Nz + L3Nx

+L4NxNy + L5NyNz

+L6(N
2
z − 1/3)

+L7NxNz + L8(N
2
x −N2

y )

(5)

It is interesting to note that the image rendering function 3

has an ambiguity in separating reflectance R and illumina-

tion L [21].

For the purpose of the depth refinement, estimating rel-

ative reflectances and illuminations is sufficient. We there-

fore fix the norm of illumination to a length of 1. Then

we estimate the distribution of illumination and the relative

reflectances among pixels. Additionally, we assume white-

illumination, i.e. color variations on RGB images arise from

reflectance variation only. This implies that RGB channels

of illumination follow the same distribution and therefore

the parameters for illumination can be reduced from 27 to

9. This assumption significantly reduces the computational

cost since equation 5 has to be applied on all the pixels in

the image.

3.2. Constraint term on reflectance

We assume that neighboring pixels have locally similar

reflectances to include the smoothness constraint PR(R) on

reflectance in the cost function 1. This assumption holds

when the refletances have a uniform albedo. However, if

the scene includes objects with complicated textures, this

assumption contradicts at texture borders and hence the re-

finement process will be deteriorated. To solve this, we

design the local similarity term that is adaptively weighted

based on local changes in reflectance:

PR(R) = wr

n
∑

i

∑

j∈p(i)

‖wch(i, j)wit(i, j)(Ri −Rj)‖
2

(6)

where p(i) denotes a 3× 3 window (8-adjacent pixels).

In detail, we first design the weight wch that adaptively

controls the cost depending on changes in chromaticity,

wch(i, j) = exp(−kch(1− C(i, j))) (7)

C(i, j) =
Ii·Ij

‖Ii‖‖Ij‖
(8)
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where kch is a parameter for controlling the tolerance of

chromaticity changes. In our rendering function 3, the di-

rection of RGB vector Ii/‖Ii‖ is identical to the direction

of reflectance R because the shading S is just a coeffi-

cient multiplied to the vector in this function. Therefore,

the chromaticity changes computed as angles between RGB

vectors reflect that of reflectances. We compute the angles

between normalized RGB vectors of neighboring pixels us-

ing the same method as [17].

We next design the weight wit that can adaptively control

the cost depending on the scale changes in chromaticity. For

detecting the scale changes in chromaticities.

wit(i, j) = exp(−kit‖Ii − Ij‖
2) (9)

where kit is a parameter for controlling the tolerance of

intensity changes. Since our shading function uses a

smoothly varying illumination model, the sharp changes

in reflectances (and/or depths) will appear as the sharp

changes in image intensities [12]. We therefore detect these

sharp changes using the distances between RGB vectors in

neighboring pixels.

Note that we setup the controlling parameters such that

kch is relatively small for high sensitivity to chromaticity

changes whereas kit is big to avoid over detection.

3.3. Constraint terms on depth

For the depth D, we apply two types of constraint terms:

local surface smoothness and bas-relief.

PD(D) = wsPsmooth(D) + Pbas(D) (10)

Psmooth(D) is a term for constraining smoothness of local

surface (depth). This term is based on the assumption that

pixel intensities become similar if the reflectances and sur-

face normals are similar in the Lambertian surface model.

Pbas is a term for handling bas-relief ambiguity. This term

for constraining bas-relief ambiguity is required because,

when only the reflectances are given, the surface normal

cannot be determined since there are multiple combinations

of shapes and illuminations that generates the same image.

We next describe these two terms in detail.

Local surface smoothness. We construct the smooth-

ness term using surface normal continuities based on pixel

intensities as

Psmooth(D) =
n
∑

i

∑

j,k∈l(i)

{wsc(i, j, k)‖Nj(D)−Nk(D)‖2}2
(11)

where l(i) indicates four lines (horizontal, vertical, two di-

agonals) passing through a position i. We compute the

weight wsc using the differences in neighboring pixel in-

tensities to suppress the errors induced by object boundaries

and self-occlusions.

wsc(i, j, k) = exp(−ksc ·min(‖Ii − Ij‖, ‖Ii − Ik‖)). (12)

We compute this weight for horizontal, vertical and diago-

nal directions separately.

Bas-relief ambiguity. We construct the bas-relief term

Pbas in a similar but simpler way to [2]

Pbas(D) =

wrd

∑

i∈B

{F (Di − D̂i)}
2 + wbd

∑

i∈B∁

∑

j∈n(i)

(Di −Dj)
2 (13)

where B is a label which indicates the pixel having an initial

depth measurement D̂i and B∁ is the pixel with no value.

This label can be easily obtained from RGB-D images or

SfM+MVS.

The first term handles the pixels having initial depths.

We penalize if the distance between the original and esti-

mated depths is more than a threshold τ as

F (x) =

{

0, if|x| ≤ τ

|x| − τ, otherwise
(14)

The second term handles pixels that have no initial depth

values. The edge-preserving smoothing in equation 11 may

generate areas that are not constrained by any other smooth-

ness terms. We simply constrain that their normals are par-

allel and are facing the optical axis of the camera as com-

monly used in MVS even if it is inaccurate.

3.4. Implementation & Optimization

We can estimate geometry, reflectance and illumination

by minimizing the cost function (equation 1) which can be

solved by a non-linear least squares method, e.g. the trust-

region method. Before optimization, we upsample low-

resolution depth to be the same size as the RGB image using

nearest neighbor algorithm. We also add boundary condi-

tion {Ri | 0 ≤ Ri ≤ 1} for reflectance because reflectance

cannot be negative and cannot amplify incident light. We

use Ceres Solver [8] to minimize the cost in our experiment.

In our cost function, the total number of variables (R, D
and L) is 3n× n+ 9 for the number of image pixels n. As

this is very large, a single step optimization is feasible but

not efficient. Thus, we minimize it by iterating a two-step

optimization. More specifically, we iterate the following

two steps:

(a) optimize R and L for fixed D.

(b) optimize D using the updated R and L.

To further improve stability and efficiency, we use a
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Figure 2: Results on the Fountain dataset [30]. (a) Input RGB image (top) and raw depth (bottom). (b-e) Reflectance,

shading, refined depth, and normal computed using [2](top) and our proposed method (bottom). Note that normal (e) is

calculated from the depth for visualization.

(a) Barron[2] (b) Proposed (c) Ground-truth

Figure 3: Rendered depths of figure 2 (d) for the Fountain dataset [30].

Data # 0 1 2 3 4 5 6 7 8 9 average

Input 0.678 0.615 0.500 0.251 0.202 0.215 0.215 0.231 0.300 0.348 0.362

Barron [2] 0.143 0.136 0.129 0.101 0.104 0.101 0.105 0.231 0.114 0.133 0.129

Our 0.167 0.114 0.104 0.087 0.081 0.083 0.085 0.100 0.117 0.119 0.108

Table 1: Depth RMSE values for the Fountain dataset [30].

standard coarse-to-fine strategy starting from 1/8 down-

sampled RGB and depth, then iteratively increase resolution

until it is the same as the original resolution.

4. Experimental Results

In this section we describe the experiments performed

on common datasets and outline the quantitative and quali-

tative results of our method compared to the state-of-the-art

methods [2, 10]. All of experiment were performed on Win-

dows PC with Intel i7 CPU and 32GB memory.

Parameter setup. Throughout all experiments, we used

the same values for the parameters kit = 100, kch = 1000,

ksc = 100, wdf = 1, wr = 30, wbd = 30 and wrd = 100.

Only the depth smoothness weight ws and the depth error

threshold τ are changed for each dataset.

Strecha dataset. We performed experiment on the

Strecha dataset [30] which is a standard dataset for 3D

reconstruction benchmarks for qualitative and quantitative

evaluation of our method. It contains high-quality RGB im-

ages, their camera parameters and (laser scanned) ground-

truth mesh data.

We first generate ground-truth depth images from the

mesh data (Fountain-P11 and Herz-Jesu-P8). We next pre-

pare the input low-quality depth images by down-sampling

to 160× 120 pixels, adding noise, and quantizing the depth

values to acquire a Kinect-like effect similar to [2]. We also

down-sampled RGB images to 640×480 pixels. Finally, we
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Figure 4: Results on the Herz-Jesu dataset[30]. See the caption of figure 2 for details.

(a) Barron[2] (b) Proposed (c) Ground-truth

Figure 5: Rendered depths of figure 4 (d) for the Herz-Jesu dataset [30].

Data # 0 1 2 3 4 5 6 7 average

Input 0.551 0.435 0.490 0.541 0.440 0.514 0.684 0.666 0.540

Barron [2] 0.206 0.189 0.154 0.138 0.127 0.162 0.198 0.184 0.170

Our 0.172 0.154 0.127 0.117 0.106 0.120 0.141 0.147 0.137

Table 2: Depth RMSE values for the Herz-Jesu dataset [30].

refine the depth using the RGB image with the parameters

ws = 0.01 and τ = 0.05. Note that this real-world dataset

includes multiple reflectances and complex lighting condi-

tions. We evaluate the root mean squared error (RMSE)

between our refined depth and the ground-truth depth.

Figures 2, 3, 4 and 5 show examples of input RGB im-

age, rendered input depth and estimated results(Barron [2]

(top) and our method (bottom)). The depth results of [2]

have over-smoothing artifacts (figures 3 and 5 (a)) and

cracks (figure 5 (a)). These cracks are due to the pre-

segmentation failure. In contrast, our method can produce

high-quality depths (figures 3 and 3 (b)). Additionally, our

edge-preserved smoothness term works effectively on dis-

continuous surfaces (near the pillar of figure 5 (b)). Further-

more, the quantitative evaluations in tables 1 and 2 clearly

show that our method produces more accurate depths when

compared using the ground-truth depth.

RGB-D sensor dataset in [10]. In this experiment, we

use the images of RGB-D sensors provided in [10]. We set

the parameters ws = 0.05 and τ = 0.01.

Figure 6 captures a human wearing a T-shirt (top) and a

Cicero sculpture (bottom). As our method represents shad-

ows and a spatial variation of illumination as diffuse re-

flectance variation, it can be applied to more general object

which has complicated reflectance under natural illumina-

tion without explicit segmentation as used in [10]. Notice

that our method recovered not only the T-shirt but also arms

and a neck on the body data (top in figure 6 (d)). Also,

notice that the shape around the nose of sculpture is inaccu-

rately recovered by [10] due to shadow whereas our method

can deal with it by considering the shadow as variations in

reflectance.
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(a) Input RGB (b) Input depth (c) Han et al. [10] (d) Proposed

Figure 6: Results on the RGB-D dataset in [10]. (a) Input RGB images. (b) Input raw depths. (c) Depths refined by [10]. (d)

Depths refined by our method.

NYU dataset. We conducted experiments on the NYU V2

dataset [23] commonly used in the intrinsic image decom-

position evaluation. The dataset contains RGB-D images

taken by Kinect V1 sensors. We tested the same 33 scenes

used in [2]. We used ws = 0.04 and τ = 0.02 for all scenes

in the NYU dataset.

Figure 7 shows the results obtained by [2] (top) and

our method (bottom) on the NYU dataset. Scene num-

bers indicate the image indexes in the dataset. Notice that

our method successfully recovered more details when com-

pared to the over-smoothed results of [2]. The towel and

tiles on the wall look more detailed in scene 195 of figure 7.

Also wrinkles on the curtain and the bedclothes look more

natural in scene 541 of figure 7.

However, our method has some limitations that causes

it to induce noise on some refined shapes. Our data fi-

delity term cannot absorb errors induced by extreme illu-

mination variations. Scene 190 of figure 7 presents the

effect of spatially varying illumination. The wall of our

result is unnaturally distorted near the table-light in con-

trast to [2]. Our constraint term on reflectance may not

distinguish monochromatic variations. Scene 518 of fig-

ure 7 shows the artifact of monochromatic reflectance that

appears as surface unevenness on the curtain, pillow and

bedclothes.

5. Conclusion

We have proposed a method for the joint estimation of

depth, reflectance and illumination for a depth refinement.

The proposed method is able to produce high quality depth

from a single RGB-D image with no additional pre/post

processing steps. The technical novelty is in the design

of a cost function with adaptively weighted smoothness

terms for depth, reflectance and illumination. The experi-

mental results on real-world datasets demonstrated that our

method can refine the shapes accurately. The comparisons

with state-of-the-art methods clearly showed the advantages

qualitatively and quantitatively.

Our method has some limitations. It cannot handle

the scenes which are not suitable to our rendering model:

Non-Lambertian surfaces and complex illuminations (inter-

reflection, refraction and spatially varying illumination). In

addition to that the weighted local similarity used in our re-

flectance constraint cannot distinguish whether the borders

arise from texture changes or object occlusions. Resolving

these limitations using multiple RGB images is a potential

future work.
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