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Abstract

We propose a skeleton-based motion recognition system

focusing on local parts of the human body closely related to

a target motion. In this system, a skeleton feature is com-

posed of a sequence of relative positions between paired

joints calculated by Inverse Kinematics. Several joints of

skeleton model are connected as a Local Skeleton Feature.

The temporal sequence is modeled as human motion model

by using Hidden Markov Model. Motion features are rep-

resented as Fisher vectors parameterized by the human mo-

tion models, and weighted and integrated by using Multiple

Kernel Learning. This system makes it possible for robots to

recognize human actions in our daily life. The experimental

results based on two datasets show an improvement in per-

formance of classification rate, which shows that the design

of motion feature is effective for motion recognition.

1. Introduction

The DARPA Robotics Challenge gave a strong momen-

tum to demand for humanoid robots. In this context, intel-

ligent robots which can support humans in daily life also

have been increasingly important in recent years. In order

to communicate with humans in the coexisting space, recog-

nition of human action that leads to behavior understanding

and intention inference is very necessary. From this view-

point, we focus on actions in our daily life for activity sup-

port and gesture commands for robot operation. Note that

we use the terms “motion” or “gesture” in the sign-language

sense for data derived from a single data source, and the

terms “action” or “activity” for data consisting of multiple

data sources including surrounding environment and target

objects as well as motion patterns.

The human motion is drawn in 3D world, and thus cap-

turing such articulated 3D motion using a monocular video

camera is very difficult. This difficulty limited the perfor-

mance of video-based action recognition in the past decade.

. . .

MKL-SVM

Motion category

LSF LSFLSF

. . .

. . .

Inverse kinematics

FV-HMM

Figure 1. Overview of our proposed system for motion recogni-

tion based on a skeleton model. This system focuses on local parts

of human body closely related to a target motion.

However, the recent advance on human pose estimation

from depth map made it easier to obtain 3D joint positions

of human skeleton from the monocular video cameras. Ad-

ditionally, this skeleton-based action recognition has the ad-

vantage of using Inverse Kinematics(IK) from the joint po-

sitions in the world coordinate system, which can calculate

motion derivatives such as relative position, velocity and

acceleration in the body coordinate system.

This paper presents a method for skeleton-based mo-

tion recognition focusing on local parts of the human body
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closely related to a target motion. As shown in Fig.1, skele-

ton descriptors are derived from a temporal sequence of hu-

man body motion. A relative position of marker joints from

the center of skeleton model is calculated by using IK. A

Local Skeleton Feature(LSF) is composed of four marker

joints selected from the skeleton model and then the tem-

poral sequence is modeled as human motion model by us-

ing Hidden Markov Model(HMM). Motion features repre-

sented as Fisher Vectors(FVs) parameterized by the human

motion model[8] are weighted and integrated for motion tar-

get by simultaneously learning parameters of Multiple Ker-

nel Learning(MKL) and Support Vector Machine(SVM).

Finally, an observed motion is classified into the most prob-

able category by the system.

The main contribution of this paper is the design of mo-

tion features. We use the relative positions between skele-

ton joints calculated by IK as LSFs, which can capture the

smooth movement compared to estimated 3D joint positions

from motion sensor. Motion features are represented as FVs

parameterized by human motion model from LSFs. To the

best of our knowledge, the proposed method is also the first

research using MKL of several FVs. This method identifies

the remarkable parts of human body related to a target mo-

tion, resulting in better motion-recognition performances.

2. Related Work

There are various researches of action recognition in the

pattern recognition community. In particular, recent ad-

vances on human pose estimation from depth image en-

abled to extract skeleton information of human whole body,

so that three information sources, i.e., skeleton, color and

depth image, become available in many researches using

Kinect. Along with this change, various modalities such as

skeleton[19][23][7], color, depth[14][22], silhouette[9][2]

and space-time occupancy[17][18] are used as features for

action recognition. When comparing to previous researches

of action recognition, it can be said that the method using

skeleton features tends to achieve higher classification rate.

Note that we also apply the same approach in this paper.

[19] uses relative positions of pairwise joints as skeleton

features and defines a conjunctive feature structures of sev-

eral joints as actionlet. The remarkable joints of actionlet

are discovered by using data mining method. During the

mining process, the joint is connected by considering the

confidence and ambiguity score of actionlet. [23] compares

discriminative abilities of position, velocity and accelera-

tion for action recognition. The result shows that the com-

bination of three features scores the highest classification

rate.

There are also two approaches of similarity calculation

after extracting features: measure the similarity between

pose[23] or segment[19][7] units of action. Note that seg-

ment consists of continuous frames of pose. The former
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Figure 2. Two types of Local Skeleton Feature(LSF). Left

side : the LSF is a 12-dimensional vector of four skeleton fea-

tures. Right side : the LSF is a 18-dimensional vector of six

skeleton features.
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Figure 3. Marker placement when using Kinect sensor. 20 virtual

markers are attached to a human body.

method can realize a low-latency action recognition, but

their method can not be applied to other tasks such as mo-

tion generation because of constructing the relationship be-

tween several remarkable frames and a training label. In the

latter case, segmentation of action data can be conducted

by clustering the continuous frames which are supposed to

have the same labels or detecting the changing points in the

time-series data. In this paper, we have taken the latter po-

sition because of learning temporal data of human motion

as discrete motion symbols by HMM.

3. Motion Recognition System

We have proposed a motion recognition system based

on a skeleton model. Figure1 shows the overview of our

proposed system employing MKL of FVs parameterized by

human motion model from LSFs. Each term of “LSFs”,

“FVs parameterized by human motion model” and “MKL

of FVs” is described in the following subsections.

3.1. Local Skeleton Feature

As previously discussed, skeleton features tend to

achieve a high classification rate and the skeleton-based
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action recognition also has the advantage of using Inverse

Kinematics(IK). This section introduces the design of skele-

ton features which focuses on local parts of human body

closely related to target motion.

With respect to skeleton features, local joint-series fea-

tures associated closely with human motion become more

available than global features covering whole body in mo-

tion recognition, and thus whole-body skeleton is divided

into several body parts in recent researches[19][7]. In this

paper, we use a temporal position data of four marker joints

referred to as a local skeleton feature. Note that the number

of maker joints in the local skeleton feature is determined

by reference to [19]. Four marker joints discovered by data

mining method are defined as a discriminative actionlet.

The relative position of four marker joints from the cen-

ter of skeleton model can be calculated by using IK. If bpn
denotes the relative position between marker n and the cen-

ter of skeleton model defined as

bpn = oRT
b
opn

= oRT
b (

opn−1
+ oRn

npn−1,n) (1)

where oRn and oRb mean the rotation matrix of marker n

and the center of skeleton model in the world coordinate

system respectively. Additionally, npn−1,n is the vector

from joint n − 1 to joint n in the n-th coordinate system.

Note that joint n − 1 and joint n mean the relationship be-

tween a parent and a child joint in human skeleton model.

We intuitively choose 23 and 58 local skeleton features

from the upper-body marker joints for gesture recognition

and the whole-body marker joints for action recognition

respectively. Note that the local skeleton features are not

cross-validated by using dataset, but [7] shows that there is

not so much difference in recognition performance by con-

sidering the body symmetry among the local skeleton fea-

tures. As shown in the Fig.2, we use two types of local

skeleton feature. The first one is a 12-dimensional vector of

four skeleton features(Left side in the Fig.2). Each skeleton

feature is a relative position between marker joint n and the

center of the skeleton model represented as Eqn.(2). The

second one is a 18-dimensional vector of six skeleton fea-

tures. Six is identical with the number of elements in upper

triangular distance matrix(Right side in the Fig.2). Each

skeleton feature is a relative position between marker joint

n and marker joint m represented as Eqn.(3).

fnb = {bpn|n = 1, 2, 3, 4} (2)

fnm = {bpn − bpm|n,m = 1, 2, 3, 4;n ̸= m} (3)

3.2. Fisher Vector Parameterized by Human Mo­
tion Model

Human motion data is represented as temporal data of

joint positions. An HMM, which has a robust feature for

Table 1. 23 local skeleton features composed of 4 marker joints.

The number in this table corresponds to the marker joint number.
No. J1 J2 J3 J4 No. J1 J2 J3 J4

1 3 4 5 6 13 4 9 10 11

2 3 4 6 7 14 4 9 11 12

3 3 4 7 8 15 4 10 11 12

4 3 4 9 10 16 5 6 7 8

5 3 4 10 11 17 5 6 9 10

6 3 4 11 12 18 5 7 9 11

7 3 5 6 7 19 5 8 9 12

8 3 5 7 8 20 6 7 10 11

9 3 9 10 11 21 6 8 10 12

10 4 5 6 7 22 7 8 11 12

11 4 5 7 8 23 9 10 11 12

12 4 6 7 8

Table 2. 58 local skeleton features composed of 4 marker joints.

The number in this table corresponds to the marker joint number.
No. J1 J2 J3 J4 No. J1 J2 J3 J4

1 3 4 5 6 30 7 8 11 12

2 3 4 6 7 31 7 8 14 15

3 3 4 7 8 32 7 8 15 16

4 3 4 9 10 33 7 8 18 19

5 3 4 10 11 34 7 8 19 20

6 3 4 11 12 35 7 14 15 16

7 3 5 6 7 36 7 18 19 20

8 3 5 7 8 37 8 14 15 16

9 3 9 10 11 38 8 18 19 20

10 4 5 6 7 39 9 10 11 12

11 4 5 7 8 40 9 14 15 16

12 4 6 7 8 41 9 18 19 20

13 4 9 10 11 42 10 11 14 15

14 4 9 11 12 43 10 11 15 16

15 4 10 11 12 44 10 11 18 19

16 5 6 7 8 45 10 11 19 20

17 5 6 9 10 46 10 14 15 16

18 5 7 9 11 47 10 18 19 20

19 5 8 9 12 48 11 12 14 15

20 5 14 15 16 49 11 12 15 16

21 5 18 19 20 50 11 12 18 19

22 6 7 10 11 51 11 12 19 20

23 6 7 14 15 52 11 14 15 16

24 6 7 15 16 53 11 18 19 20

25 6 7 18 19 54 12 14 15 16

26 6 7 19 20 55 12 18 19 20

27 6 8 10 12 56 14 15 18 19

28 6 14 15 16 57 14 16 18 20

29 6 18 19 20 58 15 16 19 20

noise or error of spatio-temporal signals, is appropriate for

modeling the human motion data. More formally, an HMM

is defined by the following four parameters: a set of hid-

den states Q, a state transition matrix A, a set of emission

probability distribution B, a set of initial state probability π.

For convenience, we represent HMM parameters by putting

them together, defined as

λ = {Q,A,B,π} (4)
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We define P (O|λ) as the probability of generating the mo-

tion sequences O = {o1, o2, ..., oT }, when given the pa-

rameters λ. The optimized calculation is usually conducted

based on Baum-Welch algorithm (a type of Expectation-

Maximization(EM) algorithm), which can determine the

parameters by maximizing the likelihood P (O|λ). This

likelihood can be calculated by using a forward-backward

algorithm. Note that the HMM parameters representing hu-

man motion is referred to as “a motion symbol”.

In this way, several motion symbols are obtained by

training each local skeleton feature. Next, the motion sym-

bols are clustered in a hierarchy based on dissimilarities be-

tween them. The distance of two motion symbols is calcu-

lated by using Kullback-Leibler(KL) information and Ward

method constructs the hierarchical structure of them by us-

ing the distance. Nk sets of motion symbols referred to

as “representative motion symbols” are obtained by cluster-

ing. The derivative of log-likelihood with respect to HMM

parameters λ is calculated to become adapted to the repre-

sentative motion symbols to each motion symbol, defined

as

∇λ logP (O|λ) = ∇λL(O|λ) (5)

= FS(O,λ) (6)

Note that FS(O,λ) is called Fisher Score (FS). As previ-

ously explained, motion symbol λ is composed of the initial

state probabilities πi, the state transition probabilities aij
and the emission probabilities (the mean µj and the covari-

ance σj in the case of Gaussian model). The derivatives of

the log likelihood L(O|λ) with respective to these parame-

ters are defined as

FS(O,λ) =
[

∂L(O|λ)

∂πi
,
∂L(O|λ)

∂aij
,
∂L(O|λ)

∂µi
,
∂L(O|λ)

∂σi

]T

(7)

For more information about the calculation process, refer to

[8]. FV-HMMs are composed of the values representing this

direction to modify their parameters. Given a sequence Oi

and the set of λ, a FV-HMM, which is constructed by con-

catenating FS(Oi,λk) obtained from each central motion

symbol in a single vector, defined as

FVHMM (Oi, {λk}) =

F
−1/2
λ [FS(Oi,λ1)

T , ..., FS(Oi,λNK
)T ]T (8)

Note that Fλ is called Fisher Information Matrix (FIM) nor-

malizing the derivatives of log-likelihood. The FV-HMM is

input to SVM for training and classification task. If we se-

lect a linear kernel as the kernel function of SVM, a Fisher

Kernel(FK) is calculated as the inner product of FV-HMMs.

FK(Oi,Oj) =

< FVHMM (Oi, {λk}), FVHMM (Oj , {λk}) > (9)

3.3. Multiple Kernel Learning of Fisher Vectors

As discussed in the previous section, a local skeleton fea-

ture described in section 3.1 is represented as a motion fea-

ture by the FV-HMM. This section introduces the strategy

to improve recognition performance by weighting and inte-

grating the motion features according to target action. The

discriminative weights are learnt by the MKL. This method

constructs a combined kernel by integrating several sub-

kernels of motion feature linearly and then the combined

kernel is applied to SVM strategy. If βj denotes the op-

timized weight in each sub-kernel, the combined kernel is

defined as follows.

FKcombined(Oi,Oj) =
K
∑

k=1

βkFKk(Oi,Oj) (10)

Here, βj ≥ 0,
∑K

k=1
βk = 1. Note that K means the

number of kernel, i.e., the number of motion features or lo-

cal skeleton features. The MKL method makes sub-kernels

corresponding to motion features. A predicted motion la-

bel is determined by weighting and integrating the motion

features. [16] proposed the strategy to learn kernel weights

βj and SVM parameters in the same time by iterative SVM

learning of single kernel. In this paper, we apply the same

approach.

4. Experiments

We evaluated our approach on two datasets for gesture

and action recognition. Note that 12 marker joints of the up-

per body are used for the former task and 20 marker joints of

the whole body are used for the latter task. As explained be-

fore, we used two types of local skeleton features and write

them as 12D and 18D in the following sections. We also de-

cided empirically that Nk = 10 and the number of hidden

states is 10 in all experiments. Linear kernel and gaussian

kernel are selected as the kernel functions of SVM among

chi-squared, gaussian and linear kernel because they per-

formed best performance in practice for gesture and action

recognition respectively. With respect to parameter settings,

the cost of SVM and the norm of MKL are decided as 1 and

1.5 by cross-validation method in all experiments.

4.1. ChaLearn LAP 2014 Dataset

We used gesture data provided by the competition or-

ganizer of ChaLearn LAP Challenge. It is composed of

three datasets: “training data”, “validation data” (manu-

ally annotated gesture labels) and “test data” (without ges-

ture labels). Each dataset consists of hundreds of files, and

each file contains approximately one-minute gesture data

captured by Kinect v1, including video data (RGB, depth

and user mask data) and position data of marker joints ex-

tracted from the depth sensor. Target gestures are 20 Ital-

ian cultural or anthropological signs performed by many
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Table 3. The comparison of classification rates (%) between FV-

HMM/SVM and FV-HMM/MKL-SVM on the ChaLearn LAP

dataset.
Method Accuracy

FV-HMM/SVM [8] 59.5

FV-HMM/MKL-SVM(12D) 73.1

FV-HMM/MKL-SVM(18D) 74.2

Table 4. The classification rates (%) of each category on the

ChaLearn LAP dataset.
Accuracy Accuracy Accuracy

1 76.7 8 67.0 15 53.6

2 64.6 9 88.5 16 92.7

3 68.1 10 47.6 17 81.5

4 65.4 11 69.8 18 59.0

5 89.5 12 60.7 19 75.9

6 83.5 13 94.2 20 88.2

7 90.6 14 67.4 Avg 74.2

subjects: vattene(1), vieniqui(2), perfetto(3), furbo(4),

cheduepalle(5), chevuoi(6), daccordo(7), seipazzo(8),

combinato(9), freganiente(10), ok(11), cosatifarei(12),

basta(13), prendere(14), noncenepiu(15), fame(16), tan-

totempo(17), buonissimo(18), messidaccordo(19), sonos-

tufo(20). While performing a gesture, he or she also speaks

out the corresponding Italian word. In this experiment, we

used 6,830 gesture samples for training and 3,200 gesture

samples for validation. For more information about the

dataset, refer to [6].

We first evaluated the effect of MKL. Table 3 shows the

comparison between FV-HMM/SVM and FV-HMM/MKL-

SVM. The experimental result shows that our approach

achieved the accuracy of 74.2% at the highest classifica-

tion rate, and significantly outperforms the method in which

motion features corresponding to local parts of human body

are not weighted and integrated. This means that separating

into body parts related to a target motion is effective to im-

prove the performance of gesture recognition. Here, Table 4

shows the classification rates of each category on ChaLearn

LAP dataset. The classification rate of 10, 15 and 18 are

relatively low. This is because these gestures require hand

shape or skeleton features of arm axial rotation to discrimi-

nate from other similar gestures.

We also compared our approach to the state-of-the-art

methods in Tab.5. Here, “Score” means Jaccard Index used

for evaluation in the ChaLearn LAP competition. These

scores reflect that the gesture boundaries are not known on

the assumption of practical case. We show the average ac-

curacy of our approach in Tab.5. It is worth noticing that we

only use skeleton features. Apparently, the combination of

multi-modal features would lead to a higher score.

Finally, we visualized the discriminative weighted graph

Table 5. The comparison to the state-of-the-art approach on the

ChaLearn Lap dataset.

Team Modality Score

Neverova et al. [13] Skeleton, Depth, RGB 0.850

Monnier et al. [11] Depth, RGB 0.834

Chang [3] Skeleton, RGB 0.827

Evangelidis et al. [7] Skeleton, RGB 0.816

Pigou et al. [15] Depth, RGB 0.792

Wu and Shao [20] Skeleton, Depth 0.787

Camgoz et al. [1] Skeleton 0.746

Chen et al. [4] Skeleton, Depth, RGB 0.649

Liang and Zheng [10] Skeleton, Depth 0.597

Our approach Skeleton 74.2

of each gesture category learnt by MKL and the most

weighted parts of human body related to target gesture in

Fig.5. Note that the remarkable part of each gesture is

shown in red, which corresponds to the local skeleton fea-

ture with the highest weight. 1, 2, 8, 10, 11, 12 and 14 are

right arm gestures and the remarkable part of each gesture

is shown in right arm region. 5, 6 and 9 are both arms ges-

tures and the remarkable part of each gesture is shown in

both arms region.

4.2. MSR­Action3D Dataset

We used MSR-Action3D dataset captured by a monoc-

ular video sensor. The dataset consists of temporally seg-

mented action samples and includes 567 action samples in

total, but 10 action samples are not used because of missing

data or erroneous joint positions. The frame rate is 15 fps

and the resolution 640 × 480(width × height). There are 20

actions: high arm wave(HiW), horizontal arm wave(HoW),

hammer(H), hand catch(HC), forward punch(FP), high

throw(HT), draw x(DX), draw tick(DT), draw circle(DC),

hand clap(HC), two hand wave(HW), side boxing(SB),

bend(B), forward kick(FK), side kick(SK), jogging(J), ten-

nis swing(TSw), tennis serve(TSr), golf swing(GS), pick up

& throw(PT). Ten subjects perform each action two or three

times. We divided the dataset into three subsets (AS1, AS2

and AS3), which have 8 action categories respectively, to

prepare the same condition for fair comparisons. Note that

the AS1 and AS2 are grouped together by similarity and the

AS3 are grouped together by complexity. We also applied

the cross-subject(CrSub) test setting as in [9], where the se-

quences for half of the subjects are used for training, and

the remaining sequences of the other half of the subjects for

testing. For more information about the dataset, refer to [9].

We first evaluated the effect of MKL. Table 6 shows the

comparison between FV-HMM/SVM and FV-HMM/MKL-

SVM. As shown in Tab.6, the average accuracies of our ap-

proach(18D) on AS1, AS2 and AS3 under the CrSub test

are 73.4%, 58.5% and 84.3% respectively and the overall
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AS1CrSub AS2CrSub AS3CrSub

Figure 4. Three confusion matrices of FV-HMM/MKL-SVM(18D) in different action sets of the CrSub test on the MSR-Action 3D

dataset: AS1CrSub(Left), AS2CrSub(Center) and AS3CrSub(Right).

Table 6. The comparison of classification rates (%) between FV-

HMM/SVM and FV-HMM/MKL-SVM on the MSR-Action3D

dataset.

Method
Accuracy

AS1 AS2 AS3 Overall

FV-HMM/SVM [8] 54.3 39.4 67.1 53.6

FV-HMM/MKL-SVM(12D) 72.3 56.8 82.1 70.4

FV-HMM/MKL-SVM(18D) 73.4 58.5 84.3 72.1

accuracy is 72.1%. While the accuracy of AS3CrSub is

84.3%, the classification rates in AS2CrSub are relatively

low. This is because similar motions are more sensitive to

the larger intra-class variations generated in cross-subject

tests. The experimental result also shows that our approach

significantly outperforms the method in which motion fea-

tures corresponding to local parts of human body are not

weighted and integrated. This means that separating into

body parts related to a target motion is effective to im-

prove the performance of motion recognition. Here, Fig-

ure 4 shows the confusion matrices of our approach on

AS1CrSub, AS2CrSub and AS3CrSub. Each row corre-

sponds to actual label and each column denotes predicted

label. In AS1CrSub, several actions are confused by PT, for

example H, FP and HT. In AS2CrSub, DX, DT and DC are

mutually confused because of partially similar motions. In

AS3CrSub, actions are significantly different and the clas-

sification results are high, except for HT and TSw.

We also compared our approach to the state-of-the-art

methods in Tab.7. As shown in Tab.7, the classification

rates are low in average accuracies compared to [9], but

our approach outperforms the accuracies of AS1CrSub and

AS3CrSub by 0.5 and 5.1.

Finally, we visualized the discriminative weighted graph

of each action category learnt by MKL and the most

weighted parts of human body related to target action in

Fig.6. Note that the remarkable parts of each action are

shown in red, which correspond to the local skeleton fea-

Table 7. The comparison of classification rate (%) to the state-of-

the-art approach on the MSR-Action3D dataset.

Method Accuracy

Latent-Dynamic CRF [12] 64.8

Canonical Poses [5] 65.7

FV-HMM/MKL-SVM(18D) 72.1

Action Graph on Bag of 3D Points [9] 74.7

EigenJoints [21] 82.3

Skeletal Quads [7] 89.9

tures with the 1st and 2nd highest weight. J is the jog-

ging action and the remarkable part is shown in both legs

region. HC and HW are the hand clapping and two hand

waving actions respectively and the remarkable part of each

action is shown in both arms region. FK and SK are the for-

ward kicking and side kicking actions respectively and the

remarkable part of each action is shown in one leg region.

5. Conclusion

We have proposed a skeleton-based motion recognition

system focusing on local parts of human body closely re-

lated to target motion. Motion features are represented as

Fisher vectors parameterized by human motion model from

Local Skeleton Features, and weighted and integrated by us-

ing Multiple Kernel Learning. The comparisons of classifi-

cation rates on two datasets show better performance of mo-

tion recognition in the experiments. This means that the de-

sign of motion features is effective for motion recognition.

Although the proposed method does not record the high-

est performance, our approach can apply motion derivatives

such as relative position, velocity and acceleration by using

Inverse Kinematics. This extension could be expected to

increase the classification rate because the derivatives with

respect to time are effective to discriminate between similar

motions. In addition, our approach can know the remark-

able parts of human body related to target motion and pro-

vide a clue to recognize the human motion more precisely.
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Figure 5. The discriminative weighted graph of each gesture category and the most weighted parts of human body related to target gesture.
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