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Abstract

Deep learning, in particular Convolutional Neural Net-

work (CNN), has achieved promising results in face recog-

nition recently. However, it remains an open question: why

CNNs work well and how to design a ‘good’ architecture.

Existing studies tend to focus on reporting CNN architec-

tures that work well for face recognition rather than inves-

tigate the reason. In this work, we conduct an extensive

evaluation of CNN-based face recognition systems (CNN-

FRS) on a common ground to make our work easily repro-

ducible. Specifically, we use public database LFW (Labeled

Faces in the Wild) to train CNNs, unlike most existing CNNs

trained on private databases. We propose three CNN archi-

tectures which are the first reported architectures trained

using LFW data. This paper quantitatively compares the

architectures of CNNs and evaluates the effect of different

implementation choices. We identify several useful prop-

erties of CNN-FRS. For instance, the dimensionality of the

learned features can be significantly reduced without ad-

verse effect on face recognition accuracy. In addition, a

traditional metric learning method exploiting CNN-learned

features is evaluated. Experiments show two crucial factors

to good CNN-FRS performance are the fusion of multiple

CNNs and metric learning. For reproducibility, our source

code and models will be made publicly available.

The conventional face recognition pipeline consists of

four stages: face detection, face alignment, feature extrac-

tion (or face representation) and classification. Perhaps the

single most important stage is feature extraction. In con-

strained environments, hand-crafted features such as Local

Binary Patterns (LBP) [1] and Local Phase Quantisation

(LPQ) [2, 4] have achieved respectable face recognition

performance. However, the performance using these fea-

∗ indicates equal contribution

tures degrades dramatically in unconstrained environments

where face images cover complex and large intra-personal

variations such as pose, illumination, expression and occlu-

sion. It remains an open problem to find an ideal facial fea-

ture which is robust for face recognition in unconstrained

environments (FRUE). In the last three years, convolutional

neural networks (CNN) rebranded as ‘deep learning’ have

achieved very impressive results on FRUE. Unlike the tra-

ditional hand-crafted features, the CNN learned features are

more robust to complex intra-personal variations. Notably,

the top three face recognition rates reported on the FRUE

benchmark database LFW (Labeled Faces in the Wild) [12]

have been achieved by CNN methods [33, 25, 21]. The suc-

cess of the latest CNNs on FRUE and more general object

recognition task [14, 9, 13] stems from the following: (1)

much larger labeled training sets are available; (2) GPU im-

plementations greatly reduce the time to train a large CNN

and (3) CNNs greatly improve the model generation capac-

ity by introducing effective regularisation strategies, such as

dropout [10].

Despite the promising performance achieved by CNNs,

it remains unclear how to design a ‘good’ CNN architec-

ture for a specific classification task due to the lack of the-

oretical guidance. However, some insights into CNN de-

sign can be gained by experimental comparisons of dif-

ferent CNN architectures. The work [5] made such com-

parisons and comprehensive analysis for the task of ob-

ject recognition. However, face recognition is very differ-

ent from object recognition. Specifically, faces are aligned

via 2D similarity transformation or 3D pose correction to

a fixed reference position in images before feature extrac-

tion while object recognition usually does not conduct such

alignment, and therefore objects appear in arbitrary posi-

tions. As a result, the CNN architectures used for face

recognition [24, 21, 25, 33, 28] are usually different from

those for object recognition [14, 20, 26, 9]. For the task

4321142



of face recognition, there exists no systematic evaluation

of the effect of different CNN design and implementation

choices. In addition, published CNNs [24, 33, 28, 31] are

trained on different face databases, most of which are not

publicly available. The difference of training sets might re-

sult in unfair comparisons of CNN architectures. To avoid

this, the comparison of different CNNs should be conducted

on a common ground.

In this paper, we clarify the contributions of different

components of CNN-based face recognition systems by

conducting a systematic evaluation. To make our work re-

producible, all the networks evaluated are trained on the

publicly available LFW database. Specifically, our contri-

butions are as follows:

• Different CNN architectures including number of fil-

ters and layers are compared. We also evaluate the

face recognition performance using features from dif-

ferent layers: pooling, fully connected and softmax

layers. We find the features from softmax layer per-

form slightly better than those from the most widely

used fully connected layer. To our knowledge, this is

the first work that compares the performance of these

features for face recognition.

• Various implementation details, such as data augmen-

tation, pixel value type (colour or grey) and similarity,

are evaluated.

• We quantitatively analyse how downstream metric

learning methods such as joint Bayesian [6] can boost

the effectiveness of the CNN-learned features. In addi-

tion, we evaluate the impact of multiple network fusion

introduced by [24].

• Finally, source code for our CNN architectures will be

made publicly available (the training data is already

public). This will accelerate future research, and also

provides a competitive baseline for face recognition to

the community.

1. Related Work

CNN methods have drawn considerable attention in the

field of face recognition in recent years. In particular, CNNs

have achieved impressive results on FRUE. In this section,

we briefly review these CNNs.

The researchers in Facebook AI group trained an 8-layer

CNN named DeepFace [28]. The first three layers are con-

ventional convolution-pooling-convolution layers. The sub-

sequent three layers are locally connected, followed by 2

fully connected layers. Pooling layers make learned fea-

tures robust to local transformations but result in missing

local texture details. Pooling layers are important for ob-

ject recognition since the objects in images are not well

aligned. However, face images are well aligned before

training a CNN. It is claimed in [28] that one pooling layer

is a good balance between local transformation robustness

and preserving texture details. DeepFace is trained on a

large face database which contains four million facial im-

ages of 4,000 subjects. Another contribution of [28] is the

3D face alignment. Traditionally, face images are aligned

using 2D similarity transformation before they are fed into

CNNs. However, this 2D alignment cannot handle out-of-

plane rotations. To overcome this limitation, [28] proposes

a 3D alignment method using an affine camera model.

In [24], a CNN-based face representation, referred to as

Deep hidden IDentity feature (DeepID), is proposed. Un-

like DeepFace whose features are learned by one single big

CNN, DeepID is learned by training an ensemble of small

CNNs, used for network fusion. The input of one single

CNN is the crops/patches of facial images and the features

learned by all CNNs are concatenated to form a powerful

feature. Both RGB and grey crops extracted around facial

points are used to train the DeepID. The length of DeepID

is 2 (RGB and Grey) × 60 (crops) × 160 (feature length of

one network) = 19,200. Each network consists of 4 con-

volutional layers, 3 max pooling layers and 2 fully con-

nected layers shown in Table 1. DeepID uses identification

information only to supervise the CNN training. In com-

parison, DeepID2 [21], an extension of DeepID, uses both

identification and verification information to train a CNN,

aiming to maximise the inter-class difference but minimise

the intra-class variations. To further improve the perfor-

mance of DeepID and DeepID2, DeepID2+ [25] is pro-

posed. DeepID2+ adds the supervision information to all

the convolutional layers rather than the topmost layers like

DeepID and DeepID2. In addition, DeepID2+ improves the

number of filters of each layer and uses a much bigger train-

ing set than DeepID and DeepID2 . In [25], it is also dis-

covered that DeepID2+ has three interesting properties: be-

ing sparse, selective and robust.

The work [31] proposes another face recognition

pipeline, referred to as WebFace, which also learns the face

representation using a CNN. WebFace collects a database

which contains around 10,000 subjects and 500,000 images

and makes this database publicly available. Motivated by

the very deep architectures of [20, 26], WebFace trains a

much deeper CNN than those [24, 21, 25, 28] used for face

recognition as shown in Table 1. Specifically, WebFace

trains a 17-layer CNN which includes 10 convolutional lay-

ers, 5 pooling layers and 2 fully connected layers detailed in

Table 1. Note that the use of very small convolutional filters

(3×3), which avoids too much texture information decrease

along a very deep architecture, is crucial to learn a powerful

feature. In addition, WebFace stacks two 3×3 convolutional

layers (without pooling in between) which is as effective as

a 5×5 convolutional layer but with fewer parameters.
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Table 1. Comparisons of 3 Published CNNs

Input Image 1 Architecture 2 No. of para.
Patch

Fusion

Feature

Length
Training set

DeepFace [28] 152×152×3

C1:32×11×113, M2, C3:16×9×9,

L4: 16×9×9, L5:16×7×7, L6:16×5×5,

F7, Loss

120M+ No 4096
120M+ images

4K+ subjects

DeepID [24]
39×31×{3,1}
31×31×{3,1}

C1:20×4×4, M2, C3:40×3×3, M4,

C5:60×3×3, M6, C7:80×2×2,

F8, Loss

101M+ Yes 19200
100K+ images

10K+ subjects

WebFace [31] 100×100×1

C1:32×3×3, C2:64×3×3, M3,

C4:64×3×3, C5:128×3×3, M6,

C7:96×3×3, C8:192×3×3, M9,

C10:128×3×3, C11:256×3×3, M12,

C13:160×3×3, C14:320×3×3, A15,

F16, Loss

5M+ No 320
500K+ images

10K subjects

1 The input image is represented as width×height×channels. 1 and 3 mean grey or RGB images respectively.
2 The capital letters C, M, L, A, F represent convolutional, max pooling, locally connected, average pooling and fully connected layers.
3 The number of filters and filter size are denoted as ‘num × size × size’

Because face recognition is a special case of object

recognition, good architectures for object recognition can

be introduced for face recognition. Motivated by this, the

work Facenet [18] adapted Zeiler&Fergus [32] style net-

works and the recent Inception [26] type networks from

the field of object recognition to face recognition. Unlike

the other face CNNs [31, 21, 28] which learn a metric or

classifier, Facenet simply uses the euclidean distance to de-

termine the classification of same and different, showing

that the learned features are very discriminative. Finally

DeepID3 [22] also modified two famous networks: Incep-

tion [26] and VGG Net [20] by adding supervision infor-

mation to each layer and network ensemble fusion.

Table 1 compares three typical CNNs (DeepFace [28],

DeepID [24], WebFace [31]). It is clear that their architec-

tures and implementation choices are rather different, which

motivates our work. In this study, we make systematic eval-

uations to clarify the contributions of different components

on a common ground.

2. Methodology

LFW is the de facto benchmark database for FRUE.

Most existing CNNs [28, 24, 21, 25] train their networks

on private databases and test the trained models on LFW.

In comparison, we train our CNNs only using LFW data to

make our work easily reproducible. In this way, we can-

not directly use the reported CNN architectures [28, 24, 21,

25, 31] since our training data is much less extensive. We

introduce three architectures adapted to our training set in

subsection 2.1. To further improve the discrimination of

CNN-learned features, metric learning method is usually

used. One state of the art metric learning method, the Joint

Bayesian model [6], is detailed in subsection 2.2.

2.1. CNN Architectures

How to design a ‘good’ CNN architecture remains an

open problem. Generally, the architecture depends on the

size of training data. Less data should drive a smaller net-

work (fewer layers and filters) to avoid overfitting. In this

study, the size of our training data is much smaller than

those used by [28, 24, 21, 25, 31]; therefore, smaller ar-

chitectures are designed.

We propose three CNN architectures suitable for LFW.

These architectures are of three different sizes: small

(CNN-S), medium (CNN-M), and large (CNN-L). CNN-S

and CNN-M have 3 convolutional layers and two fully con-

nected layers, while CNN-M has more filters than CNN-S.

Compared with CNN-S and CNN-M, CNN-L has 4 convo-

lutional layers. The activation function we used is REc-

tification Linear Unit (RELU) [14]. In our experiments,

dropout [10] did not improve the performance of our CNNs,

therefore, it is not applied to our networks. Following

[24, 31], softmax is used in the last layer for predicting one

of K (the number of subjects in the context of face recogni-

tion) mutually exclusive classes. During training, the learn-

ing rate is set to 0.001 for three networks, and the batch size

is fixed to 100. Table 2 details these three architectures.

2.2. Metric Learning

Metric Learning (MeL), especially Discriminative Met-

ric Learning is a popular means to enhance the feature with

the goal that the similarity measure serves as a better bridge

to the label similarity. Intuitively, it aims to ‘pull’ the ob-

jects that have the same label closer while ‘pushing’ the ob-

jects that have different labels away. In the area of face ver-

ification, metric learning is usually an extra step that tunes

the feature learned from the former steps before feeding

them into a classifier. Among MeL methods, Joint Bayesian
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Table 2. Our CNN Architectures
CNN-S CNN-M CNN-L

conv1

12 × 5 × 5

st. 1, pad 0

x2 pool

16 × 5 × 5

st. 1, pad 0

x2 pool

16 × 3 × 3

st. 1, pad 1

-

conv2

24 × 4 × 4

st. 1, pad 0

x2 pool

32 × 4 × 4

st. 1, pad 0

x2 pool

16 × 3 × 3

st. 1, pad 1

x2 pool

conv3

32 × 3 × 3

st. 2, pad 0

x2 pool

48 × 3 × 3

st. 2, pad 0

x2 pool

32 × 3 × 3

st. 1, pad 1

x3 pool, st. 2

conv4

- -

48 × 3 × 3

st. 1, pad 1

x2 pool

fully connected

160 160 160

5000, softmax 5000, softmax 5000, softmax

Convolutional layers are detailed in 3 sub-rows: the 1st indicates

the number of filters and filter size; the 2nd specifies the convolu-

tional stride (‘st.’) and padding (‘pad’); and the 3rd specifies the

max-pooling downsampling factor. For fully connected layers, we

specify their dimensionality: 160 for feature length and 5000 for

the approximate number of classes/subjects.

(JB) [6] model is the most widely used one applied to the

learned CNN features [24, 21, 31].

JB models the face verification task as a Bayesian de-

cision problem. Let HI and HE represent intra-personal

(matched) and extra-personal (unmatched) hypotheses, re-

spectively. Based on the MAP (Maximum a Posteriori) rule,

the decision is made by:

r(x1, x2) = log
P (x1, x2 | HI)

P (x1, x2 | HE)
(1)

where x1 and x2 are features of one face pair. It is assumed

that P (x1, x2 | HI) and P (x1, x2 | HE) have Gaussian

distributions N(0, SI) and N(0, SE), respectively.

Before discussing the way of computing SI and SE , we

first explain the distribution of a face feature. A face x is

modelled by the sum of two independent Gaussian variables

(identity µ and intra-personal variations ε):

x = µ+ ε (2)

µ and ε follow two Gaussian distributions N(0, Sµ) and

N(0, Sε), respectively. Sµ and Sε are two unknown covari-

ance matrices and they are regarded as face prior. For the

case of two faces, the joint distribution of {x1, x2} is also

assumed as a Gaussian with zero mean. Based on Eq. (2),

the covariance of two faces is:

cov(x1, x2) = cov(µ1, µ2) + cov(ε1, ε2) (3)

Then SI and SE can be derived as:

SI =

∣

∣

∣

∣

Sµ + Sε Sµ

Sµ Sµ + Sε

∣

∣

∣

∣

(4)

and

SE =

∣

∣

∣

∣

Sµ + Sε 0
0 Sµ + Sε

∣

∣

∣

∣

(5)

Clearly, r(x1, x2) in Eq. (1) only depends on Sµ and Sε,

which are learned from data using an EM algorithm [6].

3. Evaluation

LFW contains 5,749 subjects and 13,233 images and the

training and test sets are defined in [12]. LFW defines

three standard protocols (unsupervised, restricted and un-

restricted) to evaluate face recognition performance. ‘Un-

restricted’ protocol is applied here because the information

of both subject identities and matched/unmatched labels is

used in our system. The face recognition rate is evaluated

by mean classification accuracy and standard error of the

mean.

The images we used are aligned by deep funneling [11].

Each image is cropped to 58×58 based on the coordinates

of two eye centers. It is commonly believed that data aug-

mentation can boost the generalisation capacity of a neu-

ral network; therefore, each image is horizontally flipped.

The mean of the images is subtracted before network train-

ing. The open source implementation MatConvNet [30] is

used to train our CNNs. In the following sections, different

components of our CNN-based face recognition system are

evaluated and analysed.

3.1. Architectures

It is an open problem on how to design the architecture of

a neural network. Though the high level structure of CNN

usually starts with a number of convolutional layers, fol-

lowed by a (fewer) number of fully-connected layers, the

choices of filter size, number of neurons per layer, and stride

size etc are usually determined by trial-and-error. Instead

of reporting the final design directly, we show some inferior

designs on the way to finding the optimal one. Our strategy

is as follows: we start from a relatively small network, then

extend it (by adding more neurons and/or layers) while the

performance improves, and stop when it gets worse as the

CNN size increases, which indicates that overfitting occurs.

In the comparison of different architectures, RGB colour

images are fed into CNNs and feature distance is measured
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by cosine distance. (Note that cosine distance is signif-

icantly better than euclidean for this task). The perfor-

mance of the architectures is compared in Table 3. CNN-

M achieves the best face recognition performance, indicat-

ing that CNN-M generalises best among these three archi-

tectures using only LFW data. From this point, all evalu-

ations are conducted using CNN-M. The face recognition

rate 0.7882 of CNN-M is considered as the baseline, and all

the remaining investigations will be compared with it.

Table 3. Comparison of our three CNN architectures.

Model Accuracy

CNN-S 0.7828±0.0046

CNN-M 0.7882±0.0037

CNN-L 0.7807±0.0035

3.2. Implementation Details

Grey vs Colour In [31] and [28], CNNs are trained

using grey-level and RGB colour images, respectively. In

comparison, both grey and colour images are used in [24].

We quantitatively compare the impact of these two images

types on face recognition. Using grey and colour images

yields face recognition accuracies of 0.7830±0.0077 and

0.7882±0.0037 respectively. These results are very close.

Although colour images contain more information, they do

not deliver a significant improvement.

Data Augmentation Data augmentation is a set of label-

preserving transforms that introduce some new instances

without collecting the new data. Flipping and mirroring

images horizontally producing two samples from each, is

a commonly used data augmentation technique for face

recognition. In all our evaluations, both original and mir-

rored images are used for training. However, little discus-

sion in the existing work analysed the impact of image flip-

ping during testing. Naturally, the test images can also be

mirrored. A pair of test images can produce 2 new mir-

rored ones. These 4 images can generate 4 pairs instead of

one original pair. To combine these 4 images/pairs, we im-

plemented two fusion strategies: feature and score fusion.

For feature fusion, the learned features of a test image and

its mirrored one are concatenated to one feature, which is

then used for score computing. For score fusion, 4 scores

generated from 4 pairs are averaged to one score. Table 4

compares the three scenarios: no flip during test, feature and

score fusion. As is shown in Table 4, mirroring images does

improve face recognition performance. In addition, feature

fusion works slightly better than score fusion, however, the

improvements are not statistically significant.

3.3. Properties of the Learned Features

While a common pipeline of deep learning is to use the

output of the penultimate layer (fully-connected layer) as a

Table 4. Comparison of test-time data augmentation strategies

Technique Accuracy

no flip on test set 0.7882 ± 0.0037

feature fusion 0.7895 ± 0.0036

score fusion 0.7893 ± 0.0035

Figure 1. The impact of feature dimensionality in PCA space on face

recognition rate.

feature vector and feed it into a classifier, we analyse the

impact of some post-processing methods on these feature

vectors. It is also interesting to know the performance of

other layers apart from the penultimate one. In this section,

we analyse (1) the effectiveness of feature normalisation (2)

the effects of dimensionality reduction and (3) the efficacy

of features from different layers.

Feature normalisation First, we discuss feature normal-

isation, which standardises the range of features and is gen-

erally performed as a data preprocessing step. For example,

to implement eigenface [29], the features (pixel values) are

usually normalised via Eq. (6) before training a PCA space.

x̂ =
x− µx

σx

(6)

where x ∈ R and x̂ ∈ R are original and normalised fea-

ture vectors, respectively. µx and σx are the mean and

standard deviation of x. Motivated by this, our CNN fea-

tures are normalised by Eq. (6) before computing cosine

distance. The accuracies with and without normalisation

are 0.7927±0.0040 and 0.7882±0.0037, respectively. Thus

normalisation is effective to improve recognition rate.

Feature dimensionality reduction Second, we perform

dimensionality reduction on the learned 160D features us-

ing PCA. Surprisingly, as shown in Figure 1, only 16 dimen-

sions of the PCA feature space produces comparable face

recognition rates to those of the original space. It is a very

interesting property of CNN-learned features, because low

dimensionality can significantly reduce memory and com-

putation requirements, which is crucial for large scale ap-

plications or for mobile devices such as smartphones.

Features of Different Layers We next evaluate the face

recognition performance of the features extracted from dif-

ferent layers. It is common knowledge that the features

of topmost layers are more discriminative than those of

lower layers. It results from the fact that the higher lay-

ers can learn more abstract, invariant and semantic features.

Usually, the features from the fully connected (FC) layers
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are used for different computer vision tasks such as ob-

ject recognition, action recognition and segmentation be-

cause these features are compact, invariant and discrimina-

tive. Two natural questions are: 1) Do FC features work

better than others? and 2) Do FC features and others com-

plement each other? To our knowledge, the existing works

about face recognition do not answer these two questions.

We answer question 1) in this section and 2) in the next.

For 1), we evaluate the face recognition performance

using the features from three topmost layers of CNN-M:

the last pooling layer (Pool4), fully connected layer (FC)

and softmax layer (Softmax). Though the features obtained

from the fully connected layer is commonly used in clas-

sifier training, there is very limited spatial information re-

tained in them. On the other hand, the features from the

convolutional layers contains some local and spatial infor-

mation. It happens that the higher the layers are, the more

discriminative power they have. The features extracted from

the higher convolutional layers could be beneficial along

with those extracted from the top fully-connected layers.

Specifically, the output of Pool4 is a matrix of 48×5×5,

which is converted to a 1200D feature vector. Table 5 com-

pares these three layers. The face recognition performance

of Pool4 is much worse than the other two. The perfor-

mance of Softmax is slightly higher than that of FC because

i) Softmax layer is deeper than FC, and can extract more ab-

stract and semantic information; and ii) The dimensionality

of Softmax is much higher than FC, leading to a stronger

representation capacity. Note that using softmax layer as a

representation has president in the related idea of prototype

similarity representations [15].

Table 5. Impact of layer choice on face recognition rate.

Layer Accuracy Feature dimension

Pool4 0.7203 ± 0.0041 1200

FC 0.7882 ± 0.0037 160

Softmax 0.7937 ± 0.0044 4000

3.4. Network Fusion

The work DeepID [24] and its variants [21, 25] exploit

fusion of multiple networks. Specifically, the images of dif-

ferent facial regions and scales are separately fed into net-

works that have the same architecture. The features learned

from different networks are concatenated to form a power-

ful face representation, which implicitly captures the spatial

information of facial parts. The size of these images can be

different as shown in Table 1. In [24], 120 networks are

trained separately for this fusion. However, it is not very

clear how significant this fusion to the performance. To

clarify this issue, we implement network fusion.

Figure 2. Sample crops in LFW. Rows correspond to 5 regions from 4

corners and center; Columns correspond to 6 scales.

3.4.1 Settings

The landmark AlextNet [14] model is trained using im-

age crops from four corners and the center. Motivated

by AlexNet, we extract d × d crops from these five re-

gions and then upsample them to the original image size

58×58. The crops have 6 different scales: d = floor(58×
{0.3, 0.4, 0.5, 0.6, 0.7, 0.8}), where floor is the operator to

get the integer part. Therefore we obtain 30 local patches

with size of 58 × 58 from one original image. Figure 2

illustrates these 30 crops.

Note that it is an open question which regions are the

most discriminative. Apart from choosing regions from

four corners and the center, semantic regions are chosen

for training networks by [17] and [24]. Specifically, fa-

cial landmarks are first detected, then the regions centered

at those landmarks are chosen. These regions can be either

rectangles or squares. However, this method depends on

many accurately detected landmarks. It is beyond the scope

of this work to investigate how to choose the most discrimi-

native regions and how many such regions are most suitable

for the task of face recognition. For simplicity, therefore,

we choose the mentioned 30 regions.

To evaluate the performance of network fusion, we sep-

arately train 30 different networks using these crops. Two

fusion strategies are applied to these 30 networks: 1) con-

catenating all the features of 30 networks (C-Fusion) and 2)

averaging the feature values over 30 networks (A-Fusion).

3.4.2 Results

In this section, we evaluate the effectiveness of network

fusion in Figs 3, 4, 5 and 6. Three single layers (Pool4,

FC and Softmax) and one combination of FC and Soft-

max (FC+Softmax), which is a fusion of these 2 layers,

are evaluated. The 30 crops are sorted in descending or-
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Figure 3. The performance of C-Fusion

der according to face recognition accuracies. The x axis

of Figs 3, 4 and 5 represents the number of sorted crops.

In other words, the number x′ in x axis means the x′ most

discriminative patches are used for C-Fusion or A-Fusion.

First, we investigate whether the features of different lay-

ers complement each other. The features from two best lay-

ers, FC and Softmax evaluated in Table 5, are fused with

C-Fusion and A-Fusion in Fig. 3 and Fig. 4 respectively.

Softmax+FC works consistently better than single Softmax

or FC in the case of both C- and A-Fusion, meaning that

the features from Softmax are complementary to the most

widely used FC features. To our knowledge, it is the first

investigation on the combination of CNN features from dif-

ferent layers in the field of face recognition.

Second, we analyse how network fusion performance

is affected by the number of local patches. For C-Fusion,

Fig. 3 shows that face recognition accuracy increases with

the number of patches approximately in the region x′ ∈
(1, 16), confirming the effectiveness of network fusion.

However, in the region x′ > 16, performance decreases

slightly because the less discriminative patches degrade fu-

sion performance. Similar results with A-Fusion can also

be observed in Fig. 4 for the same reasons. It means that in-

creasing the number of patches cannot uniformly improve

results, as less discriminative patches eventually degrade

performance. This conclusion is reflected by [21] which

chooses 25 most discriminative patches out of 400 ones,

ignoring those less discriminative ones, though the perfor-

mance over the number of regions is not detailed in [21].

After presenting the effectiveness of C- and A-Fusion,

we compare these two fusion strategies in Figure 5. The

y axis is the accuracy difference obtained by subtracting

the A-Fusion from C-Fusion accuracy. It is clear that all

the differences are positive, meaning that C-Fusion consis-

tently outperforms A-Fusion. However, the feature dimen-

Figure 4. The performance of A-Fusion

Figure 5. The accuracy margin of C-Fusion over A-Fusion.

sionality of A-Fusion is much less than C-Fusion. For ex-

ample, given 30 networks, the dimensionality of Softmax

using C-Fusion is 30 × 1200, in comparison with 1200 us-

ing A-Fusion. Thus, in real applications, the choice of fu-

sion methods depends on both accuracy and storage space

requirements.

Last but not least, we compare the performance with and

without network fusion. The best network fusion results

of C-Fusion are compared with those of a single network

trained using the images of the whole face in Fig. 6. It is

clear that network fusion greatly improves face recognition

performance for all the three layers. The performance of a

single network trained with a fixed image region is limited,

and the blessing of dimensionality [7] is again observed

when hand-crafted feature extraction is replaced by CNNs.

Thus dense sampling remains useful in era of deep learning
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Figure 6. Comparison of single networks versus network fusion

3.5. Metric Learning

Metric learning (MeL) is independent of facial features.

Thus the features fed into MeL can be hand-crafted (SIFT,

LBP, Fisher vector [19]) or learning-based (CNN [24, 31]

and the learning-based descriptor [3]). In this work, the fea-

tures we use are learned from the CNN framework and Joint

Bayesian method (JB) is used for metric learning.

To evaluate the performance of JB, we use the features

from 1) the FC layer, which is the most widely used and 2)

FC+Softmax layer, which is used to validate whether these

features complement each other based on the learned met-

ric. C-Fusion is used for FC features due to higher accu-

racy and acceptable dimensionality, and A-Fusion is used

for Softmax features to reduce the dimensionality.

Figure 7 illustrates the improvement gained by apply-

ing JB to the FC and FC+Softmax layers. First, the per-

formance of FC and FC+Softmax using JB (FC+JB and

FC+Softmax+JB in Fig. 7) is significantly better than that

without JB, showing the importance of metric learning.

Second, JB consistently improves face recognition rate with

the increasing number of regions. This is different from to

the result without using JB (FC and FC+Softmax in Fig. 7),

the performance of which eventually decreases when the

less discriminative regions (regions beyond about16) are

used. It means JB is more robust and can extract useful

information even from less discriminative regions.

3.6. Comparison with State of the Art

We finally compare our full method (FC+Softmax+JB

with 30 regions) with non-commercial state of the art meth-

ods. The results in Table 6 show that our method is better

than [27, 8, 16] but worse than [7, 19, 23]. However, [7]

needs to detect many accurate facial landmarks to assist fea-

ture extraction, we do not; Compared with the fisher vector

face [19], the feature dimensionality of our model is much

lower. [23] generates a large number of new pairs to train

Figure 7. Face recognition accuracy using Joint Bayesian method

the model, while we do not.

Table 6. Comparison with state-of-the-art methods on LFW under

‘unrestricted, label-free outside data’

Method Accuracy

LBP multishot [27] 0.8517± 0.0061
LDML-MkNN [8] 0.8750± 0.0040
LBP+PLDA [16] 0.8733± 0.0055

High-dim LBP [7] 0.9318± 0.0107
Fisher vector faces [19] 0.9303± 0.0105
ConvNet+RBM [23] 0.9175± 0.0048
Network fusion +JB 0.8870 ± 0.0063

4. Conclusions

We presented a rigorous empirical evaluation of CNN-

based face recognition systems. Specifically, we quantita-

tively evaluate the impact of different architectures and im-

plementation choices of CNNs on face recognition perfor-

mances on common ground. We have shown that network

fusion can significantly improve the face recognition per-

formance because different networks capture the informa-

tion from different regions and scales to form a powerful

face representation. In addition, metric learning such as the

Joint Bayesian method further improves face recognition

greatly. Last, we observed that fusion of features from dif-

ferent CNN layers can boost face recognition performance.
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