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Abstract

Apparent age estimation from face image has attracted
more and more attentions as it is favorable in some real-
world applications. In this work, we propose an end-to-
end learning approach for robust apparent age estimation,
named by us AgeNet. Specifically, we address the appar-
ent age estimation problem by fusing two kinds of models,
i.e., real-value based regression models and Gaussian la-
bel distribution based classification models. For both kind
of models, large-scale deep convolutional neural network is
adopted to learn informative age representations. Another
key feature of the proposed AgeNet is that, to avoid the prob-
lem of over-fitting on small apparent age training set, we ex-
ploit a general-to-specific transfer learning scheme. Tech-
nically, the AgeNet is first pre-trained on a large-scale web-
collected face dataset with identity label, and then it is fine-
tuned on a large-scale real age dataset with noisy age label.
Finally, it is fine-tuned on a small training set with appar-
ent age label. The experimental results on the ChalLearn
2015 Apparent Age Competition demonstrate that our A-
geNet achieves the state-of-the-art performance in apparent
age estimation.

1. Introduction

Facial age estimation has drawn increasing attention in
computer vision with its potential applications on video
surveillance, access control, and demography [4,[10]. How-
ever, it is very hard to annotate the real age of a person in
a given photo unless the data of birth of the person and the
photo acquisition date are both known. Morph-II and
FG-NET are two prevalent benchmarks for age estima-
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Output Maximum Confidence Age

1-dimension age

Score Fusing

Age Classifier Age Regressor

Fully Connected Layer

Figure 1. Overview of the proposed AgeNet: deeply learned re-
gressor and classifier approach for robust apparent age estimation.

tion, howbeit Morph-II contains only Mugshot photos and
FG-NET has only 1,002 images. Thus, lacking of large-
scale real-world benchmark has become a big problem in
studying robust age estimation algorithms.

Recently, apparent age becomes a new measurement to-
wards real age. As defined, apparent age is labeled by d-
ifferent volunteers given only the images containing the s-
ingle individuals. Compared with real age, the annotated
apparent age could be mutable, but the mean of the label-
s from different annotators are highly stable and thus can
be defined as the apparent age. In this work, we adopt the
first state-of-the-art apparent age dataset provided by the
ICCV2015 Looking at People Challenge to study the ap-
parent age estimation problem [3]]. This dataset contains
4,699 images in total, each with a mean apparent age an-
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Figure 2. Some example images in the ICCV2015 Looking for
People Challenge apparent age dataset, where apparent age and

standard deviation are given under the images.

notation and the standard deviation of labeling. Figure 2]
shows some examples in this apparent age dataset. Facial
images in this dataset is collected in real-world environmen-
t and have variations in pose, occlusion, lighting, ethnicity
and color mode.

This challenge is the first study of apparent age estima-
tion from facial images. So we mainly give a brief literature
review of real age estimation from facial image. Briefly s-
peaking, face age estimation consists of two crucial stages:
age pattern representation and age estimator learning.

Age pattern representation: Like many other comput-
er vision tasks, feature representation is a basic problem
in age estimation. Many state-of-the-art methods employ
hand-crafted features to represent the age pattern of a face.
For instance, Guo et al. proposed the Biologically-Inspired
Features (BIF) [9] for aging pattern representation. Fur-
thermore, Liu et al. proposed to fuse multiple hand-crafted
local descriptors such as LBP [21]], HOG [2] and BIF [9]
for more robust representation [19].

Age estimator learning: Given age pattern representa-
tion, age estimator aims to predict the age of the face in the
image. Generally, age estimator can be modeled as clas-
sification model [6]], regression model [8] 5, 201,
a combination of both regression and classification [[7}
or ranking model [I7]. In methods of modeling the
age estimator as classification, usually a class label is as-
signed for each age. Geng et al. proposed an age estima-
tion method named Aging Pattern Subspace (AGS), which
models the long-term aging process of a person and esti-
mates the person’s age by minimizing the reconstruction er-
ror in corresponded AGS [6]. On the contrary, some oth-
er methods model the age estimation as regression prob-
lem, i.e., directly regress the age value by using the typ-
ical regression methods such as support vector regression
(SVR) or partial least squares (PLS). Among these repre-
sentative works, Guo et al. adopted the kernel partial least
squares (KPLS) regression for age estimation, which learns

dimension-reduced feature and the aging estimator simul-
taneously in a joint learning framework [8]]. Zhang et al.
formulated age estimation as a multi-task regression prob-
lem and learn person-specific age estimator via a multi-task
warped Gaussian process (MTWGP) model [32]. Geng
et al. proposed a label distribution method to encode age
where one face image can contribute to not only the learn-
ing of its real age, but also the learning of its adjacent ages
[3]. Ni et al. proposed a multi-instance kernel regression
algorithm to learn universal age estimator from noisy we-
b face images [20]. For the combination of classification
and regression approaches, Guo et al. adopted a locally ad-
justed robust regressor to divide age into several age group-
s and used classifier to determine the age within a group
[7). [19] proposed a group based age estimation framework
named GEF which consists of three stages, i.e., age group-
ing, age estimation within age groups and decision fusion
for final age estimation. In ranking based method, the order
between ages is modeled. [28] proposed a rank-boosting
based method and proposed a relative attribute tree
based method to model the relative aging relationship be-
tween different ages.

Most of the above methods model the age pattern repre-
sentation and age estimator learning separately, and thus the
benefits of both parts cannot be explored completely. The
latest deep learning technology makes it possible to learn
feature representation and age estimator together [14]. Pio-
neer works of employing deep learning technology for age
estimation can be found in [16} 25 29]. Among these work-
s, [16] applied deep convolution network to classify age into
age groups. [25] used a 7-layers deep convolutional net-
work to learn deep age patterns, followed by both SVR and
CCA for final age estimation. used a multi-scale deep
convolutional neural network for fully end-to-end age re-
gressor learning. These methods have achieved better per-
formance benefited from the deep learning technology.

In light of the existing works in age estimation and ex-
plosive progresses in deep learning, this paper proposes to
estimate age by combining classification models and regres-
sion models, both exploiting very large-scale deep convolu-
tional neural network. The two age estimators are comple-
mentary to each other and are further fused for robust age
estimation. Figure [I| demonstrates the general idea of the
proposed AgeNet. The contributions of this work are sum-
marized as below:

1) We propose an end-to-end apparent age estimation ap-
proach, named by us AgeNet, in which the age estimation is
formulated as deep regression and deep classification mod-
els, both exploiting large-scale Deep Convolutional Neural
Network (DCNN). In our DCNNs, regression of age and
classification of Gaussian label distribution are used as the
loss function respectively;

2) To reduce the risk of over-fitting on the small apparent
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age training set, a general-to-specific deep transfer learning
scheme is developed;

3) Intensive experimental study of the proposed method
for robust apparent age estimation is conducted and our ap-
proach wins the runner-up of the ICCV2015 Looking at
People Challenge - Track 1 Apparent Age Estimation.

The rest of this paper is organized as follows. Section 2
reviews the related works about very large-scale deep con-
volutional neural network and the face aging encoding s-
trategies. Section 3 details the proposed method and sec-
tion 4 gives the experimental results. Section 5 concludes
this work and discusses the further research.

2. Related Works

In this section, we firstly give a short introduction of
the very large-scale deep convolutional neural network, and
then we present three commonly used age encoding strate-
gies.

In practice, the very large-scale deep convolutional neu-
ral network has yielded quite impressive performance in im-
age recognition problem [24]]. In this work, we deploy the
GoogLeNet [24]], which is a very large-scale deep convo-
lutional neural network with 22 layers. Figure [3]shows the
architecture of GoogLeNet. Considering the promising per-
formance the GoogleNet achieved, we adopt the similar ar-
chitecture as it for the end-to-end learning and make some
modification, which is discussed in section 3.1.

There are three commonly used strategies to encode
age in state-of-the-art age estimation methods, namely, 1-
dimension real-value encoding, 0/1 encoding and label dis-
tribution encoding.

1-dimension real-value encoding: It is straightforward
to encode age as a 1-dimension real value as it is, e.g., 1,
3, 25, 82 and a regression model can be learned to directly
predict the age.

0/1 encoding: The 0/1 encoding is widely used in neural
network to encode one class with only single 1 and all the
rest as 0, e.g., [0, 0, 0,...,1, 0, 0, 0,..., 0]. Age can be also
encoded in this way if regarding each age as a class.

Label distribution encoding: Geng et al. [3]] proposed a
label distribution based age encoding strategy. The general
idea of label distribution is representing the label of an in-
stance by its description degree in each label. In this work,
we adopt the Gaussian label distribution. For a given image
I, if its age is y, then the corresponding age label is repre-
sented as a multi-dimension vector, with the j-th dimension
as follow:

(5 _ 2\2
l; = exp <(2JM§’)) Jo.j=1,..M (1)

where j denotes the j-th chronological age, y is the ground-
truth age, o is the label standard deviation, and M is the
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Figure 4. An example of label distribution based age vector with

apparent age 21 and a labeling standard deviation of 4.0265.

dimension of the age label vector which is also the maxi-
mum age, e.g., 85 in this work. Figure [ demonstrates an
example of label distribution based age encoding.

3. Proposed Method

This section details the proposed deeply learned regres-
sor and classifier for robust apparent age estimation.

3.1. Method Overview

Figure (1] presents an overview of our method. The ba-
sic idea of our method is that the age estimator is mod-
eled as a classifier and a regressor respectively, and then
the two models are complementarily fused for better per-
formance. With the real-value based regression and Gaus-
sian label distribution based classification as the loss func-
tions, very large-scale deep neural network is used to learn
layer-wise aging pattern representations and the final age
estimator together, formulating an end-to-end deep archi-
tecture for apparent age estimation. In this work, we make
two modifications of the GoogLeNet. First, we remove the
two auxiliary loss layers. Second, we add batch normaliza-
tion layer [[12] before each ReLU operation and remove all
the dropout operations to accelerate the convergence of this
very large-scale deep network. Owe to the usage of batch
normalization, we found it unnecessary to add two auxiliary
loss layers for the purpose of avoiding vanish of gradien-
t problem. By removing the two auxiliary loss layers, the
performance is even improved slightly.

In the deep age regressor, the Euclidean loss is used to
measure the 1-dimensional real-value encoding. To avoid
the risk of scale unbalance in network, we add the sigmoid
operation before the Euclidean loss. If the sigmoid opera-
tion is not included, the network optimization will crashes
due to a gradient overflow problem. In the deep age clas-
sifier, age is encoded as an 85-dimension Gaussian label
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distribution vector and cross-entropy loss is adopted to ac-
commodate the probability representation of the label dis-
tribution. Details for the deep regressor and age classifier
will be presented in the following two subsections.

3.2. Deeply Learned Age Regressor

The deep age regressor models apparent age estimation
as an end-to-end deep regression problem. A Sigmoid layer
is added above the one-dimension output layer to normalize
the output to [0, 1], so the apparent age should be normal-
ized to [0,1] in advance. In this work, we normalize the
apparent age by dividing the age with 100. The Euclidean
loss function for deep age regressor learning is formulated
as below:

N
1 ,
EW) = 55> Nl gn = I3 )
i=1

where W denotes the parameter of the deep convolutional
network, y, denotes the normalized ground-truth apparent
age, Uy, is the network output, and NNV is the batch size. The
final age estimation will be:

R = f(§n % 100 + 0.5) 3)

where R denotes the age regressor and f () operation out-
put the maximum integer less than z.

3.3. Deeply Learned Age Classifier

The deep age classifier models apparent age estimation
as an end-to-end deep classification problem. A straightfor-
ward way is to take the 0/1 age encoding coupled with the
Softmax loss. However, this kind of strategy encodes the
distance between all ages equally and does not take the rela-
tionship between adjacent ages into consideration. It is usu-
ally harder to tell the difference between adjacent age (e.g.,
40 and 41) than the non-adjacent age (e.g., 40 and 80). The
label distribution based age encoding [3] models the adja-
cent age patterns and achieves more robust real age estima-
tion. Thus, we employ the label distribution based age en-
coding in the proposed deep age classifier framework. For
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Figure 3. The architecture of the GoogLeNet deep convolutional neural network.

Loss

the label distribution based age encoding, the cross-entropy
loss is used in deep age classifier as follow:

L
BV = 7 32 3 lpitogsin (1 palog(1 i)
“)
where p;, € [0,1] denotes the n-th dimension of the
ground-truth age label distribution vector for training image
i as presented in Equation. [I] p;,, is the corresponding net-
work output, L denotes the length of age label distribution
vector, and N is the batch size.
The final estimated age of image from deep age classifier
is calculated as the age with maximum confidence in the
output label vector:

C = argmax p;, (5)

where C' denotes the age classifier and p;,, is the n-th di-
mension of the output age label vector of network.

3.4. General-to-Specific Deep Transfer Learning

To reduce the risk of over-fitting, we propose a general-
to-specific deep transfer learning scheme for deep network
training. Figure [5] shows the three stages of this scheme,
i.e., pre-train with face identities, fine-tune with real age,
and fine-tune with apparent age. We believe that adapting
the deep network from general domain to specific task can
reduce the un-certainty and diversity of representations as
seen from the experimental evaluations in section 4.3.

Stage 1. Face identification is different from face age,
however they are correlated to each other and there are quite
large-scale images for face identities. Therefore, we first-
ly employ the large-scale face identities database CASIA-
WebFace [30] to pre-train the network, which is much better
than random initialization.

Stage 2. Real age is different from apparent age, but
they are similar to each other in most cases. So, we further
employ the face images with real age are deployed to fine-
tune the deep network from stage 1, including CACD [1]],
Morph-1II [22] and WebFaceAge [20].
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Figure 5. The general-to-specific deep transfer learning strategy
for learning robust transparent age estimator.

Table 1. Outside training data for deep transfer learning.

Train Set Short description
CASIA-WebFace[30] 500K images of 11,575 persons
CACD [1] 160K images of age 14 to 62

WebFaceAge [20]
Morph-II

600K images of age 1 to 82
55,135 images of age 16 to 77

Stage 3. Finally, we employ apparent age training set to
fine-tune the deep network from stage 2, producing a robust
apparent age deep network.

In stage 2 and 3, both the age classifier and age regres-
sor are learned. Table [I] presents the four outside datasets
used in stage 1 and 2. It should be noticed that, both CACD
and WebFaceAge are web-collected age dataset by search-
ing using keywords like “10 years old” or “Emma Watson
2004”, so partial age labels are noisy and inaccurate. The
Morph-II dataset is accurate, but it contains Mugshot pho-
tos only, which has very different distribution with the ap-
parent age dataset. We believe some aging patterns should
be shared between the real age dataset and the apparent age
dataset.

3.5. Face Preprocessing

The face images for age estimation are preprocessed with
three steps including face detection, facial landmark local-
ization and face normalization.

Face Detection: In face detection stage, we adopt the
face detection toolkit developed by VIPL lab of CAS [26].
One can refer to for more details.

Facial Landmark Localization: We apply the Coarse-
to-Fine Auto-Encoder Networks (CFAN) to detect the
five facial landmarks in the face the left and right center of
the eyes, the nose tip, the left and right corner of mouth.

Face Normalization: Inspired by Li et al’s work [I8],

(1) Exterior
Figure 6. Demonstration of Exterior and Interior face normaliza-
tion templates: (1) Exterior face template (2) Interior face tem-
plate.

(2) Interior

Table 2. Parameters of eight models fused in this work.

Face Template Crop Size Type of Age Estimator
Exterior 248 Regressor
Exterior 227 Regressor
Exterior 248 Classifier
Exterior 227 Classifier
Interior 248 Regressor
Interior 227 Regressor
Interior 248 Classifier
Interior 227 Classifier

we take two different face normalization methods named
as Exterior and Interior. Figure || displays the exemplars
from the two face normalizations. The Exterior face tem-
plate contains not only intrinsic but also holistic contextual
information, while the Interior face template contains only
the internal facial organs. In both Exterior and Interior face
templates, the face is normalized into 256 x 256 pixel size.

3.6. Ensemble Learning

The final age estimation output is the fusion of eight deep
neural networks, details of these eight models are shown in
Table[2] The crop size is set for random data argumentation
during training. In the test phase, only the center face patch
with the same crop size is used. The ensemble strategy can
be abstracted in two perspectives:

Model Ensemble: From the perspective of model en-
semble, we combine deep age regressor and deep age clas-
sifier for more robust age estimation.

Face Template Ensemble: From the perspective of
multi-patch face representation, we combine the models of
different face normalization template and crop size.

4. Experiments

In this section, we present the experimental evaluation-
s of the proposed method. First, we briefly review the
ICCV2015 Looking for People Apparent Age Estimation
Challenge. Then, we present the implementation details.
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Table 4. Comprehensive model evaluations on the validation set.

Face Templates Crop Size Age Estimator Mean Normalized Error MAE
Exterior 248 0/1 Encoding with Softmax Loss 0.3900 4.4877
Exterior 248 Regressor 0.3339 3.7711
Exterior 227 Regressor 0.3498 3.9357
Exterior 248 Classifier 0.3360 3.9489
Exterior 227 Classifier 0.3413 3.9445
Interior 248 Regressor 0.3346 3.8539
Interior 227 Regressor 0.3548 4.0308
Interior 248 Classifier 0.3432 4.0317
Interior 227 Classifier 0.3513 4.0854
Fusion of Exterior 248 /227 Classifier / Regressor 0.2932 3.3820
Fusion of Interior 248 /227 Classifier / Regressor 0.3010 3.4921
Fusion of Classifiers 248 / 227 Classifier 0.3086 3.5704
Fusion of Regressors 248 / 227 Regressor 0.3036 3.4938
All fusion 248 /227 Classifier / Regressor 0.2872 3.3345

Table 3. The three subsets in the apparent age dataset.

SubSet Number of Images N

Training Set 2,476 MAE = 1 Z | yi — G | (7

Validation Set 1,136 N &~

Test Set 1,087

Finally, we present a comprehensive study of the proposed
method.

4.1.1ICCV2015 Apparent Age Estimation Challenge

The ICCV2015 Apparent Age Estimation Challenge
aims to investigate the performance of estimation methods
on apparent age rather than real age. This is the first dataset
on age estimation containing annotations of apparent age.
This dataset is composed of 4,699 images, with each image
collectively labeled at least 10 different users, and the av-
erage of them is used as the ground truth. The data is split
into three sets as shown in Table 3

The challenge is composed of development phase and
final test phase. In the development phase, the model is
trained on the training set and evaluation is conducted on the
validation set. In the final test phase, both the training set
and validation set can be deployed for model training. The
performance is measured by mean normalized error calcu-
lated as:

1 —(yi — 9i)°

€= — 1— —_ 6

€= Zzzl [ exp( 207 ) (6)

where §J; denotes the estimated apparent age, y; denotes the
ground-truth apparent age, and o; denotes the standard de-
viation for the test image ¢, and [V is the total number of test
images. Besides, we also introduce the widely used mean

absolute error (MAE) measure:

4.2. Implementation Details

For all our deep networks, we set the base_Ir as 0.01 and
reduce the learning rate by polynomial with gamma value
equals to 0.5. The momentum is set as 0.9 and the weight
decay is set as 0.0005. All the experiments are conducted
in Titan-X GPU with 12GB memory using the Caffe deep
learning toolbox [[13]].

For the stage 1 (pre-train on face identity dataset), we set
the batch size as 24 and the total iterations as 320K, it takes
1.5 days to train one model.

For the stage 2 (fine-tune on the real age dataset), we set
the batch size as 50 and the total iterations as 100K, it takes
1 day to train one model.

For the stage 3 (fine-tune on the final apparent age train
set), we set the batch size as 50 and the total iterations as
10K, it takes 2.5 hours to train one model.

4.3. Experimental Evaluations

In this section, we conduct a comprehensive evaluation
of the proposed method.

Comparisons of age regressor and age classifier: In
Table 4} we compare the performance of the age regressor
and classifier using two face normalization templates and
two different crop sizes. The experimental results demon-
strate that:

1) The deeply learned regressor and classifier achieve
comparable performance. The best performance of single
model is achieved by deeply learned age regressor with
Exterior face template and crop size as 248. Overall, the
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Table 5. Comparisons of different transfer learning stages on the
final performance.

Transfer Learning Stage Mean Error MAE
No Pre-train 0.5381 7.0924
Real Age Net Pre-train 0.3994 4.7526
Face Net Pre-train 0.3504 4.2095
Face Net and Real Age Net  0.3360 3.9489

deeply learned age regressor achieves slightly better perfor-
mance than deeply learned age classifier.

2) The Gaussian label distribution is significantly better
than 0/1 encoding for age classifier learning.

3) The ensemble of age classifier and regressor or face
templates can both improve the performance of apparen-
t age estimator. The best performance is achieved by fusing
all the eight models. The MAE of our best result is 3.3345,
which is a very impressive performance for apparent age
estimation.

The efficiency of general-to-specific deep transfer
learning: In Table |5} we study how the general-to-specific
deep transfer learning improves the performance of appar-
ent age estimation. We set the face normalization template
and crop size as Exterior and 248 respectively, and train age
classifier only. It can be seen that:

1) Random initialization without pre-train yields poor
performance due to the the over-fitting of large-scale deep
network on so small-scale training set.

2) The pre-train of multi-class face classifier network is
much efficient than the pre-train of real age network, which
means that pre-train with large-scale images from related
tasks can help improving the generalization ability of the
network.

3) Though the web-collected face age label is noisy, it
can still help to improve the performance of apparent age
performance, which demonstrates great robustness of the
general-to-specific deep transfer learning.

Success and Failure cases: Figure[7|presents some good
and bad cases of apparent age estimation results by the pro-
posed approach. It can be seen that our approach is robust
to variations in pose, lighting, ethnicity, occlusion and color
mode. However, our approach does not work very well for
face blur, mis-alignment or senior people.

Comparison with the other competitors on the final
evaluation: Table [6] presents the result of our method and
the other teams on final evaluation of ICCV2015 Looking
for People Apparent Age Estimation Challenge. According
to the final official report [3]], we rank Ist in the develop-
ment phase and 2nd in the final test phase. Our approach
is slightly worse than the method of CVL_ETH by 0.5%.
However, while the method of CVL_ETH employs 20 VGG
deep neural networks [23]], we only employ 8 GoogLeNets,

Table 6. Comparisons of the performance in the final evaluation.

Rank Team Development Test

1 CVL_ETH 0.295116 0.264975
2 ICT-VIPL 0.292297 0.270685
3 AgeSeer 0.327321 0.287266
3 WVU_CVL 0.316289 0.294835
4 SEU-NJU 0.380615 0.305763
5 UMD - 0.373352
6 Enjunto 0.370656 0.374390
7 Sungbin Choi - 0.420554
8 Lab219A 0.477079 0.499181
9 Bogazici 0.483337 0.524055
10 Notts CVLab - 0.594248

leading to much less computation cost.

5. Conclusions and Future Works

In this paper, we propose a deep end-to-end learning ap-
proach, named as AgeNet, for robust apparent age estima-
tion. We deploy a very large-scale 22-layers deep convo-
Iution neural network with regression and label distribution
based classification as the objective to encode the appar-
ent age respectively. To reduce the risk of over-fitting, we
propose a general-to-specific deep transfer learning scheme,
which consists of pre-training deep network with face im-
ages labeled with identity, followed by two successive fine-
tuning steps with real age images and apparent age images.
The ICCV2015 Look for People 2015 Apparent Age Esti-
mation Challenge demonstrates the effectiveness of our ap-
proach.

For future work, we will study how to jointly learn the
age regressor and classifier in a unified learning framework
and conduct experiments in real age estimation benchmarks
such as Morph-II and FG-Net.
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