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Abstract

In this paper we tackle the classification of cultural
events from a single image with a deep learning based
method. We use convolutional neural networks (CNNs) with
VGG-16 architecture [17], pretrained on ImageNet or the
Places205 dataset for image classification, and fine-tuned
on cultural events data. CNN features are robustly extracted
at 4 different layers in each image. At each layer Linear
Discriminant Analysis (LDA) is employed for discrimina-
tive dimensionality reduction. An image is represented by
the concatenated LDA-projected features from all layers or
by the concatenation of CNN pooled features at each layer.
The classification is then performed through the Iterative
Nearest Neighbors-based Classifier (INNC) [20]. Classi-
fication scores are obtained for different image representa-
tion setups at train and test. The average of the scores is the
output of our deep linear discriminative retrieval (DLDR)
system. With 0.80 mean average precision (mAP) DLDR
is a top entry for the ChaLearn LAP 2015 cultural event
recognition challenge.

1. Introduction

Image classification is at the core of computer vision.
Extensive literature is devoted to the study of classifica-
tion of images into objects and/or scenes. The recent ad-
vances due to the introduction of large datasets such as Im-
ageNet [15] or PASCAL VOC [5] for object classification
and the use of deep learning techniques [3, 7, 11] brought
into focus the classification of more demanding classes such
as ‘cultural events’ where the geometry and/or appearance
of a single object or scene are not anymore the dominant
features determining the class. Particularly, a picture of a
cultural event depends entirely on the photographer’s sub-
jectivity. Each such picture is just a narrow view of what
happens under the big umbrella of the cultural event. Clas-
sification and retrieval of images of cultural events are of in-
terest for many people, especially tourists. There are multi-
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Figure 1. Cultural event images and class labels from LAP dataset.

ple important cultural events in the world that attract lots of
participants and produce huge amounts of photos to browse.
In this paper we tackle the classification of cultural
events from a single image, a consumer photograph, with
a deep learning-based method and report our performance
on the cultural event recognition dataset of the Chal.earn
Looking at People 2015 (LAP) challenge [4] (see Fig. 1).
We use convolutional neural networks (CNNs) with
VGG-16 architecture [!7], pretrained on the ImageNet
dataset [15] or the Places205 dataset [25] for image classifi-
cation, and fine-tuned on cultural events training data from
LAP. Our CNN features are the fully-connected (fc) layer
7 with 4096 dimensions. We follow a layered approach
(see Fig. 2). For each layer, CNN features are robustly ex-
tracted from each image over a grid. At each layer, Linear
Discriminant Analysis (LDA) [6] is employed for reducing
the dimensionality of the CNN features and to embed dis-
criminativity. An image is represented by the concatenated
LDA-projected features from all layers or by the concatena-
tion of the average pooled raw CNN features at each layer.
The classification is handled through the Iterative Nearest
Neighbors-based Classifier (INNC) [20, 21]. Classification
scores are obtained for different image representation se-
tups at train and test. The average of the scores is the output
of our deep linear discriminative retrieval (DLDR) system.
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DLDR is a top entry for the ChalLearn LAP 2015 cultural
event recognition challenge with 0.80 mean average preci-
sion (mAP), 0.05 below the best reported result.

Next we review work related to our task and method.
Section 2 introduces our DLDR method. Section 3 de-
scribes the experiments and discusses the results, while in
Section 4 we conclude the paper.

1.1. Related work

The ChaLearn Looking at People challenge on cultural
event recognition from single images in conjunction with
CVPR 2015 [1] is the precursor of the Chal.earn LAP chal-
lenge in conjunction with ICCV 2015 [4] that we targeted in
this paper. The previous challenge used a 50 classes dataset
while the new one extended it by proposing a larger dataset
with 100 classes. The solutions proposed for the previous
challenge are those most related to our own. In Table 5 are
the top 4 ranked teams of that challenge. Next, we present
them in relation to our proposed DLDR method.
MMLAB: The solution of Wang et al. [23] fuses five types
of CNNs. These are ClarifaiNet [24] pretrained on the Im-
ageNet dataset, AlexNet [11] pretrained on the Places205
dataset, GoogleNet [ | 8] pretrained on the ImageNet dataset
and the Places205 dataset, and VGG-19 [17] pretrained on
the ImageNet dataset. All of them are fine-tuned on the
cultural event training data and the scores are fused by
weighting for the final results. MMLAB ranked 15 with
0.85 mAP, significantly more than the next team with 0.76
mAP. Our DLDR is significantly lighter, it uses only one
kind of CNN, the VGG-16, pretrained on ImageNet and on
Places205. DLDR also fine-tunes and fuses scores for the
final results, but in addition uses multiple layers in the repre-
sentations, discriminant projections, and INNC classifiers.
UPC-STP: The team of Salvador et al. [16] combines fea-
tures from the fully connected (fc) layers of a CNN pre-
trained with ImageNet and a second one fine-tuned on the
cultural event dataset. For each fc layer, Linear SVMs are
trained for the corresponding features. These are further
fused using an SVM. A temporal model of the events is
learned and used to refine the outputs. Our DLDR uses an-
other CNN architecture, pretrains also on ImageNet, uses
only the last fc layer as CNN raw features and employs a
different classification strategy.

MIPAL_SNU: The team of Park and Kwak [14] assumes
that the discriminant image regions are the ones relevant
to classification. Therefore, they first extract meaningful
image regions of various size. Then they train a CNN with
3 convolutional layers and pooling layers, and 2 fc layers.
The probability distribution for the classes is calculated for
every image region selected from the test image and class
probabilities are computed.

SBU_CS: The team of Kwon et al. [12] studies SIFT,
SIFT+color, and CNN features in combination with 3 layer
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Figure 2. Pipeline for our DLDR method.

spatial pyramid matching (SPM) [ 3] and a regularized max
pooling (RMP) [9] technique. The CNN is pretrained on
ImageNet and no fine-tuning is employed. Their best com-
bination is a SPM with SIFT+Color and RMP with CNN
features. Our DLDR method also uses layered representa-
tions and CNN features.

The novelty of our proposed method lies in using LDA
discriminative projections of CNN features at different
pyramidal layers and per layer pooled CNN features to im-
prove classification accuracy. Furthermore, we extend the
formulation of the INNC classifier with weight-spreading
to better deal with retrieval of a large number of classes.

2. Proposed method (DLDR)

In this section we describe the proposed method: deep
linear discriminative retrieval (DLDR). The scheme of
DLDR is shown in Fig. 2.

2.1. Deep learning

Our DLDR is based on the deep learned representations
of image regions. We employ CNNs with the VGG-16 [17]
architecture which provides a good balance between the
representation power and time plus memory requirements.
Simonyan et al. [17] achieve state-of-the-art results with
this architecture on benchmarks such as ImageNet [15].

2.1.1 Pretraining

Without a (very) large training set of images getting trained
from scratch a CNN with a very large number of parameters
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True Midsommar Asakusa_Samba_Carnival Macys_Thanksgiving Basel Fasnacht Oktoberfest 4_de Julio La_Tomatina
Pred Midsommar Carnevale_Di_Viareggio ~ Asakusa_Samba_Carnival ~ Macys_Thanksgiving Basel_Fasnacht Oktoberfest 4_de_Julio La_Tomatina
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True Frozen_Dead_Guy_Days Non-Class Epiphany_greece Queens_Day Los_Diablos_danzantes Macys_Thanksgiving Galungan Passover
Pred Frozen Dead_Guy_Days Non-Class Epiphany_greece Queens_Day Los_Diablos_danzantes Macys_Thanksgiving Galungan Passover

3 £ :
True Non-Class Heiva Highland_Games Tour_de_France Desfile_de_Silleteros Krampusnacht Sweden_Medieval Week Festival_of_the_Sun
Pred Non-Class Heiva Highland_Games Tour_de_France Desfile_de_Silleteros Krampusnacht Sweden_Medieval_Week Festival_of_the_Sun

Figure 3. Examples of images where DLDR is successful in a top-1 evaluation.

True Festa_Della_Sensa San_Fermin Obon Notting_hill_carnival Eid_al-Adha Eid_al-Fitr_Iraq Apokries Passover
Pred Carnival_of_Venice Songkran_Water Diwali_Festival_of_Lights Asakusa_Samba_Carnival Eid_al-Fitr_Iraq Hajj Halloween_Festival_of_the_Dead Non-Class

True Up_Helly_Aa 4_de Julio Beltane Fire Gion_matsuri Pushkar_Camel Galungan Pflasterspektakel Viking Festival
Pred  Camevale_Di_Viareggio Vancouver_Symphony_of_Fire Lewes Bonfire Tokusmina_Awa_Odori_Festival ~ Desert_Festival_of Jaisalmer Non-Class Onbashira Sweden_Medieval_Week

True Onbashira Apokries Spice_Mas_Carnival Non-Class Quel ter_Carni Hajj Sahara_Festival Midsommar
Pred Non-Class Australia_day Holi_Festival Buenos_Aires_Tango_Festival Grindelwald_Snow Festival Falles AfrikaBurn Heiva

Figure 4. Examples of images where DLDR fails in a top-1 evaluation.

(like ours) is cumbersome and likely to overfit and to pro- Places205, resp. We adapt the output layer of the network
duce poor results. Therefore, for cultural events recognition to have a number of neurons equal to the number of classes,
we use as a starting point the CNN pretrained on the Im- here 99 cultural events and a ‘Non-Class’ as in the LAP
ageNet dataset [17] and CNN pretrained on the Places205 dataset. The training data, consisting of the provided LAP
dataset [22]. Previously Wang et al. [23] also used these training dataset and LAP validation dataset, was randomly
two datasets for pretraining models for cultural event recog- split into 90% used for training and 10% for testing. We
nition. kept the distribution of classes the same in both sets. Our

training set is further enlarged by augmentation. 10 ran-
dom crops from each original training image are added to
2.1.2  Training the training set. Each random crop has at least half the side

) . length of the original image.
We train two separate CNNs on the provided LAP

dataset corresponding to those pretrained on ImageNet and
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2.2. Layered representations

Inspired by [8, 13], we extract CNN features in a pyra-
midal fashion. Specifically we extract features at 4 scales.
In the first level we extract features over the entire image,
in the second, third, and fourth level we extract from 2 x 2,
3% 3, and 4 x 4 regions, resp. The regions overlap with 50%.
We scale each image region to 256 x 256 and then extract
the last feature layer (fc7, 4096 dimensions) for 10 different
crops at a size of 224 x 224 in each corner and the center of
the image, as in [7]. We do the same for the flipped version
of the image. The features of these 10 crops are then av-
eraged to give the final feature representation. This results
in 12 + 22 4 3% + 42 = 30 feature representations of 4096
dimensions.

We can not handle representations of 30 concatenated
raw CNN features. We either employ encoding over a vi-
sual codebook as in standard SPMs (we got discouraging
preliminary results), reduce the dimensionality (i.e. through
LDA), or pool the raw features at each layer.

2.2.1 Pooled CNN features

The idea of pooling directly the raw CNN features with-
out caring about their image positions is inspired by the
robust prediction commonly employed by CNN solutions
(predicting on different crops around the desired image re-
gion of interest). We considered different pooling operators
and found average pooling to be the best in robustness and
performance. Our pooled features are average pooled raw
CNN features at a given layer. Correspondingly, the lay-
ered representation, called R1, has n x 4096 dimensions
where n is the number of layers with pooled raw CNN fea-
tures. In our case the representation is high dimensional
(4 x 4096 = 16384 dimensions) and thus can capture subtle
details learned by the CNN.

2.2.2 LDA-projected features

Due to limited computational resources we explored effi-
cient dimensionality reduction methods. Principal compo-
nent analysis (PCA), a natural choice, loses quite a bit of
performance even for reduction factors of 2 or 4. Since re-
ducing the dimensionality while preserving the energy is
challenging, we picked linear discriminant projections that
would thus compensate for the loss in dimensions by im-
proving the discriminative power.

Linear Discriminant Analysis (LDA) maximizes the ra-
tio of the between-class scatter and the within-class scatter.
We use LDA in its regularized form [6], with regulariza-
tion parameter set to 1, as implemented by Cai et al. [2]. In
our preliminary experiments, LDA and its 99-dimensional
projections (number of classes - 1) were able to provide for
equal and better classification performance than the origi-

Table 1. mAP (%) on our validation set (2863 of 20036 images)
for different configurations.

. CNN pretrained on .
Layers Encoding ImageNet Places205 Fusion
0 Raw 7459 7361 7132
LDA 7391 73.96  77.64
. Raw 76.16 7370  77.90
LDA 7790 7592  79.69
3 Raw 7543 7220 7654
LDA  77.65 7539  79.03
L4 Raw 73.63  69.00 74.18
LDA 7728 7314 71.73
Raw 7675  75.16 7875
Ll+L2 LDA 7800 7662  80.05
Raw 7752 7580  79.24
LI#L2HL3 1 pa 7900 7712 8022
Raw 7763 7584 7925
LIFL2+L3+LA b0 7910 7693 80.12

Table 2. mAP (%) of DLDR on our validation set (2863 of 20036
images).

Train/test representation ImageNet Places205 Fusion
C1 77.63 75.84 79.25

Cc2 79.10 76.93 80.12

C3 79.26 76.77 80.16

C4 79.36 77.08 80.38
C2+C3+C4 79.61 77.29 80.47
Cl1+C2 79.56 77.56 80.46
C1+C2+C3+C4 79.96 77.74 80.70

Table 3. Classification on our validation set (2863 of 20036 im-
ages)

ImageNet Places205 Fusion

Linear SVM 77.04 75.58 78.87
INNC 78.42 76.15 79.76
INNC-KNN 79.10 76.93 80.12

nal raw features, while SRLP [19] (which embeds sparse
relations) needs 200 dimensions to improve over the LDA-
projections.

We learn a separate Linear Discriminant Analysis (LDA)
projection for each of the 4 layers in our representation. We
then concatenate the LDA-projected features to form a fea-
ture vector of 30 x 99 = 2970 dimensions, representation
R2. Additionally we construct a flipped representation of
R2 by horizontally flipping the local representation for the
ond 3rd gnd 4th layer, called R3. Note that R3 is a permu-
tation of the features of R2.

The LDA helps to not only reduce the dimensionality but
also to embed discriminativeness into the features.
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2.3. Classification

For classification we use the Iterative Nearest Neighbors-
based Classifier (INNC) of Timofte and Van Gool [20]. The
INN representation [21] is the result of a sparse linear de-
composition of the query sample over the training pool. The
weights belong to [0, 1) and sum up to 1. For each class, the
weights corresponding to training samples of that class are
summed up. The class with the largest impact in the INN
decomposition of a query is the INNC prediction. We set
the maximum number of non-zeros (neighbors) to K = 14
and the regularization parameter to A = 0.1. For each test
sample we obtain an INN representation over the training
set. This sparse matrix of weights is then used for classifi-
cation. The probability for a given test sample to belong to
a class is taken as the sum of the weights corresponding to
all training samples of that class. As the INN representation
is sparse (< K), often with fewer non-zero weights than
classes, many classes have a probability of 0. To overcome
this issue we extend the formulation of INNC by addition-
ally spreading the weights also to the nearest neighbors of
the training samples, with some exponential decay (0.75",
where r is the rank of the neighbor). This helps to increase
retrieval performance especially on difficult samples.

INNC is applied to the representations separately:

Cl: R1

C2: R2 in the training set and R2 at testing

C3: R3 in the training set and R2 at testing

C4: R2 and R3 in the training set and R2 at testing

Note that if we would have had R2 in the training set and
R3 at testing, this would be the same as C3 as R2 and R3
just differ by permutation. We obtain those predictions for
both networks, resulting in 8 predictions in total which are
averaged fused to give the final DLDR prediction score.

3. Experiments
3.1. Dataset and evaluation protocol

The ChaLearn LAP cultural event recognition dataset [4]
consists of 28705 images collected from two images search
engines (Google Images and Bing Images). The images
contain photos from 99 important cultural events around the
world and a non-class. The dataset is split into three parts,
50% for training (14332 images), 20% for validation (5704
images), 30% for testing (8669 images). There are approx-
imately the same number of images in each class with the
exceptions of the non-class having around ten times as many
images.

In our paper the results are evaluated as defined for the
ChaLearn LAP challenge. Specifically, for a given class the
average precision (AP) is calculated by measuring the area
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Figure 6. DLDR average precisions (AP) for LAP classes using
Places205 pretraining, ImageNet pretraining, or the fused predic-
tions.
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Figure 5. Confusion matrix for our DLDR system on the LAP classes. Best seen on screen.

under the precision/recall curve. The AP scores are then
averaged over all 100 classes to form the final mean average
precision (mAP).

3.2. Implementation details

Our DLDR pipeline is written in Matlab. The CNNs are
trained on Nvidia Tesla K40C GPUs using the Caffe frame-
work [10]. The machine used for calculating the LDA pro-
jections and classification has 128 GB of memory.

Training each of the two CNNs took about 30 hours. At
test time extracting the features over all training and test-
ing images over all 4 layers (30 x 10 = 300 extractions
per image) took around 100 hours. Calculating the LDA

projections and classification took around 3 hours.
The source codes are publicly available at:
http://www.vision.ee.ethz.ch/~timofter

3.3. Validation results

We compare the performance of our proposed method
for different feature representations, layers and pretrained
networks. In Table 1 the results are summarized. The per-
formance is shown for the case where features are extracted
only at one layer, as well as for the case when features with
increasing depth are combined. For both the pooled CNN
features as well as the LDA-encoded features the perfor-
mance increases from L1 to L2. Beyond L2, for L3 and
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L4 performance decreases again suggesting that the level of
detail gained from the smaller image regions cannot com-
pensate the insights missing from a global feature represen-
tation. Nonetheless, when combining the features from var-
ious layers, performance increases as one adds more layers
to the representation. This suggests that the increase in di-
mensionality of the feature vector is well compensated by
the extra insights from the smaller image regions. Compar-
ing the pooled CNN features with the LDA-projected fea-
tures, in the majority of the experimental setups, the LDA
features perform around 2% better. The weights after pre-
training on ImageNet give consistently better results than
the Places205 weights. However, the fusion of the two then
again improves performance by at least 1%. Overall we are
able to push the performance from 74.59% to 80.12% when
combining the LDA-projected features from all layers and
the ImageNet and the Places205 pretraining compared to
when just extracting pooled features from ImageNet on the
entire image (L1).

For classification we compare the performance of our
proposed INNC with weight spreading (INNC-KNN) to
the conventional INNC and Linear SVM as shown in Ta-
ble 3. When fusing the features from ImageNet and the
Places205 dataset INNC improves 1% over Linear SVM.
Weight spreading further improves performance by 0.5%

Table 2 shows the performance when combining the 4
different classifications for each network, resulting in 8 pre-
dictions in total. Combining the LDA-projected predictions
with its flipped version (C2+C3+C4) improves performance
by around 0.5%. Also combining the LDA-projected fea-
tures with the pooled CNN features gives an improvement
of 0.5% over the LDA features and more than 1% over the
pooled features. Combining all 8 predictions then leads to
an overall improvement of 1.5% over just using the pooled
CNN features. Overall this improves the performance of
just using R1 by 1.5% up to 80.70% on our validation set.

In Figure 6 we compare the performance of the pre-
trained ImageNet network and the Places205 network. For
the majority of the classes the fusion of the two networks
outperforms the individual networks. Pretraining on Ima-
geNet generally gives better results than when the network
was pretrained on the Places205 dateset. However, there
are some exceptions, i.e. for the classes Pflasterspektakel,
Waysak_day, and Pushkar_Camel the pretrained Places205
network seems to give better accuracy.

As some of the classes are very similar, i.e. there are
multiple carnival events, we investigated the confusion be-
tween classes. Specifically we assigned each image to
the class with the largest confidence and then visualized
the inter-class confusion (see Fig. 5). Some classes like
Eid_al-Adha and Eid_al-Fitr_Iraq or Pushkar_Camel and
Desert_Festival of_Jaisalmer have a high confusion, which
is also confirmed when looking at the images from the

Table 4. ChalLearn LAP 2015 final ranking on the test set. 67
registered participants.

Rank Team mAP
1 VIPL-ICT-CAS 0.85
2 FV 0.85
3 MMLAB 0.84
4 NU&C 0.82
5 CVL_ETHZ (ours) 0.80
6 SSTK 0.77
7 MIPAL_SNU 0.76
8 ESB 0.76
9 Sungbin Choi 0.62
10 UPC-STP 0.58

classes — as a human it is nearly impossible to distinguish
between them.

In Figure 3 we visualize cases where our proposed
method successfully recognizes the correct class. The sys-
tem seems to successfully pick up subtle details which are
typical for the event (i.e. the US flag for 4th of July or the
floral wreath for Midsommar).

Figure 4 shows some failure cases. In many of those
cases the classes are either very similar (i.e. same type of
event, same location, same vegetation) or the image shows
just one large object and it is thus hard to directly assign it
to a specific class (i.e. just a person, a boat or a building).

3.4. Looking At People (LAP) challenge

The ChaLearn Looking at people (LAP) challenge on
cultural event recognition had two phases.

In the first phase, the training and validation images of
the LAP dataset were provided to the registered partici-
pants. If the training images had class labels, the labels
for validation images were unknown until the second phase.
For the performance score (mAP) on the validation set each
team submitted their results to the server. After the vali-
dation phase, the labels for the validation images were re-
leased together with the test images. Again, the teams were
invited to submit their results on the test images to the com-
petition server without getting to know their performance
or rank. The organizers announced the final ranking and
scores after the second phase ended. Table 4 shows the final
ranking of the ChalLearn LAP challenge on cultural event
recognition based on the test set. Our DLDR method ranks
5" with a mAP of 0.80, being only 0.05 below the best
reported performance of the VIPL-ICT-CAS team.

This ChaLearn LAP challenge with 100 classes was pre-
ceded by a ChalLearn LAP challenge in conjunction with
CVPR 2015 which had 50 classes [I]. Most of the top
ranked teams, unlike us, participated also in the previous
challenge. The top 4 teams in the previous (easier) chal-
lenge are listed in Table 5 and their solutions were discussed
in the related work section 1.1.
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Table 5. CVPR Chalearn LAP 2015 top 4 ranked teams [ 1]

Rank Team mAP
1 MMLAB [23] 0.85
2 UPC-STP [16] 0.76
3 MIPAL_SNU [14] 0.73
4 SBU_CS [12] 0.61

4. Conclusions

We proposed an effective method for cultural event
recognition from single images called Deep Linear Dis-
criminative Retrieval (DLDR). DLDR employs CNNs
pretrained on ImageNet and Places205 datasets, and fine-
tuned on cultural events data. CNN features are robustly
extracted at 4 different layers in each image. They are
either average pooled or LDA projected at each layer. Thus,
an image is represented by the concatenated LDA-projected
features from all layers or by the concatenation of CNN
pooled features at each layer. Using our Iterative Nearest
Neighbors-based Classifier (INNC), scores are obtained
for different image representation setups. The average
scores are the fused DLDR output. With 0.80 mean average
precision (mAP) our DLDR solution is a top entry in the
ChaLearn LAP 2015 cultural event recognition challenge.
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