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Abstract

Mahalanobis metric learning amounts to learning a lin-

ear data projection, after which the ℓ2 metric is used to com-

pute distances. To allow more flexible metrics, not restricted

to linear projections, local metric learning techniques have

been developed. Most of these methods partition the data

space using clustering, and for each cluster a separate met-

ric is learned. Using local metrics, however, it is not clear

how to measure distances between data points assigned to

different clusters. In this paper we propose to embed the lo-

cal metrics in a global low-dimensional representation, in

which the ℓ2 metric can be used. With each cluster we asso-

ciate a linear mapping that projects the data to the global

representation. This global representation directly allows

computing distances between points regardless to which lo-

cal cluster they belong. Moreover, it also enables data visu-

alization in a single view, and the use of ℓ2-based efficient

retrieval methods. Experiments on the Labeled Faces in the

Wild dataset show that our approach improves over previ-

ous global and local metric learning approaches.

1. Introduction

Metric learning is a machine learning technique with

a wide range of applications in computer vision, e.g . lo-

cal descriptor matching [10], fine-grained object compar-

ison [27], and face verification [22]. Most work con-

siders supervised learning of Mahalanobis metrics, see

e.g . [9, 14, 15, 22, 25, 41]. The supervision comes as pos-

itive and negative pairs that should be close and far apart

respectively. The Mahalanobis distance between two points

is given by (xi − xj)
⊤M(xi − xj), where M is a posi-

tive definite matrix. Since M can always be factored as

M = L⊤L, Mahalanobis metrics are equivalent to the ℓ2
metric after linear projection of the data. For complex class

distributions, however, linear projection of the data might

not be sufficient to obtain a suitable data representation.

To overcome this restriction, several routes have been
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explored. First, the linear projection in the Mahalanobis

metric can be written in terms of kernel evaluations, see

e.g . [14, 16, 25]. Alternatively, (convolutional) neural net-

works with a siamese architecture can be learned to give

(dis)similar outputs for positive and negative pairs, see e.g .

[5, 8]. Approaches based on decision trees have also been

explored, see e.g . [27]. Finally, local metric learning uses a

collection of Mahalanobis metrics, each operating in a dif-

ferent part of the input space, see e.g . [3, 4, 12, 18, 20, 26,

34, 39, 41, 43]. The partitioning of the space is typically

obtained using k-means or Gaussian mixture clustering.

In most existing local metric learning approaches, how-

ever, it is unclear how to compute distances between points

assigned to different clusters, or distances are defined in an

asymmetric manner. Unlike for global metric learning, they

can not be interpreted as computing the ℓ2 distance after a

transformation of the data, which hinders data visualization

and efficient ℓ2-based retrieval techniques, such as product

quantization and multiple-assignment retrieval [21].

In this paper we propose a solution by embedding the

local metrics in a global representation. We use a Gaus-

sian mixture model (GMM) to obtain a soft-partitioning of

the data. With this partitioning we define a non-linear em-

bedding of the input data vectors in a higher dimensional

feature space. By learning a Mahalanobis metric over this

embedding, we simultaneously learn local metrics for each

cluster, and also obtain an alignment of the local metrics.

This allows us (i) to compute distances between points re-

gardless to which local cluster they belong, (ii) visualize

data in a single view, and (iii) use efficient ℓ2-based retrieval

methods. We refer to our approach as “coordinated local

metric learning” (CLML).

We validate our approach in face verification and re-

trieval settings using the Labeled Faces in the Wild

(LFW) [19] dataset, and using image representations based

on local binary patterns (LBP) [28], convolutional neural

networks (CNN) [42], and Fisher vectors (FV) [35]. For all

tested representations our approach improves over global

metric learning and other local metric learning approaches.

For retrieval, the improvements over previous local metric

learning approaches [3, 34] are particularly large.
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2. Related work

In this section we give an overview of related work that

is most relevant to the material we present in this paper.

Mahalanobis metric learning. Many supervised Maha-

lanobis metric learning methods exist. Most are based on

loss functions defined over pairs or triplets of data points,

see e.g . [9, 14, 15, 22, 25, 40, 41]. We refer the reader to

recent survey papers [2, 23] for a detailed review of these.

Methods based on pairwise loss terms learn a metric

so that positive pairs (e.g . points having the same class

label) have a distance that is smaller than negative pairs

(e.g . points with different class labels). An example of

such methods is the logistic discriminant metric learning

(LDML) method of Guillaumin et al . [15]. Their obser-

vation is that since Mahalanobis distances are linear in the

entries of M , they can therefore be learned via standard lo-

gistic regression. In [16] they regularize by instead learning

a low-rank factorization that projects the original data to a

low dimensional space in which the ℓ2 metric is used.

An example of a triplet-based approach is the large-

margin nearest neighbor (LMNN) method [41]. Instead of

forcing all points of the same class to be close, LMNN re-

quires that the nearest neighbors of each point are of the

same class. The metric is learned by minimizing a sum of

loss terms over triplets of points, where each loss term en-

courages the distance between xi and neighbors in the same

class to be at least one distance unit smaller than the dis-

tance of xi to neighbors in different classes.

Local metric learning. To alleviate the limitations of

Mahalanobis metric learning, many local metric learning

methods have been proposed, see e.g . [3, 4, 12, 18, 20, 26,

34, 39, 41, 43]. Here we limit our discussion to five recent

state-of-the-art methods.

The R2LML method of Huang et al . [20] jointly learns a

set of local metrics and weights, gsi , that assign data points

xi to the local metrics indexed by s. The distance between

xi and xj is computed using the weighted sum of metrics,

where metric s is weighted by the product gsi g
s
j . They itera-

tively learn the weights and the metrics, updating one while

keeping the other fixed. To determine the weights over the

metrics for test points that were not included during train-

ing, the weights of the nearest training point are used, which

implies a costly lookup when large training sets are used.

Shi et al . [34] proposed SCML, a metric learning ap-

proach based on sparse combinations of a large base set of

rank-1 base metrics. The base metrics are found by cluster-

ing the dataset, and then applying Fisher linear discriminant

analysis (FLDA) in each cluster. For local metric learning,

they take a similar approach as [26, 39], and measure the

distance between a test point x and a training point xi by

using a weighted combination of base metrics, where the

weights are determined by x. During training, they learn a

function that maps each data point to a set of weights over

the base metrics. The advantage of their approach is that

weights are easily evaluated for new test points. A limi-

tation, however, is that a fixed set of base metrics given by

FLDA restricts the class of metrics that can be learned. This

is particularly detrimental for high-dimensional data.

Bohné et al . [4] proposed LMLML, an approach based

on GMM clustering, which learns a metric associated with

each cluster. To compare two points xi and xj they use a

weighted sum of the local metrics, where the weight of each

metric is given by p(s|xi) + p(s|xj): the sum of the soft-

assignments for xi and xj to the GMM components. If two

points are far away, however, it is not clear that the local

metric associated with either data point will be appropri-

ate for a pair-wise comparison. Therefore, they also add a

learned global metric to the weighted sum of metrics.

Bhattarai et al . [3] proposed a hierarchical method for

efficient retrieval that learns a hierarchical clustering of the

data by interleaving metric learning and k-means cluster-

ing. Each element in the training set is assigned to a leaf of

the hierarchy based on the local metrics and clustering. A

query is assigned to a leaf node, and retrieval is performed

among the data in that leaf-node, using the associated met-

ric. Their hierarchical decomposition speeds up the retrieval

since only a fraction of the dataset is accessed for a given

query. They report improved retrieval accuracy due to the

use of local metrics, as compare to using global ones.

Unlike our proposed approach, none of these methods

allow the local metrics to be expressed as the ℓ2 distance

after a non-linear data transformation. This means that the

local metrics cannot be used for global data visualization,

and do not support efficient retrieval techniques based on

ℓ2-quantization, such as product quantization and multiple-

assignment retrieval [21].

The work of Hauberg et al . [17] is an exception in this

respect: they show that if local metrics vary smoothly in

the input space, then they form a Riemannian metric on the

data manifold. They define a smoothly varying local met-

ric as a linear combination of a fixed set of local metrics,

which are learned separately using any local metric learn-

ing algorithm. They perform PCA in the Riemannian met-

ric to obtain a global Euclidean data representation. They

show their framework improves w.r.t. Euclidean PCA. Our

approach differs in that (i) we learn the local metrics and

their alignment in a joint manner, and (ii) to project a point

to the global representation [17] requires solving a system

second-order ODE’s with size quadratic with the data di-

mension, whereas our approach requires only averaging lo-

cal linear projections.

Our work is also related to the local linear manifold

learning technique of Teh and Roweis [38]. They use a mix-

ture of factor analyzers (MFA) [13] to map data points to

local low dimensional coordinate systems associated with

the mixture components. To align the local coordinates,
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Figure 1. Synthetic dataset with color coded class labels, and the GMM used by our CLML local metric (left). Data projection given by a

global Mahalanobis metric (middle) and our local CLML metric (right). The pairwise training constraints are better respected by CLML.

they minimize the Locally Linear Embedding (LLE) [30]

objective function. Our work differs in that we learn co-

ordinated local linear projections in a supervised manner.

Also, in our work we use a diagonal covariance GMMs —

which are faster to train than MFA— and learn local linear

maps directly from the original feature space to the global

representation instead of mapping from the local MFA sub-

spaces. Since the MFA is learned by optimizing a different

cost function, the obtained subspaces might be suboptimal.

3. Globally aligning local Mahalanobis metrics

Since any positive definite D ×D matrix M can be de-

composed as M = L⊤L, the Mahalanobis distance be-

tween two points xi and xj can be written as the ℓ2 distance

between these points after projection with L, i.e .

(xi − xj)
⊤M(xi − xj) =‖ Lxi − Lxj ‖

2

2
. (1)

Note that L can be a D×D matrix, or a d×D matrix with

d < D. In the latter case (Lxi) ∈ IRd is a low dimensional

projection of xi ∈ IRD, and rank(M) ≤ d .

To obtain a more general class of metrics, we define sev-

eral local Mahalanobis metrics. We cluster the data using a

k-component Gaussian mixture model (GMM), which de-

fines a soft-assignment of the data over the k clusters.

We can compute distances between points assigned to

the same cluster s using a local metric learned for that clus-

ter, defined by a local projection matrix Ls. It is, however,

not clear how to compare vectors that are assigned to dif-

ferent clusters. In order to combine the local metrics, we

define a global representation in which we integrate the lo-

cal projections given by the different Ls. Similar to global

Mahalanobis metric learning, and unlike previous work, our

formulation amounts to projecting the data (in a locally lin-

ear way) to a new representation, and computing the ℓ2 met-

ric in this new representation. This allows us to compute

distances between any pair of samples, regardless of their

cluster assignments.

Figure 1 gives an illustration on a synthetic dataset. The

dataset (left panel) is constructed in such a way that a global

linear projection cannot bring all points of each class close

together, while keeping points of different classes apart.

This is observed in the data projected using a global Maha-

lanobis metric (middle panel). Using our “coordinated local

metric learning” (CLML) approach, which we describe be-

low, we obtain a data representation that respects the pair-

wise training constraints much better (right panel).

3.1. Coordinated local metric learning

As pointed out above, we can interpret a Mahalanobis

metric as computing the ℓ2 distance after linear projection

of the data. Local Mahalanobis metrics can therefore be

interpreted as locally mapping the data points x to several

different, local, coordinate systems via projections Lsx.

Since the ℓ2 metric is invariant to translation, rotation,

and reflection of the coordinates, we can arbitrarily modify

the projection of xi to a local coordinate system to

zis := RsLsxi + bs, (2)

where Rs denotes an orthonormal matrix, i.e . for which

R⊤

s Rs = I , which can implement rotations and reflections,

and bs denotes a translation. Using these transformations

we can coordinate the local projections so that they align

across different local models. In particular, given that xi

and xj are assigned to different clusters r and t respectively,

we can set the {Rs, bs} to ensure that zir and zjt are close

if xi and xj form a positive pair, and far away if they form

a negative pair.

Instead of learning the {Rs, bs} for fixed Ls that were

learned in advance, we will learn both the local metrics and

their alignment in a joint manner. To that end, we can ab-

sorb Rs into Ls without loss of generality, and define a map-

ping of the data points xi to a global coordinate system as

zi :=

k
∑

s=1

qiszis =

k
∑

s=1

qis
(

Lsxi + bs
)

, (3)

where qis := p(s|xi) is the soft-assignment of xi to cluster

s. In the case of hard-assignments zi is given by the local
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projection of the cluster to which it is assigned. In the case

of soft-assignments, zi is the weighted average of the local

projections to the global representation. Our goal is now to

learn {Ls, bs} so that zi and zj are close for positive pairs,

and far away for negative pairs. We assume the GMM clus-

tering is fixed.

Note that we can re-write this weighted average of lo-

cally linear projections as a single linear projection

zi = L̃x̃i, (4)

where L̃ = (L1, b1, . . . , Lk, bk) collects the local linear

projections, and x̃i =
(

qi1(x
⊤

i , 1), . . . , qik(x
⊤

i , 1)
)⊤

con-

tains k copies of xi appended with a one, each weighted by

the corresponding soft-assignment. The projection matrix L̃

defines the local metrics used to compare points that are as-

signed to the same cluster, but also the rotations, reflections,

and translations to globally align the local representations.

For a given partitioning of the data, the zi are obtained

as a linear projection of the transformed input vectors x̃i,

the ℓ2 distance between zi and zj is therefore equivalent to

a Mahalanobis distance between x̃i and x̃j . The problem of

learning a globally aligned ensemble of local metrics there-

fore takes the same form of learning a global Mahalanobis

metric; be it using the expanded high-dimensional data rep-

resentation given by the x̃i. As a result, existing Maha-

lanobis metric learning methods can be used to learn the

projection matrix L̃ for CLML.

It is easy to see that CLML generalizes Mahalanobis

metrics. For k ≥ 1, if each cluster s uses the same pro-

jection given by Ls = L and bs = b, then for arbitrary

soft-assignments zi = Lxi + b is a linear projection of xi,

and the ℓ2 distance between zi and zj is a Mahalanobis dis-

tance between xi and xj given by ‖ L(xi − xj) ‖2. With

proper regularization, we therefore expect performance that

is at least on par with global metric learning.

3.2. Implementation

Optimization. We use the LDML [15] objective func-

tion to learn our local metrics parameterized by L̃. Let the

label yij ∈ {−1,+1} denote whether (xi, xj) is a positive

or a negative pair. LDML then minimizes the log-loss

L(L̃, b) =
∑

i,j

ln
{

1 + exp
(

−yij(b− ||zi − zj ||
2)
)}

, (5)

where b is a scalar (estimated along with L̃) that determines

at which distance pairs are considered positive or negative.

We add a Frobenius norm regularizer over L̃ to avoid over-

fitting, and cross-validate the regularization weight. We use

a global LDML metric to initialize the local metrics.

In our implementation we use the sum formulation of

Eq. (3), which avoids explicitly storing the x̃i. Compared

to global metric learning, we only need to additionally store

the soft-assignments. In practice this is a negligible over-

head, in addition the assignments can be thresholded to be

sparse. The cost to compute the zi increases sub-linearly

with k because of this sparsity.

Clustering. To partition the input space in CLML, we

learn diagonal covariance GMMs. In our experiments we

consider two alternatives for the data on which the GMMs

are learned. We either learn the mixture in the original fea-

ture space, or learn the mixture in the projection space ob-

tained by global LDML metric learning. The rationale for

the latter option is that the GMM clustering will be more

meaningful in the global metric learning space.

Efficient retrieval. For efficient face retrieval we use the

multiple assignment approach of [21]. The zi in the retrieval

set are clustered using k-means, and each zi is assigned to

the nearest center. A query z is assigned to the m closest

k-means centers. Only points assigned to these m centers

are returned, ranked by their distances to the query z.

4. Experimental Evaluation

4.1. Dataset, protocols, and features

For our experiments we use the Labeled Faces in the

Wild (LFW) [19] dataset. It contains a total of 13,233 faces

of 5,749 people collected from the web. The dataset was

designed for verification experiments, where we have to de-

termine for a pair of face images if they depict the same

person or not. In our experiments, we use the standard “un-

restricted” training protocol, that allows the use of all pairs

in the training set. The verification accuracy is measured us-

ing ten-fold cross-validation. The train set is used to learn

a metric, and to estimate a threshold on the metric. Using

these, the pairs in the test set is classified as positive or neg-

ative, and the accuracy of this classification is reported.

Since the LFW verification accuracy is saturating in re-

cent years [24], we focus on the more challenging retrieval-

based evaluation of Bhatterai et al . [3]. The set of 423

queries consists one image of each person in LFW with five

or more images. All images not in the query set form the re-

trieval set, and are used to learn the metric. We augment the

retrieval set with up to one million distractor faces provided

by Bhatterai et al ., which belong to people not present in

the LFW dataset. The 1-call@n performance measure is

the fraction of queries for which at least one of the top n

ranked result faces is of the same person. We also use the

mean average precision (mAP) measure, which gives us a

single number per setting instead of a full 1-call@n curve.

We align face images with a similarity transform based

on detection of points on the eyes, nose, and mouth,

see [11]. We consider three representations. The first is

the LBP features of Bhattarai et al . [3], which allows direct

comparison to their work. We compute a 9,860 dimensional

descriptor by concatenating 58 dimensional LBPs [28] on
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GMM feature space

Nr. of local metrics k Original Global metric

2 73.04 73.09

4 74.04 75.18

6 73.58 75.24

8 73.92 75.59

Table 1. Evaluation of CLML over FV features using different

GMM clustering methods. Performance is measured in mAP.

each cell of a 10 × 17 grid over the face. The second is

similar to the Fisher vector (FV) features of Simonyan et

al . [35]. We densely compute at each pixel a root-SIFT

descriptor [1], using 24 × 24 pixel patches. The descrip-

tors are projected to 64 dimensions using PCA. Spatial lay-

out information is incorporated by appending the 2D im-

age coordinates of the patch center to the descriptors [31],

providing a 66 dimensional local feature. We represent

the face by computing a 16,896 dimensional FV [32] us-

ing 128 Gaussian components. The third feature is derived

from the penultimate layer of a convolutional neural net-

work trained on the CASIA WebFace dataset [42], which

contains 494,414 faces of 10,575 subjects. The network

architecture is similar to the one proposed in [42] and the

dimensionality of the extracted feature is 320.

4.2. Experimental evaluation results

For comparability with Bhattarai et al . [3], we use pro-

jections to d=32 dimensions unless stated otherwise.

Comparison of CLML with global metric learning. In

Table 1 we compare CLML using GMMs trained either in

the original FV features, or on data projected to d=32 di-

mensions by a global LDML metric, c.f . Section 3.2. In all

cases, the clustering obtained LDML projections leads to

better results. Where the difference between the two clus-

tering approaches is only 0.05 for k = 2 local metrics, it

increases for larger numbers of clusters, up to 1.67 for k=8
local metrics. In all subsequent experiments we therefore

use clustering using LDML projections. Clustering in the

LDML projected space is also much faster: in this case it

takes about 0.5 secs. to learn the GMM on 10,000 points.

In Table 2 we evaluate CLML on the three features,

while varying the number of local metrics. We also state

results obtained when cross-validating the number of local

metrics, as well as results of global LDML metrics and the

ℓ2 metric. The results lead to the following observations. (i)

CLML generally improves when using more local metrics.

(ii) Cross-validation over the number of local metrics suc-

cessfully selects a (near) optimal number of local metrics.

In subsequent experiments we cross-validate the number of

local metrics for CLML. (iii) The FV features lead to better

results than the LBP and CNN features. (iv) For all tested

Features

Nr. local metrics k LBP FV CNN

2 41.51 73.09 59.78

4 44.02 75.18 61.43

8 47.94 75.59 64.64

16 49.00 76.20 66.07

32 49.98 75.61 70.98

64 49.70 75.58 73.83

Cross-validated 49.89 (26) 74.99 (28) 73.83 (64)

Global LDML metric 36.95 68.12 58.46

ℓ2 metric 13.24 22.88 63.06

Table 2. Performance of CLML in retrieval mAP for the three fea-

tures, while varying the number of local metrics.
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Figure 2. Performance in mAP of local and global metrics for the

three features, using projection dimensions from 16 to 256.

settings, CLML consistently improves over LDML.

In Figure 2 we compare CLML and LDML for the three

features across a range of projection dimensions. The re-

sults show that CLML consistently improves over LDML

for all projection dimensions with the three features. The

improvements are particularly large for the CNN and LBP

features. For the LBP and FV features, the best results

are obtained with CLML at d = 128, with k = 16 set

by cross-validation: 61.6% and 82.2% mAP respectively.

LDML with the same number of parameters, i.e . with d =
128 × 16 = 2048, obtains 53.0% and 80.9% respectively.

This shows that the improvement of CLML is not simply

because it has more parameters. In the case of CNN de-

scriptors, the best performance is obtained with CLML at

d = 128 and k = 64 set by cross-validation: 76.95% mAP.

Since the descriptors are only 320 dimensional, we cannot

compare to LDML with the same number of parameters.

131



10 20 30 40 50 60 70 80 90 100
30

40

50

60

70

80

90

Number of retrieved results (n)

1
−

c
a
ll 

@
 n

 

 

Zero distractors

CLML, k=16

LDML

Flat clustering, k=8

Hierarchical clustering, 256D4

[4] Hierarchical clustering, 256D4 

[4] PCCA

SCML

3

3

10 20 30 40 50 60 70 80 90 100

20

30

40

50

60

70

Number of retrieved results (n)

1
−

c
a
ll 

@
 n

 

 

With 100k distractors 

Figure 4. Retrieval using LFW images only (left), and using LFW plus 100,000 distractor faces (right). The results marked with [3]

correspond to those reported therein. Results for SCML and LDML have been produced using publicly available code. See text for details.
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Figure 3. Performance of CLML and LDML with different num-

bers of distractors added to the LFW images.

Using a full-rank 320× 320 Mahalanobis metric, however,

yields 63.71% mAP, which is significantly worse.

Large-scale face retrieval experiments. In our second

set of retrieval experiments we add up to one million addi-

tional distractor images to the LFW images.

In Figure 3 we evaluate the results of CLML and LDML

for the three features, while increasing the number of dis-

tractors from zero to one million. We observe that per-

formance degrades gracefully, and that the improvement of

CLML over LDML is stable as a function of the number of

distractors for all three features.

In Figure 4 we make a direct comparison to Bhattarai

et al . [3]: re-plotting the 1-call@n curves reported there.

From the other state-of-the-art methods discussed in Sec-

tion 2 we compare to SCML [34].1 For LMLML [4] code

1Code available at http://mloss.org/software/view/553.

is not available, while for R2LML [20] we found the code

too inefficient to use with our high dimensional features.

For Bhattarai et al . we report the results for their

“256D4” setting, which they found to give best results and

uses eight local metrics, and also include their global met-

ric learning results obtained with PCCA [25]. Our CLML

results substantially improve over the results of Bhattarai et

al ., e.g . from under 40% to over 70% 1-call@n for n = 10
for the case without distractors (Figure 4, left panel). Inter-

esting we also obtained large improvements over Bhattarai

et al . using global LDML metrics.

To understand the large performance difference, we re-

implemented their approach (Figure 4, left panel, green

curve), and obtained improvements of about 10 points w.r.t.

their results. We found that most of this improvement is due

to the ℓ2 regularization that we use, but Bhattarai et al . did

not. We also implemented a non-hierarchical variant of their

approach, based on “flat” k-means clustering, but which is

otherwise the same (Figure 4, left panel, black curve). This

leads to another improvement of about 10 points, which

suggests that flat clustering leads to clusters that are better

suited for retrieval. Our global metric learning results ob-

tained with LDML (Figure 4, left panel, red dashed curve)

are yet another 10 points better. This shows that the benefit

of using local metrics is counterbalanced by only retrieving

points assigned to the same cluster as the query, as is done

by Bhattarai et al . and for the green and black curves.

Using SCML [34] we obtained the worst retrieval results.

This is because SCML learns metrics using a limited set

of base metrics, which is detrimental for high-dimensional

data. To improve results we tuned the number of base met-

rics (600 gave best results), and also excluded faces of peo-

ple with less than 3 images to compute the base metrics

with FLDA, which also improved the results. The number

of clusters used to produce the base metrics in SCML is an-

other hyper-parameter that might require further tuning.
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Figure 5. Retrieval mAP and speed on LFW plus one million dis-

tractor faces, using CLML with d= 32 and FV feaures. Varying

the number of quantization cells p, and number of assignments m.

Efficient retrieval with CLML metrics. CLML

projects all data in a single representation in which the ℓ2
distance is used. Therefore we can decouple the cluster-

ing used for local metric learning, and the clustering used

for the efficient quantization-based multiple-assignment re-

trieval method discussed in Section 3.2.

In Figure 5 we consider the trade-off between the re-

trieval mAP and search speed. The speed is measured as

number of distance computations relative to the number

needed for exhaustive search. Each curve shows, for a quan-

tization into p cells, the performance using multiple assign-

ment to m = 1, 2, 4, . . . , p clusters, where m = 1 corre-

sponds to the lower-left point of each curve.

The blue curves show performance using 16 clusters:

either using a k-means clustering computed over the zi
(solid), or using the GMM clustering used for the local

metrics (dashed). Using the GMM clustering (dashed blue

curve), a speedup factor 10 relative to exhaustive search can

be achieved by single assignment (m = 1), but at the cost of

a drop of around 10 points in mAP. Using k-means cluster-

ing over the zi (solid blue curve) we obtain larger speedups

and higher mAP values. The results show that it is more ef-

fective to dissociate the clustering used for the local metrics

from the one used for retrieval, unlike the approach taken

by Bhattarai et al . [3].

Moreover, dissociating the clusterings, allows more flex-

ibility in choosing the speed-vs .-accuracy operating point.

By using k-means clustering with more than 16 centers we

can substantially improve the search results: as seen by the

red, black, and green curves for p equal to 64, 256, and 1024
respectively. For example, with p = 1024 clusters (green

curve) and assignment to m=64 clusters we can reduce the

search time by a factor 14, without compromising the mAP.

Using LFW training data

Guillaumin et al . [15] 12K 87.5 ± 0.4

Chen et al . [7] 12K 93.2 ± 1.1

Simonyan et al . [35] 12K 93.0 ± 1.1

Ours, FV, without metric learning 12K 78.9 ± 0.9

Ours, FV, LDML, d=768 12K 92.3 ± 0.5

Ours, FV, LDML, d=128 12K 92.1 ± 0.5

Ours, FV, CLML, d=128 (k=6) 12K 92.8 ± 0.4

Ours, FV, LDML, d=32 12K 91.6 ± 0.4

Ours, FV, CLML, d=32 (k=4) 12K 92.4 ± 0.5

Using external training data

Taigman et al . [37] 4.4M 97.4 ± 0.3

w/o metric learning, 2D alignment 4.4M 94.3 ± 0.4

Yi et al . [42] 500K 97.7 ± 0.3

w/o metric learning 500K 96.3 ± 0.3

Parkhi et al . [29] 2.6M 99.0

w/o metric learning 2.6M 97.3

Schroff et al . [33] 200M 99.6

Ours, CNN, w/o metric learning 500K 96.2 ± 0.8

Ours, CNN, LDML, d=128 500K 96.5 ± 1.0

Ours, CNN, CLML, d=128 (k=2) 500K 96.4 ± 0.9

Table 3. Comparing CLML using FV features with other metric

learning methods. Performance as LFW verification accuracy.

Our speedup is comparable to the factor of 10 reported by

Bhatterai et al . [3] for 16 clusters in their hierarchical ap-

proach, but our approach leads to better retrieval results.

With p=1024 and m=8, a speedup factor larger than 100

can be obtained while loosing less than 5 mAP points.

Face verification experiments. In Table 3 we compare

our results obtained using local CLML metrics and global

LDML ones to the state-of-the-art using the LFW face ver-

ification evaluation.

When using no outside training data, the results of Chen

et al . [7] (93.2± 1.1) and Simonyan et al . (93.0± 1.1) are

sate-of-the-art. Using the ℓ2 metric as a baseline we obtain

78.9± 0.9, which is improved using global LDML metrics

to 92.1 ± 0.5 and 91.6 ± 0.4 for d = 128 and d = 32
dimensional projections respectively. For both projection

dimensions, CLML improves over LDML, to 92.8 ± 0.4
and 92.4 ± 0.5 respectively. We also observe a consistent

improvement when comparing LDML (d = 128 and d =
768) with CLML (d= 32, k= 4 and d= 128, k= 6) using

the same number of parameters. This underlines once more

that the improvements by CLML are not simply due a larger

number of parameters.

Our results differ slightly from those of Simonyan et al .

[35] due to a more efficient implementation: (i) They used

GMMs with 512 components for the FV, while we use only
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Figure 6. Visualization of the data projections learned by LDML (left) and CLML (right). Data points of the 40 most frequent people in the

dataset have been color coded. Other data points are plotted in blue and pink for males and females respectively. On the sides of the CLML

visualization we show outliers faces (marked with black circles) of males in the female cluster (right), and vice-versa (left). Interestingly,

male outlier faces are mostly young boys, while female outlier faces mostly display extreme poses or expressions. Best viewed on screen.

128, yielding 4× smaller descriptors. (ii) They average over

left-right flipped versions of face image which we do not.

(iii) Besides a Mahalanobis metric, they also learn a sim-

ilarity of the form xT
i Mxj , which they average with the

Mahalanobis metric, similar to Cao et al . [6].

In the bottom part of Table 3 we report results obtained

using CNN features. Using the CNN features with the ℓ2
metric we obtain 96.2 ± 0.8 verification accuracy, similar

to the results of Yi et al . [42] (96.3 ± 0.3) which used the

same training data for their network. Surprisingly, using

our CNN descriptors we found that metric learning, either

with LDML or CLML, gives only small improvements over

the ℓ2 baseline. The reason for this might be that the per-

formance of the ℓ2 distance over the CNN features is al-

ready very high for the face verification task, or that the

pair-wise loss function of LDML is less suitable for verifi-

cation than the triplet-based loss used by Parkhi et al . [29],

or the weighted chi-squared metric used by Taigman et al .

[37]. Yi et al . [42] used a multi-task learning objective to

train their CNN jointly for both verification and recognition.

The quoted results from the literature other than [42],

are using CNNs trained on datasets that are 5 to 400 times

larger, and therefore not directly comparable. Taigman et

al . [37] use 4.4 million images and combine the output

of three different CNNs and use 3D face alignment. Us-

ing only 2D aligned images (as we do in our work), they

reported slightly worse than ours before metric learning

(94.3 ± 0.4). Parkhi et al . [29] recently reported results

using a deeper convolutional architecture [36] and 2D face

alignment over 2.6 million images (99.0). The state of the

art results of Schroff et al . [33] are based on an extremely

large proprietary dataset of 200 million images, for which

no alignment was used.

Data visualization. To illustrate the benefit of CLML

for data visualization we plot LFW images projected using

CLML and LDML in Figure 6. We learned d=256 dimen-

sional projections on the FV features, and map these to 2D

by PCA. For CLML the number of local metrics was set to

k = 12 by cross-validation. CLML leads to a much better

separation of the faces of different people, despite the lim-

ited improvement of CLML (81.9) over LDML (80.8) in

mAP for d = 256. Using CLML we can more clearly see

the two groups corresponding to male and female faces. We

used the LFW gender labels from the BeFIT website.2

5. Conclusion

We have presented our coordinated local metric learning

(CLML) approach which learns local Mahalanobis metrics,

and integrates them in a global representation where the ℓ2
distance is used. This allows data visualization in a sin-

gle view, and the use of efficient ℓ2-based retrieval meth-

ods. Our low-dimensional global representation is obtained

as a linear projection of an expanded data representation,

defined using the input data and a Gaussian mixture clus-

tering. We have presented results of extensive face retrieval

and verification experiments on the Labeled Faces in the

Wild dataset. In all settings CLML improves over global

LDML metrics, or gives comparable results. For face re-

trieval we obtain substantial improvements over global met-

rics and previously reported local metric learning results.

Our approach also allows efficient multiple-assignment re-

trieval, which gives a better speed-accuracy trade-off than

earlier work for face retrieval in a large-scale dataset with a

million distractor faces.

2See http://fipa.cs.kit.edu/431.php
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