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Abstract

Given a video or time series of skeleton data, action

recognition systems perform classification using cues such

as motion, appearance, and pose. For the past decade, ac-

tions have been modeled using low-level feature representa-

tions such as Bag of Features. More recent work has shown

that mid-level representations that model body part move-

ments (e.g., hand moving forward) can be very effective.

However, these mid-level features are usually hand-crafted

and the dictionary of representative features is learned us-

ing ad-hoc heuristics. While automatic feature learning

methods such as supervised sparse dictionary learning or

neural networks can be applied to learn feature represen-

tation and action classifiers jointly, the resulting features

are usually uninterpretable. In contrast, our goal is to

develop a principled feature learning framework to learn

discriminative and interpretable skeletal motion patterns

for action recognition. For this purpose, we propose a

novel body-part motion based feature called Moving Pose-

let, which corresponds to a specific body part configuration

undergoing a specific movement. We also propose a sim-

ple algorithm for jointly learning Moving Poselets and ac-

tion classifiers. Experiments on MSR Action3D, MSR Dai-

lyActivity3D and Berkeley MHAD datasets show that our

two-layer model outperforms other two-layer models using

hand-crafted features, and achieves results comparable to

those of recent multi-layer Hierarchical Recurrent Neural

Network (HRNN) models, which use multiple layers of RNN

to model the human body hierarchy.

1. Introduction

Action recognition from video data has become an im-

portant topic in the computer vision community in recent

years. In contrast to action recognition from 2D images, ac-

tion recognition from video data usually involves process-

ing sequential visual data that contains temporal movement

information. While 2D images only provide appearance and

pose information at one single frame, videos contain tem-

poral dynamics of the entire sequence, and are thus much

more informative than static images. However, recognizing

actions in videos is still a difficult problem due to various

challenges such as occlusions, view point changes and vari-

ation in appearance.

Recent developments in depth sensors (e.g. Microsoft

Kinect) and pose estimation algorithms [20], have enabled

efficient and relatively accurate prediction of human skele-

tons, with robustness to view point changes or appearance

variations. This has motivated the interesting question of

how to extract discriminative features from this kind of se-

quential data. A frequently-used method is Bag of Fea-

tures (BoF) [10], which is based on extracting local spatial-

temporal features, and computing the distribution of feature

descriptors to represent each action instance. Recent work

has shown that mid-level features can be more effective at

recognizing actions. Unlike early BoF models, which only

use local information, mid-level features can capture dis-

criminative body part pose or movement (e.g., hand moving

forward) for different actions. These features are usually

interpretable, but they are typically generated with ad-hoc

heuristics (e.g., selecting the set of mid-level descriptors

that has a high ratio of in-class neighbors).

Our work aims at learning discriminative mid-level fea-

tures based on body part movement. We use an auto-

matic feature learning framework inspired by recent mid-

level representations and neural networks models for object

recognition. To capture information from different body

parts, we learn one dictionary for each body part configura-

tion. Specifically, our model extracts mid-level descriptors

at every frame for each body part. These features are then

represented in terms of their corresponding dictionaries to

generate a set of response maps. Finally a high-level feature

representation is computed based on the response maps and

used for action classification.

Our proposed model is capable of learning interpretable

and discriminative mid-level feature representation with

an efficient feature learning scheme. Specifically, our con-

tributions are three-fold:
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1. Body-part Motion Pattern Based Feature. We design

a body-part based feature descriptor to capture spatial-

temporal movement of human body parts, which is de-

fined as position and velocity values associated with

specific body part in a temporal window. While prior

work only uses mid-level features to capture the mo-

tion dynamics of single joint, or body pose informa-

tion at one frame, we show that the movement of the

human body part as a whole, is more informative.

2. Discriminative and Efficient Learning. Most prior

work on learning mid-level features uses a dictionary

that is pre-learned by complex data mining techniques.

In sharp contrast, we present a framework for jointly

learning the feature representations and action clas-

sifiers. In our model, each column of the mid-level

dictionary acts as a linear feature classifier and the

response maps to these classifiers are used to aggre-

gate histograms for classification. Our model can be

viewed as a modified two-layer Convolutional Neu-

ral Networks [12] model that is adapted to the human

body structure.

3. Interpretability. The features learned by generic CNN

models are usually hard to interpret. In sharp con-

trast, our mid-level feature classifiers are descriptive

of body part configuration undergoing a certain move-

ment, which is named as Moving Poselet. Thus the fea-

tures are interpretable and can be visualized to help un-

derstand the discriminative body part movement (e.g.,

hand moving up) for each action.

2. Related Work

There is much related work on designing feature repre-

sentation for action classification. For low-level features,

most state-of-the-art methods are based on the popular Bag-

of-Features (BoF) approach. A common first step of the

BoF approach is to extract a set of spatial-temporal inter-

est points using a Harris3D detector [10], densely sampled

trajectories [23, 24], or other interest point detectors. Each

interest point is then described using a spatio-temporal de-

scriptor. Unsupervised learning techniques such as k-means

are adopted to build a dictionary of motion words. A video

is then represented by a histogram of these motion words

[11, 23], and classifiers are trained on top of these his-

tograms for recognizing actions. For skeleton data, the in-

terest points are usually skeleton joints, and a sequence is

represented by a histogram of 3D joint positions [27]. The

main advantages of the BoF approach are its simplicity and

empirical success. Nevertheless, the key drawbacks of the

BoF approach are that (1) motion words depict only local

information and that (2) motion words are neither inter-

pretable nor discriminative of the action.

To overcome these shortcomings, there are several re-

lated studies in the direction of mid-level feature model-

ing. For videos, mid-level features are designed based on

3D regions, poselets, tracklets, and so on. Such examples

are acteme [30], acton [31], motionlet [26], group of track-

let [19], etc. In [30], an acteme is defined as a volume of

random size that captures a salient spatiotemporal visual

pattern, represented by HOG/HOF features. In [31], dif-

ferent from actemes, actons are built on top of the BoF rep-

resentation of each volume of interest, forming a mid-level

dictionary of intermediate concepts to characterize the se-

mantic properties. Similar to actemes, an activation vector

is computed for the final classification. In [26], a greedy

method is used to select the discriminative 3D regions with

high motion saliency, and a spatio-temporal pyramid repre-

sentation of the activation scores is used for final classifica-

tion. In [19], groups of trajectories are employed to define

mid-level primitives.

Similar mid-level features have also been developed for

motion capture data. In [25], Wang et al. use actionlet and

actionlet ensemble to represent actions. Each joint is de-

scribed by the Fourier coefficients of its position values at

different temporal scales. A mining algorithm is adopted

to discover conjunctive structure on these joint features,

which is defined as actionlet. The actionlet ensemble is then

computed with Multiple Kernel Learning (MKL) [1]. An-

other work along this line is the pose based approach [22]

by Wang et al. In that work, a skeleton sequence is first

quantized using pre-learned pose dictionaries. Discrimina-

tive spatial and temporal part sets are then generated using

contrast mining techniques. Actions are represented with a

BoW histogram and classified by one-vs-one linear SVMs.

In [4], a set of Linear Dynamic Systems (LDS) is fit to sub-

sequences of the time series data at different spatial and

temporal scales. MKL is then employed to compute the

weight of the LDS representation associated with different

spatial and temporal scales. In [29], the position, velocity

and acceleration feature at one frame is defined as a Mov-

ing Pose feature, and a mining algorithm is adopted to com-

pute the most discriminative Moving Pose frames. A voting

scheme based on k nearest neighbors is utilized to predict

the label of a test sequence. In [14], each action is modeled

by a sequence of latent poses, where the pose dictionary

and action/activity classifiers are jointly learned via Latent

Structural SVM [28].

An important disadvantage of all these methods for

building mid-level representations for action classifica-

tion is that, except for [19, 4, 14], the mid-level code-

book/classifier is learned separately from the action clas-

sifiers using clustering/mining techniques, which might not

be discriminative for specific actions.

On the other hand, joint learning of mid-level features

and classifiers has shown good performance in other vi-
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sual recognition tasks. For example, Mairal et al. [16] and

Boureau et al. [3] learn a sparse representation based dic-

tionary together with the classifier for image classification.

Lobel et al. [15] introduce a two-layer feature representa-

tion for image classification, in which the feature classi-

fiers are learned jointly with object classifiers using Latent

Structural SVMs [28]. Jain et al. [7] use top-down fea-

ture representation for semantic segmentation, and jointly

learn the top-down feature dictionary with a Conditional

Random Field model. Moreover, CNN [12] based tech-

niques, which learn multi-layer features jointly, have been

applied to video-based action recognition. Ji et al. [8] pro-

pose using a 3D CNN for video classifications. Karpathy

et al. [9] apply CNNs to action recognition using 1 million

videos and out-performs one-layer histogram based classi-

fication. Nonetheless, to the best of our knowledge, there is

not much automatic feature learning method developed for

action recognition based on motion capture data. The only

one we are aware of is [5], which uses a Hierarchical Recur-

rent Neural Network (RNN) model. In this model, the data

from each body part is used as input to its corresponding

RNN model, and the generated hidden state series is used

as input to the RNN model at the next layer (e.g. upper

body and lower body layer, or full body layer). The output

sequence at the full body layer is then fed to a fully con-

nected layer following a softmax layer. This model shows

good performance, but it is very complicated and still lacks

interpretability since it contains multiple layers.

3. Our Framework

3.1. Body­Part Based Feature

Many actions can be differentiated by looking at the

movement patterns associated with parts of the body. For

example, a hand waving action can be recognized by detect-

ing the ’waving’ movement of the hand; a walking action

can be recognized by detecting the right and left leg mov-

ing forward alternately. Furthermore, these discriminative

patterns can be observed within a small temporal window,

rather than the whole time series data. We thus propose to

use dynamic motion features associated with a set of joints

from short temporal segments as our mid-level feature de-

scriptor.

More specifically, given a set of mk body joints Jk =
{jk1 , j

k
2 , . . . , j

k
mk

} corresponding to the kth body part, we

compute the position and velocity of these joints for L con-

secutive frames {t, t + 1, . . . , t + L − 1}, and concatenate

them to form a feature xk
t ∈ R

6mkL for body part k at frame

t,

xk
t = [pJk(t),vJk(t), . . . ,pJk(t+L−1),vJk(t+L−1)],

(1)

where pJk(t) and vJk(t) denote the position and velocity

for the set of joint Jk at frame t respectively, and xk
t has

Figure 2: The feature descriptors extracted from each body

part are fed into a set of dictionaries respectively to generate

a set of response maps. A global feature is computed based

on the response maps as input to a linear SVM for action

classification.

dimension 6mkL since there are mk joints in the kth body

part Jk.

In this work, we are interested in exploring the ben-

efit of introducing body-part specific features. We man-

ually select 10 body parts {Jk}Kk=1, as shown in Figure

1. These body parts are selected to represent the human

body hierarchy from limbs level to full body level. Ide-

ally, one could choose to have parts at more granular levels.

However, inspired by the analysis in [4], we choose to not

include smaller parts to reduce the number of parameters

and avoid redundancy in representation. [4] automatically

learned a set of weights on the LDSs extracted from a larger

set of body parts, and showed that most of the weights from

smaller body parts are zero, suggesting that smaller parts

might be redundant in representing body-level actions.

3.2. Action Classification with Mid­level Feature
Representation

In [22], after extracting mid-level features from part-sets,

a complex data mining technique is adopted to find discrim-

inative features. In our work, instead of applying a Bag-

of-Features scheme, we learn one dictionary for each body

part configuration. Each dictionary atom is treated as a lin-

ear classifier for a specific body part movement pattern. In-

spired by the 2D poselet work [2], we call such classifiers

as Moving Poselets (MP), as they are descriptive of a body

part configuration undergoing a certain movement. The re-

sponse to these mid-level classifiers shows the similarity of

the motion segment to learned feature patterns. After all re-

sponse maps are computed, a max pooling step is performed

to compute the final representation. Moreover, these mid-

level feature classifiers are trained jointly with action clas-

sifiers to find discriminative mid-level motion patterns. This

process is also shown in Figure 2.

Mathematically, given a sequence of skeleton data with

T frames, we first extract the series of body-part based

feature Xk = [xk
1 ,x

k
2 , . . . ,x

k
T ], k ∈ {1, . . . ,K} for each

body part k. A set of mid-level feature classifiers Dk ∈
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Body Part Joint Set

Back J1
= {4 : 7}

Left Arm J2
= {3, 1, 8, 10, 12}

Right Arm J3
= {3, 2, 9, 11, 13}

Left Leg J4
= {5, 14, 16, 18}

Right Leg J5
= {6, 15, 17, 19}

Body Part Joint Set

Torso J6
= {20, 1 : 7}

Upper Body J7
= {20, 1 : 4, 8 : 13}

Lower Body J8
= {7, 5, 6, 14 : 19}

Full Upper Body J9
= {20, 1 : 13}

Full Body J10
= {1 : 20}

Figure 1: Left: The skeleton model for MSR Action3D dataset [25]. Middle and Right: Mannually defined body parts for

Moving Poselet feature.

R
6mkL×ck , ck being the number of classifiers, is then ap-

plied to the motion pattern features to generate a response

map,

hk
t = Dk⊤xk

t . (2)

Notice that the features {xk
t } have different dimensions for

different body part k, thus the dictionaries also have differ-

ent sizes. To compute the global representation, a max pool-

ing step is performed over the response maps. For longer

sequences, we adopt a temporal pyramid pooling structure,

which decomposes a sequence into I subsequences at multi-

ple scales. For each subsequence Si of S, the pooled feature

corresponding to body part k can be written as

f (i)(Xk;Dk)[j] = max
t∈Si

hk
t [j] = max

t∈Si

Dk⊤
j xk

t , (3)

where j means the jth entry, hk
t denotes the response of

the feature at frame t for body part k to its corresponding

dictionary Dk.

These pooled features for different body parts and dif-

ferent subsequences are then concatenated to form the final

global representation F (X,D) of the sequence,

F (X,D) = [f (1)(X1;D1), ..., f (1)(XK ;DK),

. . . ,

f (I)(X1;D1), ..., f (I)(XK ;DK)],

X = {Xk}Kk=1,D = {Dk}Kk=1. (4)

To classify the action label, this vector F (X,D) is first

passed through a rectified linear unit (ReLU) and then fed

to action classifiers {Wq, bq}
Q
q=1. The classification result

y is given by:

F̂ (X,D) = ReLU(F (X,D)) = max(F (X,D), 0), (5)

y = argmax
q

W⊤
q F̂ (X,D) + bq, (6)

where {Wq, bq} is the linear classifier corresponding to la-

bel q.

3.3. Relation with CNN

Our proposed model can be viewed as a variation of a

two-layer CNN model. However, there are three major dif-

ferences. First, we don’t assume that the input time series

are of fixed size. Instead, we use max pooling at the top

layer to generate a fixed dimensional feature to represent

each action. This gives more flexibility to process time se-

ries data. Secondly, we have one set of feature classifier per

body part configuration. This helps us to mine the discrimi-

native movements associated with each body part. Thirdly,

we use temporal pyramid representation for long sequences.

Our model is thus more specifically designed for modeling

action with human skeleton data.

4. Learning

Given training data of N sequences {X(n)}Nn=1 and their

action labels {y(n) ∈ {1, . . . , Q}}Nn=1, we aim to learn the

set of dictionaries D jointly with the action classifiers W

and b. The optimization problem is formulated as follows,

min
D,{Wq}Q

q=1,{bq}
Q
q=1

Q∑

q=1

N∑

n=1

L(Yqn,W
⊤
q F̂ (X(n),D) + bq)+

λ

2
(

K∑

k=1

‖Dk‖2F +

Q∑

q=1

‖Wq‖
2
F ),

(7)

where the loss function

L(Y,W⊤
q F̂ (X(n),D) + bq) =

max(0, 1− Yqn(W
⊤
q F̂ (X(n),D) + bq)). (8)

The loss function L(·) is the standard hinge loss func-

tion, with Yqn denoting the binary indicator of sample X(n)

having label q. The regularization term contains both regu-

larization for action classifiers W and mid-level dictionaries

D.

We adopt a mini-batch stochastic gradient descent algo-

rithm to solve the optimization problem. The gradients of
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action classifiers can be computed similarly as in standard

SVM training, while the gradients with respect to D can

be achieved by the back-propagation algorithm commonly

used in CNN learning [12]. More specifically, the gradient

with respect to the jth classifier for kth body part, i.e. Dk
j ,

for a mini-batch B can be written as:

gDk
j
(B) =

∑

n∈B

Q∑

q=1

∂L

∂F̂ (X(n),D)
·
∂F̂ (X(n),D)

∂Dk
j

+ λDk
j

=
∑

n∈B

Q∑

q=1

δ(1− Yqn(W
⊤
q F̂ (X(n),D) + bq) > 0)

∗ δ(F̂ (X(n),D)[zkj ] > 0) ·Wq[zkj ] · x
k(n)

t
(n)
kj

+ λDk
j ,

(9)

where zkj denotes the corresponding entry of the classifier

response of Dk
j in the global feature F̂ (X,D), and t

(n)
kj de-

notes the frame index of the MP feature in nth sample that

gives the max value at entry j for kth body part. During

training, we use a step decay strategy to anneal the learning

rate. We start from a small learning rate τ0 and then reduce

it by factor γ for every Te epochs.

5. Experiments

5.1. Datasets

We validate our algorithm on the MSR Action3D [13],

MSR DailyActivity3D [25] and Berkeley MHAD [17]

datasets, which are commonly used datasets for action

recognition from skeleton data. The MSR Action3D dataset

consists of skeleton data sequences of 20 actions such as

hand waving and clapping. Each action is performed 2-3

times by 10 subjects, and the 3D body joint positions of 20

joints are extracted from RGB-D videos. These action se-

quences are relatively short sequences with 30-50 frames,

and the frame rate is 15 frames per second. We conduct two

set of experiments, following the experimental setup in [25]

and [13] respectively. In Setup 1, all sequences from sub-

jects 1, 3, 5, 7 and 9 are used for training and the remaining

ones for testing. In Setup 2, the dataset is divided into three

action sets, AS1, AS2 and AS3, and the same algorithm is

tested on each of the three sets.

The MSR DailyActivity3D dataset consists of 16 daily

activities such as drinking and reading books. Each action is

performed twice by 10 subjects, making up 320 sequences

in total. This dataset has longer sequences, with 100-300

frames. The skeleton data also contains 3D positions of the

same 20 joints extracted from RGB-D videos. It is more

challenging than MSR Action3D, since the actions are more

complex, and contain human-object interactions. Also fol-

lowing [25], we use the sequences from subject 1, 3, 5, 7

and 9 for training, and remaining ones for testing.

The Berkeley MHAD dataset consists of 11 actions such

as jumping and clapping. Each action is performed by 12

subjects with 5 repetitions, making up 659 sequences in to-

tal. The skeleton data is obtained via a motion capture sys-

tem. It contains 3D positions of 35 joints and has a frame

rate of 480 fps. Following [4], we use sequences from the

first 7 subjects for training, and the remaining ones for test-

ing.

5.2. Implementation Details

Data Preprocessing. Before computing MP features, we

first normalize the skeleton data according to Algorithm 1

described in [29]. The raw skeleton joint positions are nor-

malized so that the limbs (skeleton segments) have same

lengths as a template skeleton model, while the joint angles

are not modified. The hip center joint position is then sub-

tracted from the skeleton data so that all sequences are cen-

tered at the origin. Following [29], after extracting velocity

features at every frame, we normalize them to unit norm

and scale them by a weight α. This weight is set according

to the best value in [29], which is 0.75 for MSR Action3D,

and 0.6 for MSR DailyActivity3D, and we also choose 0.6

for Berkeley MHAD. For Berkeley MHAD dataset, since

the data has a high frame rate, we subsample each sequence

at every 16 frames.

Temporal Pyramid. Since MSR Action3D consists of

shorter sequences with simple actions, we set the pyramid

level to be 1, i.e., the feature is max-pooled over the whole

sequence. For MSR DailyActivity3D, which contains more

complex actions, we set the pyramid level to be 3, and com-

pute features pooled from 7 subsequences. For Berkeley

MHAD dataset, we also set pyramid level to 1.

Optimization. In the stochastic gradient descent (SGD)

algorithm, we use a mini-batch of size 10. The initial learn-

ing rate τ0 is set to be 0.05 and it is reduced by a factor

γ = 0.5 for every Te = 50 epochs. The regularization term

λ is set to 1e−4. To initialize D and W, each entry is ran-

domly sampled from a uniform distribution of [−1, 1], and

each atom/classifier is then scaled by a factor of 1√
d

, where

d is the dimension of the corresponding vector. The bias

term is initialized as 0. Due to the randomness in SGD op-

timization, for each set of parameters, we run 10 repetitions

of the same experiment and report the mean accuracy and

standard deviation in our results section.

5.3. Results

We first compare our approach with other state-of-the-art

skeleton-based action recognition methods. In this case, we

use 10 body parts, and 50 mid-level feature classifiers for

each body part.

The performance on MSR Action3D under two experi-

ment setups is shown in Table 1 and Table 2. The number

in bracket is the standard deviation. We can see that our
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Figure 3: Confusion Matrix for MSR Action3D Dataset

Moving Poselet approach achieves 93.6% mean accuracy

for Setup 1 on this dataset, while the Moving Pose [29],

which uses similar features (position, velocity and acceler-

ation of the full body at single frame) only gives 91.7%.

This suggests that the feature representation learned from

our method is more discriminative. Figure 3 presents the

confusion matrix from one repetition of the experiments un-

der this setup. We can observe that this approach achieves

100% accuracy on 15 out of 20 action classes. There is con-

fusion between hand catch, forward punch, high throw and

side boxing. This is expected, since they all involve hand

movement. Also, the action pick up is confused with bend-

ing since pick up also involves a bending action.

For Setup 2, our method achieves comparable results

to the state-of-art HRNN based method [5]. Note that

the HURNN-L version is the HRNN model with unidirec-

tional RNNs, while the HBRNN-L version uses a hierarchy

of bidirectional RNNs. We can see that our simple two-

layer model generates similar result as the very complicated

HURNN-L model, while its performance is only 1% less

than that of the HBRNN-L model.

On the MSR DailyActivity3D dataset (see Table 3), our

Moving Poselets approach achieves a mean accuracy of

74.5%, outperforming other state-of-the-art methods. How-

ever, only 5 out of 16 action classes are classified with 100%
accuracy on this dataset, as it’s more challenging then MSR

Action3D. Another observation is that the actions eat, read

book, call cellphone, write on a paper, use laptop are usu-

ally confused with each other, since they all involve human

manipulating some object that is close to his face.

On the Berkeley MHAD dataset (see Table. 4), our Mov-

Table 1: Action Classification Accuracy on MSR Action3D

(setup 1)

Method Accuracy

Actionlet Ensemble[25] 88.2

Lie Group [21] 89.5

Hierarchical LDS [4] 90.2

Pose Base Approach[22] 90.2

Moving Pose [29] 91.7

[6] 91.5

Moving Poselets (Ours) 93.6 (0.24)

Table 2: Action Classification Accuracy on MSR Action3D

(setup 2)

Method AS1 AS2 AS3 avg

Bag of 3D Points [13] 72.9 71.9 79.2 74.7

Lie Group[21] 95.29 83.87 98.22 92.46

HRNN (HURNN-L) [5] 92.38 93.75 94.59 93.57

HRNN (HBRNN-L) [5] 93.33 94.64 95.50 94.49

Moving Poselets (Ourts) 89.81 93.57 97.03 93.50

Table 3: Action Classification Accuracy on MSR DailyAc-

tivity3D

Method Accuracy

Actionlet Ensemble [25] 68.0

Moving Pose [29] 73.8

[6] 73.1

Ours 74.5 (1.43)

Table 4: Action Classification Accuracy on Berkeley

MHAD

Method Accuracy

SMIJ [18] 95.37

Hierarchical LDS [4] 100

HURNN-L [5] 99.64

HBRNN-L [5] 100

Moving Poselets (Ours) 100

ing Posetlets approach achieves 100% accuracy, which is

much higher than the performance on the previous two

datasets. Our conjecture is that since the skeleton data in

this dataset is obtained through motion capture system, it

is less noisy than the skeleton data extracted from RGB-

D videos, and thus easier to be classified. For comparison

with other methods, the HURNN-L model gives 99.64%
accuracy, and the Hierachical LDS and HBRNN-L models

both give 100% accuracy. This suggests that our two-layer

feature learning framework works as well as or better than

multilayer HRNN models.
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Figure 4: Confusion Matrix for MSR DailyActivity3D

Dataset

5.4. Analysis

Importance of Body Part Structure. The intuition be-

hind our Moving Poselet feature is that the movement pat-

terns associated with a specific body part are discriminative

for recognizing actions. To validate this, we run experi-

ments using only the Moving Poselet feature from the full

body for comparison. More specifically, instead of having

50 mid-level classifiers per body part for 10 body parts, we

use 500 classifiers for features only extracted from the full

body. The performance does not change much on the less

challenging MSR Action3D (93.6%) and Berkeley MHAD

(100%) datasets, but it drops significantly on the more chal-

lenging MSR DailyActivity3D dataset (70.8%). This sug-

gests that exploring the discriminative body parts is very

important for recognizing human actions.

Comparison with Bag-of-Words Based Models. To show

the importance of jointly learning mid-level features and ac-

tion classifiers, we run experiments that compare with the

Bag-of-Words model. In this Bag-of-Words model, the dic-

tionary is trained via K-means using the Moving Poselet

features extracted at every frame. We use a dictionary of

size 500 and each video is represented by the aggregated

histogram with the same temporal pyramid. The perfor-

mance of this model on MSR DailyActivity3D is 60.6%
with linear SVM, while our method gives 74.5% average

accuracy. This suggests that performing feature learning

can help improve classification performance.

Size of Mid-level Classifiers. To understand the effect of

the size of mid-level classifiers, we run the same experiment

with the number of mid-level classifiers set to 100, 250,

500, and 800 (10, 25, 50, 80 per body part, respectively).

The performance is given in Table 5. The results suggest

that for Berkeley MHAD dataset, the performance does not

change and the accuracy is always 100%. Our conjecture is

that since this dataset is obtained from motion capture sys-

tem, it is less noisy and easier to classify comparing with

the other two datasets, and thus gives 100% accuracy using

our model. For the other two datasets, the performance is

better with larger size of mid-level classifiers. But the im-

provement starts to converge when the number of classifiers

reaches 500. For MSR DailyActivity3D, the accuracy even

starts to go down when the size is bigger than 500. Our

conjecture is that since this dataset only contains 320 sam-

ples, using large number of classifiers leads to overfitting

and could affect the performance.

Table 5: Performance Using Different Number of Mid-level

Classifiers on Three Datasets

MSR Action3D MSR DailyActivity3D MHAD

100 92.2 (0.69) 72.2 (1.85) 100

250 93.0 (0.48) 73.3 (1.37) 100

500 93.6 (0.24) 74.5 (1.43) 100

800 93.6 (0.17) 73.3 (1.25) 100

Effect of ReLU. To evaluate the contribution of the ReLU

layer, we perform the same experiment using 500 mid-level

classifiers, but with the ReLU layer removed. Similarly, for

the less challenging Berkeley MHAD dataset, the perfor-

mance is the same (100%). For MSR Action3D dataset, the

accuracy is slightly worse (92.8% versus 93.6%). For MSR

DailyActivity3D, removing the ReLU layer leads to a dra-

matic decrease in performance (66.2% versus 74.5%). This

suggests that for challenging datasets with complex struc-

tures and small amount of training data, adding a ReLU

layer leads to better performance.

Visualization of Discriminative Moving Poselets. To vi-

sualize the discriminative features, we first select the mid-

level classifiers corresponding to the top 5 highest weights

in Wq for each action class q. From training data, we find

the L−frame segment that gives the highest response to

each classifier. The selected Moving Poselet segments for

the top 5 mid-level classifiers per action are visualized in

Figure 5. We can see that our algorithm is able to automati-

cally select the discriminative body parts and their move-

ments. For example, for the high arm wave action, the

algorithm selects movements corresponding to upper body

or right arm; for the side kick action, the algorithm selects

movements corresponding to the right leg.
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Figure 5: Moving Poselet segments that give highest response to the top 5 mid-level classifiers for each action. The actions

(from top to bottom) are: high arm wave, draw circle, two hand wave, side kick, golf swing. The red line indicates the

corresponding body parts, while the green dashed line shows the trajectory of the joints from selected body parts.

6. Conclusion and Future Work

We have proposed a novel Moving Poselet based mid-

level feature learning method for action recognition using

skeleton data. The results showed that by jointly learning

the feature representation and action classifiers, and explor-

ing discriminative body part movement for actions, our al-

gorithm outperformed state-of-the-art methods. Our current

work uses manually selected body parts for a fixed temporal

scale (a few frames). For future work, we are interested in

extending our work to automatically select body part con-

figurations and temporal scales. We are also interested in its

extension in video data.
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