This ICCV workshop paper is the Open Access version, provided by the Computer Vision Foundation.

Except for this watermark, it is identical to the version available on IEEE Xplore.

Deep Spatial Pyramid Ensemble for Cultural Event Recognition

Xiu-Shen Wei

Bin-Bin Gao

Jianxin Wu*

National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China

{weixs, gaobb}@lamda.nju.edu.cn, wujx2001@nju.edu.cn

Abstract

Semantic event recognition based only on image-based
cues is a challenging problem in computer vision. In or-
der to capture rich information and exploit important cues
like human poses, human garments and scene categories,
we propose the Deep Spatial Pyramid Ensemble framework,
which is mainly based on our previous work, i.e., Deep Spa-
tial Pyramid (DSP). DSP could build universal and power-
ful image representations from CNN models. Specifically,
we employ five deep networks trained on different data
sources to extract five corresponding DSP representations
for event recognition images. For combining the comple-
mentary information from different DSP representations, we
ensemble these features by both “early fusion” and “late
fusion”. Finally, based on the proposed framework, we
come up with a solution for the track of the Cultural Event
Recognition competition at the ChaLearn Looking at Peo-
ple (LAP) challenge in association with ICCV 2015. Our
framework achieved one of the best cultural event recogni-
tion performance in this challenge.

1. Introduction

Event recognition is one of the key tasks in computer vi-
sion. There have been many researches about video-based
event recognition and action recognition [13, 15, 17, 18].
However, event recognition from still images has received
little attention in the past, which is also a more challeng-
ing problem than the video-based event recognition task.
Because videos could provide richer and more useful in-
formation (e.g., motions and trajectories) for understanding
events, while images of events just merely contain static ap-
pearance information.

Moreover, cultural event recognition is an important
problem of event understanding. The goal of cultural event
recognition is not only to find images with similar content,
but further to find images that are semantically related to a
particular type of event. Specifically, as shown in Fig. 1,
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images with very different visual appearances are possible
to indicate the same cultural event, while images containing
the same object might come from different cultural events.
In addition, it is crucial for cultural event recognition to ex-
ploit several important cues like garments, human poses,
objects and background at the same time.

In this paper, we propose the Deep Spatial Pyramid En-
semble framework for cultural event recognition, which is
mainly based on our previous work, i.e., the Deep Spatial
Pyramid (DSP) method [5]. This method builds universal
image representations from CNN models, while adapting
this universal image representation to different image do-
mains in different applications. In DSP, it firstly extract the
deep convolutional activations of an input image with ar-
bitrary resolution by a pre-trained CNN. These deep acti-
vations are then encoded into a new high dimensional fea-
ture representation by overlaying a spatial pyramid parti-
tion. Additionally, in order to capture the important cues
(e.g., human poses, objects and background) of cultural
event recognition images, we employ two types deep net-
works, i.e., VGG Nets [14] trained on ImageNet [12] and
Place-CNN [23] trained on the Places database [23]. Mean-
while, we also fine-tune VGG Nets on cultural event im-
ages [3]. After that, we utilize these deep networks trained
on different data sources to extract different DSP represen-
tations for cultural event images. Finally, we ensemble the
information from multiple deep networks via “early fusion”
and “late fusion” to boost the recognition performance.

In consequence, based on the proposed framework, we
come up with a solution of five DSP deep convolutional net-
works ensemble for the track of Cultural Event Recognition
at the Chal.earn Looking at People (LAP) challenge in asso-
ciation with ICCV 2015. Our proposed framework achieved
one of the best cultural event recognition performance in the
Final Evaluation phase.

The rest of this paper is organized as follows. In Sec. 2,
we present the proposed framework, and mainly introduce
the key method DSP. Implementation details and experi-
mental results of the cultural event recognition competition
are described in Sec. 3. Finally, we conclude our method
and present the future works in Sec. 4.
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Figure 1. Images randomly sampled from 99 categories of the cultural event recognition images [3]. The cultural event recognition dataset

contains 99 important cultural events from all around the globe, which includes: Carnival of Venice (Italy), Gion matsuri (Japan), Harbin
Ice and Snow Festival (China), Oktoberfest (Germany), Mardi Gras (USA), Tapati rapa Nui (Chile) and so on.

2. The proposed framework

In this section, we will introduce the proposed Deep
Spatial Pyramid Ensemble framework, especially the main
approach used in this paper, i.e., Deep Spatial Pyramid
(DSP) [5].

Recently, thanks to the rich semantic information ex-
tracted by the convolutional layers of CNN, convolutional
layer deep descriptors have exemplified their value and been
successful in [10, 2, 20]. Moreover, these deep descriptors
contain more spatial information compared to the activa-
tion of the fully connected layers, e.g., the top-left cell’s
d-dim deep descriptor is generated using only the top-left
part of the input image, ignoring other pixels. In addition,
fully connected layers have large computational cost, be-
cause it contains roughly 90% of all the parameters of the
whole CNN model. Thus, here we use fully convolutional
networks by removing the fully connected layers as feature
extractors.

In the proposed framework, we feed an input image with
arbitrary resolution into a pre-trained CNN model to ex-
tract deep activations in the first step. Then, a visual dic-
tionary with K dictionary items is trained on the deep de-
scriptors from training images. The third step overlay a spa-
tial pyramid partition to the deep activations of an image
into m blocks in N pyramid levels. One spatial block is
represented as a vector by using the improved Fisher Vec-
tor. Thus, m blocks correspond to m FVs. In the fourth
and fifth step, we concatenate the m FVs to form a 2mdK -
dimensional feature vector as the final image-level repre-
sentation. These steps are shown as the key parts of our
framework in Fig. 2. In addition, since cultural event recog-
nition is highly related with two high-level computer vision
problems, i.e., object recognition and scene recognition,
we employ multiple pre-trained CNNs (e.g., VGGNets [14]

and Place-CNN [23]) to extract the DSP representations for
each image in this competition, and then ensemble the com-
plementary information from multiple CNNs.

In the following, we will firstly present some detailed
factors in DSP, and secondly introduce the Deep Spatial
Pyramid method, and finally describe the ensemble strat-
egy used in our framework for the cultural event recognition
competition.

2.1. The ¢, matrix normalization in DSP

Let X = [xy,...,2,...,z7]T (X € RT*) be the
matrix of d-dimensional deep descriptors extracted from an
image I via a pre-trained CNN model. X was usually pro-
cessed by dimensionality reduction methods such as PCA,
before they are pooled into a single vector using VLAD
or FV [6, 21]. PCA is usually applied to the SIFT fea-
tures or fully connected layer activations, since it is em-
pirically shown to improve the overall recognition perfor-
mance. However, as studied in [5], it shows that PCA sig-
nificantly hurts recognition when applied to the fully con-
volutional activations. Thus, it is not applied to fully con-
volutional deep descriptors in this paper.

In addition, multiple types of deep descriptors normal-
ization have been evaluated, and the /5 matrix normaliza-
tion before using FV is found to be important for better per-
formance, cf. Table 2 in [5]. Therefore, we employ the
{5 matrix normalization for the cultural event recognition
competition as follows:

x, — /|| X |2, (D

where || X||2 is the matrix spectral norm, i.e., largest sin-
gular value of X. This normalization has a benefit that it
normalizes x; using the information from the entire image
X, which makes it more robust to changes such as illumi-
nation and scale.
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Figure 2. The image classification framework. DSP feeds an arbitrary resolution input image into a pre-trained CNN model to extract deep
activations. A GMM visual dictionary is trained based on the deep descriptors from training images. Then, a spatial pyramid partitions the
deep activations of an image into m blocks in [NV pyramid levels. In this way, each block activations are represented as a single vector by
the improved Fisher Vector. Finally, we concatenate the m single vectors to form a 2mdK -dimensional feature vector as the final image

representation.

2.2. Encoding deep descriptors by FV

The size of pools is a parameter in CNN because input
images have arbitrary sizes. However, the classifiers (e.g.,
SVM or soft-max) require fixed length vectors. Thus, all
the deep descriptors of an image must be pooled to form a
single vector. Here, similarly to DSP, we also use the Fisher
Vector (FV) to encode the deep descriptors.

We denote the parameters of the GMM with K compo-
nents by A = {wg, ., 01k = 1,..., K}, where wg, py,
and o, are the mixture weight, mean vector and covariance
matrix of the k-th Gaussian component, respectively. The
covariance matrices are diagonal and o are the variance
vectors. Let 7, (k) be the soft-assignment weight of x; with
respect to the k-th Gaussian, the FV representation corre-
sponding to p;, and o, are presented as follows [11]:
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Note that, f,, (X) and f,, (X) are both d-dimensional
vectors. The final Fisher Vector f,(X) is the concatena-
tion of the gradients f,, (X) and f,, (X) for all K Gaus-
sian components. Thus, FV can represent the set of deep
descriptors X with a 2d K -dimensional vector. In addi-
tion, the Fisher Vector f,(X) is improved by the power-
normalization with the factor of 0.5, followed by the /5 vec-
tor normalization [11].

Moreover, as discussed in [5], a very small K (e.g., 2, 3
or 4) in Fisher Vector surprisingly achieves higher accuracy
than normally used large K values. In our experiments of
cultural event recognition, we fix the K value as 2.

Level 1 Level 0

Figure 3. Illustration of the level 1 and O deep spatial pyramid.

2.3. Deep spatial pyramid

The key part of DSP is adding spatial pyramid informa-
tion much more naturally and simply. Also, adding spatial
information through a spatial pyramid [9] has been shown
to significantly improve image recognition performance not
only when using dense SIFT features but when using fully
convolutional activations [7].

In SPP-net [7], it adds a spatial pyramid pooling layer
to deep nets, which has improved recognition performance.
However, in DSP, a more intuitive and natural way exists.

As previously discussed, one single cell (deep descrip-
tor) in the last convolutional layer corresponds to one local
image patch in the input image, and the set of all convolu-
tional layer cells form a regular grid of image patches in the
input image. This is a direct analogy to the dense SIFT fea-
ture extraction framework. Instead of a regular grid of SIFT
vectors extracted from 16 x 16 local image patches, a grid
of deep descriptors are extracted from larger image patches
by a CNN.

Thus, DSP can easily form a natural deep spatial pyra-
mid by partitioning an image into sub-regions and comput-
ing local features inside each sub-region. In practice, we
just need to spatially partition the cells of activations in the
last convolutional layer, and then pool deep descriptors in
each region separately using FV. The operation of DSP is
illustrated in Fig. 3.

The level O simply aggregates all cells using FV. The
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level 1, however, splits the cells into 5 regions according
to their spatial locations: the 4 quadrants and 1 centerpiece.
Then, 5 FVs are generated from activations inside each spa-
tial region. Note that the level 1 spatial pyramid used in DSP
is different from the classic one in [9]. It follows Wu and
Rehg [19] to use an additional spatial region in the center
of the image. A DSP using two levels will then concatenate
all 6 FVs from level 0 and level 1 to form the final image
representation.
This DSP method is summarized in Algorithm 1.

Algorithm 1 The DSP pipeline

1: Input:

2:  Aninputimage [

3 A pre-trained CNN model

4: Procedure:

5:  Extract deep descriptors X from I using the
pre-defined model, X = [z1,...,,...,x7]T

6:  For each activation vector x;, perform /5 matrix
normalization x; < x¢ /|| X||2

7. Estimate a GMM X\ = {wy, py,, ok } using the
training set

8:  Generate a spatial pyramid { X7, ..., X, } for X
9: foralll <i<m
10: Fa(Xa) < [fu, (X0), for, (Xa),
o F g (X6), o (X3))]
11 Fa(Xa) < sign(f 5 (X;)) v/ Fr(X3)
12: N ORI NC OV N NCOIP

13:  end for
14:  Concatenate f,(X;), 1 <14 < m, to form the final
spatial pyramid representation f(X)

15: f(X) <« FXO/IIF X2
16: Output: f(X).

2.4. Multi-scale DSP

In order to capture variations of the activations caused
by variations of objects in an image, we generate a multiple
scale pyramid, extracted from .S different rescaled versions
of the original input image. We feed images of all different
scales into a pre-trained CNN model and extract deep acti-
vations. In each scale, the corresponding rescaled image is
encoded into a 2mdK-dimensional vector by DSP. There-
fore, we have .S vectors of 2mdK-dimensions and they are
merged into a single vector by average pooling, as

1 S
Fn=5>_f )
s=1

where f is the DSP representation extracted from the scale
level s. Finally, /2 normalization is applied to f,,. Note
that each vector f, is already {2 normalized, as shown in
Algorithm 1.

The multi-scale DSP is related to MPP proposed by Yoo
et al. [21]. A key different between our method and MPP is
that f_ encodes spatial information while MPP does not.
During the competition of cultural event recognition, we
find that a large scale will achieve a better performance.
Thus, we employ four scales, i.e., 1.4, 1.2, 1.0 and 0.8, and
the experimental results are shown in Sec. 3.3.

2.5. Ensemble of multiple DSPs

In the past several years, many successful deep CNN ar-
chitectures have been shown to further improve CNN per-
formance, characterized by deeper and wider architectures
and smaller convolutional filters when compared to tradi-
tional CNN such as [8, 22]. Examples of deeper nets in-
clude GoogLeNet [16], VGG Net-D and VGG Net-E [14].

Specifically, in order to exploit different types informa-
tion from cultural event images, we choose the VGG Net-
D and VGG Net-E for object recognition, and utilize the
Place-CNN net [23] as pre-trained deep network for scene
recognition. VGG Net-D and VGG Net-E consist of the
similar architectures and parameters of convolutional and
pooling filters. More details of these two deep networks can
be found in [14]. In addition, to boost recognition perfor-
mance, we also fine-tune VGG Net-D and VGG Net-E on
the training and validation images/crops of the competition.
Therefore, for one image/crop, we can get five DSP rep-
resentations extracted from the aforementioned five CNN
models. Because these CNN models are trained on different
types of images (i.e., object-centric images, scene-centric
images and event-centric images), we ensemble the com-
plementary information of multiple CNN models by treat-
ing these DSP representations as multi-view data.

We denote the multi-scale DSP representation extracted
from the i-th CNN model by ffn. After extracting these
DSP representations, we concatenate all the features and
apply /> normalization as follows:

ffinale [.fqlna.finaf?naffnﬂffn] ) (5)
ff'inal A .ffinal/”-ffinal”Qa (6)

which is called as “early fusion” in this paper. Note that, the
dimensionality of deep descriptors in the last convolutional
layer is 512 and 256 for VGG Nets and Place-CNN, respec-
tively. Thus, followed the aforementioned experimental set-
tings, the DSP representations of VGG Nets and Place-CNN
are of 12,288- and 6,144-dimension, and the final DSP rep-
resentation of each image is a 55,296-dimensional vector.

3. Experiments

In this section, we first describe the dataset of cultural
event recognition at the ICCV ChaLearn LAP 2015 com-
petition [3]. Then we give a detailed description about the
implementation details of the proposed framework. Finally,
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we present and analyze the experimental results of the pro-
posed framework on the competition dataset.

3.1. Datasets and evaluation criteria

The cultural event recognition at the ICCV ChalLearn
LAP 2015 competition [3] is the second round for this
track. Compared with the previous one, the task of ICCV
Chalearn LAP 2015 has significantly increased the number
of images and classes, adding a new “no-event” class. As
a result, for this track more than 28,000 images are labeled
to perform automatic cultural event recognition from 100
categories in still images. These images are collected from
two image search engines (Google and Bing), which belong
to 99 different cultural events and one non-class. This is the
first dataset on cultural events from all around the globe.
From these images, we see that several cues like garments,
human poses, objects and background could be exploited
for recognizing the cultural events.

The dataset is divided into three parts: the training set
(14,332 images), the validation set (5,704 images) and the
evaluation set (8,669 images). During the development
phase, we train our model on the training set and verify its
performance on the validation set. For final evaluation, we
merge the training and validation set into a single data set
and re-train our model. The principal quantitative measure
used is the average precision (AP), which is calculated by
numerical integration.

3.2. Implementation details

Before extracting the DSP representations, we get the
original distributions of the numbers of training images in
both Development and Final Evaluation, which are shown
in Fig. 4(a) and Fig. 4(c), respectively. From these figures,
we can see the “non-event” class is of large quantity and
the original dataset is apparently class-imbalanced. To fix
this problem, for each image of the other 99 cultural event
classes, we extract three 384 x 384 crops which are illus-
trated in Fig. 5. Moreover, in order to keep the original se-
mantic meaning of each image, we fix the location of each
corresponding crop. In addition, we also get the horizontal
reflection of the 99 cultural event images. Therefore, the
number of cultural event images/crops will become 5 times
as the original one, which on one hand can supply diverse
data sources, and on the other hand can solve the class-
imbalanced problem. During the testing phase, because we
do not know the classes of testing images, all the testing
images will be augmented by the aforementioned process.

After data augmentation, as aforementioned, we employ
three popular deep CNNs as pre-trained models, including
VGG Net-D, VGG Net-E [14] and Place-CNN [23]. In ad-
dition, we also fine-tune VGG Net-D and VGG Net-E on
the images/crops of the competition. In consequence, we
obtain five deep networks (i.e., VGG Net-D, VGG Net-E,

“The original distribution of the training set in Development ‘The distribution of the training set in Development after crops
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Figure 4. Distributions of the number of training images in Devel-
opment and Final Evaluation. (a) and (c) are the original distri-
butions of training images in both Development and Final Eval-
uation, respectively. (b) and (d) are the distributions of training
images after crops.

Original images

Crop2 Crop3

Figure 5. Crops of the original images. Different from the random
crops used in other deep networks (e.g., [8]), we fix the locations
of these crops, which can keep the original semantic meaning of
cultural event images. If we get the random crops, for example the
second original image of Carnevale di Viareggio, it might get one
crop only contains sky, which will hurt the cultural event recogni-
tion performance. These figures are best viewed in color.

fine-tuned VGG Net-D, fine-tuned VGG Net-E and Place-
CNN) and use them to extract the corresponding DSP rep-
resentations for each image/crop. Thus, each image of both
training (except for the “no-event” class) and testing will be
represented by five DSP features/instances. As described
in Sec. 2.5, we concatenate these DSP features and apply
{5 normalization to get the final representation for each im-
age/crop. Finally, we feed these feature vectors into logistic
regression [4] to build a classifier and use the softmax as
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the prediction scores of images/crops. And then, the final
scores of testing images can be obtained by averaging the
scores across their corresponding crops and horizontal re-
flections, which is called “late fusion” corresponding to the
former one mentioned in Sec. 2.5.

3.3. Experimental results

In this section, we first present the experimental results
of the Development phase and analyze our proposed frame-
work. Finally, we show the Final Evaluation results of this
cultural event recognition competition.

3.3.1 Development

In Table 1, we present the main results in the Development
phase. As discussed in Sec. 2.4, the multiple scales (MS)
strategy could capture the variation information, which
boosts the performance by about 1% mAP on VGG Net-D
(0.761 — 0.770) and VGG Net-E (0.762 — 0.773). In addi-
tion, the late fusion approach is also effective. From this ta-
ble, it improves more than 1% mAP on the pre-trained VGG
nets, and improves performance by 2% when deep networks
are fine-tuned on cultural event images/crops of the compe-
tition. Because these deep networks are trained on different
image sources, i.e., ImageNet [12], Places [23] and Cultural
Event Recognition [3], they can supply complementary in-
formation for each image of this competition. Thus, we do
“early fusion” by concatenating these DSP representations
extracted from the five deep networks, and then get the fi-
nal prediction score of each testing image in Development
via “late fusion”. The ensemble performance (0.841) can
significantly outperform the previous ones.

In order to further investigate this complementarity, we
visualize the feature maps of these five deep networks in
Fig. 6. As shown in those figures, the strongest responses
in the corresponding feature maps of these deep networks
are quite different from each other, especially the one of
Place-CNN, i.e., Fig. 6 (f). Apparently, different pre-trained
deep networks trained on different data sources could ex-
tract complementary information for each image in cultural
event recognition.

3.3.2 Final evaluation

As aforementioned, in the Final Evaluation phase, we
merge the training and validation set into a single data set
and do the similar processes, i.e., data augmentation, fine-
tuning, “early fusion” and “late fusion”, etc. The final chal-
lenge results are shown in Table 2. Our final result (0.851) is
slightly lower (0.3%) than the team ranked 1%t. For further
improving recognition performance of the proposed frame-
work, a very simple and straightforward way is to apply the
“bagging” approach [1] on the concatenated DSP represen-
tations of each image/crop, and then get the corresponding

Table 2. Comparison performances of our proposed framework
with that of the top five teams in the Final Evaluation phase.

’ Rank \ Team \ Score ‘
1 VIPL-ICT-CAS | 0.854
2 FV (Ours) 0.851
3 MMLAB 0.847
4 NU&C 0.824
5 CVL_ETHZ 0.798

prediction scores for the testing images/crops. After sev-
eral times bagging processes, the final prediction scores can
be obtained by averaging the results of multiple baggings.
Moreover, advanced ensemble methods can be also simply
applied into our framework to achieve better performance.

4. Conclusion

Event recognition from still images is one of the chal-
lenging problems in computer vision. In order to exploit and
capture important cues like human poses, human garments
and other context, this paper has proposed the Deep Spa-
tial Pyramid Ensemble framework. In consequence, based
on the proposed framework, we employ five deep CNN net-
works trained on different data sources and ensemble their
complementary information. Finally, we utilize the pro-
posed framework for the track of cultural event recogni-
tion [3] at the Chalearn LAP challenge in association with
ICCV 2015, and achieve one of the best recognition per-
formance in the Final Evaluation phase. In the future, we
will introduce more advanced ensemble methods into our
framework and incorporating more visual cues for event un-
derstanding.
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