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Abstract

Hand pose estimation from 3D sensor data

matches a point cloud to a hand model, and has

broad applications from gestural interfaces to scene

understanding. We propose a novel scheme to index

into a database of precomputed hand poses to initial-

ize the match. Our index describes 2D hand silhou-

ettes, which can be computed from either depth maps

or standard video, in the form of simple yet expres-

sive signatures. We compare signatures to each other

through a new variant of the Earth Mover’s Distance

that makes small distances in feature space corre-

late highly with those in pose space. We present a

new technique that uses a depth sensor and a sensor

glove to create databases of real images and ground-

truth poses for both training and testing. We show

state-of-the-art accuracy and speed for both gesture

classification and joint-pose regression, even when

comparing our 2D single-frame method with those

that employ RGB-D features or multi-sensor inputs

and report quantitative results.

1. Introduction

Tracking the detailed motions of a human hand

with good accuracy and minimal intrusion would

enable applications ranging from gestural interfaces

and finger-spelling recognition to medical diagno-

sis, musical tutoring systems, remote surgery, or an-

imation. Tracking hands with 3D input amounts to

matching a point cloud and a hand model by opti-

mizing some measure of fit between them. Finger

motions that are fast when compared with typical

sensor frame rates suggest viewing each data frame

as a separate problem: What is the best estimate of
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a hand’s pose—wrist and finger-joint angles—given

just the current point cloud? A popular approach

to per-frame hand pose estimation is to use the cur-

rent frame as an index into a pre-built database of

(frame descriptor, hand pose) pairs: Use a descrip-

tor of the input frame to find the database entry with

the most similar descriptor, and return the associated

hand pose as the estimate. This paper addresses sev-

eral technical challenges within this approach.

First, our indices describe hand silhouettes, which

have the advantage of being easy to compute from

point clouds, and even from standard video imagery

if hand and background look different enough. Thus,

although we use 3D input for tracking, our descrip-

tors are 2D, for added flexibility.

Second, we design both our descriptors and a dis-

similarity measure between them so as to capture

the main features relevant to matching hands, such

as which finger matches which, or how well sepa-

rated two adjacent fingers are. To this end, we seg-

ment a silhouette boundary into its main convexities

and concavities using a measure of topological per-

sistence to separate important features from irrele-

vant ones. This segmentation results into a variable-

length descriptor we call a signature. We then mea-

sure the dissimilarity between two signatures by a

variant of the Earth Mover’s Distance (EMD), a mea-

sure of the amount of work needed to transform one

signature into the other. Our variant makes sure that

implausible matches between fingers are discarded,

and then modulates a measure of dissimilarity be-

tween the remaining matches in such a way that sim-

ilar signatures tend to correspond to similar poses.

Third, instead of sampling the set of all hand

poses finely, we use low-dispersion sampling to build

a database that populates the space of all natural

poses well, given a limited number of pairs one can

afford to record and store. We build our database

by recording point clouds with an RGB-D sensor
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while measuring true hand motions with an opto-

mechanical hand tracker. The resulting database

of real images paired with real hand configura-

tions automatically underrepresents unnatural hand

poses and requires no manual annotation—a labor-

intensive and quantitatively imprecise alternative.

Fourth, we describe several experiments on both

regression and classification tasks that show promis-

ing accuracy and speed even when we pit our method

based on 2D descriptors against those that employ

3D features or multiple sensors.

Section 2 reviews related work. Sections 3 and

4 describe a hand model and how we construct

databases. Sections 5 and 6 describe signatures and

the dissimilarity measure between them. Section 7

shows experiments and Section 8 concludes.

2. Related Work

With the introduction of affordable depth sensors,

methods that use strictly 2D data [11, 1] are quickly

being replaced by those that use depth [12, 14, 8, 9,

19]. Full body tracking methods [14] typically treat

the hand and wrist as a single, rigid object [14]. Un-

like multi-camera approaches [10, 15, 16] or meth-

ods that use colored gloves [21] or data-gloves [2] or

bands to identify the wrist [12], we use a single depth

camera and no markers. Erol et al. provide a general

literature review [4].

Ren et al. represent the hand using finger seg-

ments from a silhouette [12] while Sridhar et al.

use a sum of Gaussians [15] and later a sum of

anisotropic Gaussians model [16]. Several recent ap-

proaches [8, 19, 18] build on the success of full body

tracking methods using random forests [14]. Sridhar

et al. search five separate finger databases for finger

articulation to reduce the database size [15]. Others

[19, 18] use a training set to learn a map from input to

pose and dispose of the need for a runtime database,

but are limited by the form of the map.

Tracking based on motion models [4, 10, 9, 15,

16] fails in the presence of fast hand motion [4] and

is subject to drift [18]. Gradient descent (Stoll et

al. [17]), Particle Swarm Optimization [10], inter-

polation [20], temporal and kinematic constraints [9]

or specific hand-assumptions [10, 19] are sometimes

used to improve initial estimates. Wu et al. use a

CyberGlove to learn hand-motion constraints [22].

Our work is most closely related to that of Ren et

al. [12] in our use of hand silhouettes, discrete de-

scriptors, and EMD to address the problems above.

However, we use topological persistence as a robust

method to detect and describe segments, and our

variant of the EMD accounts for matches between

fully and partially extended fingers, and for cases

where small differences in hand pose correspond to

different categories in classification tasks.

3. Hand Model and Pose Distance

We describe the pose of a hand with a vector χ
that collects 6 degrees of freedom (DoF) for wrist

rotation/translation plus either 21 angles (χ◦, in de-

grees) or 60 position coordinates (χmm, in mm) for

the 15 joints of a hand (three joints per finger) and 5

fingertips (Figure 1). The thumb has 5 angular DoF

in our model: two for flexion and abduction of the

trapeziometacarpal (TM) and metacarpophalangeal

(MCP) joint and one flexion of the interphalangeal

(IP) joint. Each of the other fingers has 4 DoF:

one flexion angle for distal interphalangeal (DIP)

and proximal interphalangeal (PIP) joint, and two for

flexion and abduction of the MCP joint. In our exper-

iments we keep the carpometacarpal (CMC) joints

and the fingertips fixed. We label the thumb, index,

middle, ring, and little fingers as T, I,M,R, and L.

We use forward and inverse kinematics to convert be-

tween angles and positions.

We measure pose distance between frames λ and

λ′ as the average Euclidean distance over all joints of

interest, using either angles or positions (not both) as

needed to compare with existing literature [10]:

dχJ
(λ, λ′) =

1

|J |

∑

j∈J

||χj − χ′
j ||2 (1)

where J is the set of parameters of interest.

4. Database

We assume that the space of natural hand poses

is much smaller than that of all possible poses [1],

and create a database of 320 × 240 RGB-D images

recorded with an Intel DepthSense 325 sensor. To

avoid the need for manual annotation, which is labor

intensive and quantitatively imprecise, we simulta-

neously record poses with a CyberGlove III sensor

glove that records 23 joint angles every 11 ms, cali-

brated and mapped to our model (Figure 1) by stan-

dard methods [5, 6]. We synchronize the two sensors

counting time from an initialization motion recogniz-

able in both sensors: ’fist’, ’open hand’, ’fist.’

We asked a single subject to assume 75 prede-

fined poses of their right hand (examples in Figure 3)

and then add many examples of random motion. We
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keep the elbow fixed and ask the subject to move the

wrist through 3 abduction/adduction angles, at each

of which the subject undergoes a set of complete flex-

ion/extension motions of the wrist. Our initial set

Ω has 14, 230 (image, pose) pairs. In comparison,

Wang and Popović use 18, 000 samples of finger ar-

ticulation (no wrist motion) [21].
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Figure 1: Kinematic model and CyberGlove III sensors.

Low-dispersion sampling [21] is used on Ω to

obtain a smaller database Λ such that the distance

minλ′∈Λ dχ◦(λ, λ′) between any sample λ ∈ Λ and

its nearest neighbor in Λ is bounded from below. Λ is

initialized with the furthest apart pair of points in Ω
then iteratively adds the sample from Ω furthest from

its nearest point currently in Λ. We iterate until we

run out of samples or maxλ′∈Ω minλ∈Λ dχ◦(λ, λ′)
falls below a predefined ǫ.

5. Silhouette Signatures

The convexities and concavities of outer bound-

aries of a hand’s silhouette capture information about

the anatomical features of the hand—fingers, palm,

wrist [12]. They are simple closed curves that can be

made to be somewhat invariant to wrist motion and

the geometry and appearance of individual hands.

Silhouettes can be extracted from either color [7] or

depth information, or both. We use depth, and as-

sume that the hand is the closest object to the sensor

and is well away from the background [12, 18]. If

Dmin is the smallest depth in the image and τD is a

bit larger than the length of a large hand, the hand

is defined as the largest connected component of the

pixels whose depth D < Dmin + τD.

Let c and r be the center pixel and radius of

the maximum circle inscribed in the hand region.

We trace the silhouette’s boundary starting from the

leftmost silhouette pixel along the horizontal line

through c to obtain a closed polygon B with n points.

We map pixels ps on B to their polar coordinates rel-

ative to c and divided by r in norm and 2π in angle:

xs = (xs, ys) = (ps − c)/r (2)

φs =
atan2(ys, xs) + π

2π
(3)

ρs =
√

x2
s + y2s . (4)

For the index s ∈ [0, . . . , n − 1] we define s ⊕ z =
(s+z) mod n and s⊖z = s⊕−z. Centering and nor-

malization account for variations in hand size, dis-

tance from the camera, and image position. We found

c to provide a more reliable reference than the hand’s

centroid, which depends on finger pose. Polar coor-

dinates can be used to yield invariance to 2D rota-

tions in the image by using a standardized starting

point—for example, the middle of the wrist.

To reflect changes in hand pose while being insen-

sitive to skin or muscle deformations or noise, we de-

compose a boundary into a set of segments that sep-

arate its main convexities and concavities, as shown

next. We then describe the resulting list of segments

by a variable-length descriptor, our signature, and

define a dissimilarity measure between signatures.

5.1. Boundary Decomposition

To decompose a boundary into segments, its pix-

els are swept in order of decreasing value of ρs to

determine one segment per local maximum of ρs.

Boundary segments associated with maxima of low

persistence [3] are merged with one of their neigh-

bors. Persistence measures the lifetime of an ex-

tremum during the sweep [23]. We first describe the

sweep, and then explain the role of persistence.

Boundary index s precedes s′, iff either ρs > ρs′

or (ρs = ρs′ and s < s′), and we then write s ≻ s′.
Index s is a local maximum of ρ if s ≻ Ns and a lo-

cal minimum if Ns ≻ s where Ns = {s⊖ 1, s⊕ 1}.
Let sl be the index of the lth pixel encountered in the

sweep, so that s0 is the global maximum. Algorithm

1 sweeps the boundary pixels in the order≻ and pro-

duces label ms for index s if this index belongs to the

segment associated with a local maximum at ms.

Initially, all labels are unlabeled (set to −1). The

label msl of sl is updated depending on the number

of elements in Nsl that have a valid label:
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0 labels: sl is a local maximum, set msl ← sl.
1 label m: sl is a regular point, set msl ← m.

2 labels: sl is a local minimum.

The two neighboring segments are kept distinct if

their persistence is sufficiently high, or are merged

otherwise. The minimum sl is given the label of the

older segment. The predicate merge(m1,m2) in Al-

gorithm 1 is described next.

Algorithm 1 Boundary Segmentation

1: Inputs: r = [ρ0, . . . , ρn−1], τsize, τπ, τvalue

2: Output: m = [m0, . . . ,mn−1]
3: (r, s) = sort(r,≻) ⊲ Sort r by ≻. Also return

sorted indices s = [s0, . . . , sn−1]
4: for i = 0 : (n− 1) do

5: mi = −1 ⊲ Initialize labels

6: end for

7: for l = 0 : (n− 1) do

8: switch |Nsl | > −1 do

9: case 0: msl ← sl ⊲ New local maximum

10: case 1 (m): msl ← m ⊲ Regular point

11: case 2: Nsl = {m1,m2} with m1 ≻ m2

⊲ New local minimum

12: msl ← m1

13: if merge(m1,m2, τsize, τπ, τvalue)
then

14: relabel all m2 in m to m1

15: end if
end switch

16: end for

17: return m

merge(m1,m2, τsize, τπ, τvalue)

18: return |{s : s = m2}| ≤ τsize ∨ (ρm2
− ρs ≤

τπ ∧ ρm1
− ρm2

≤ τvalue)

5.1.1 Relevant Segments

Persistence [3] helps distinguish between ephemeral

local maxima in ρs from those that are more likely to

correspond to anatomical hand features such as fin-

gers or knuckles. The persistence of a local max-

imum is the vertical distance between its birth and

death. More precisely, a local maximum s ∈ B is

δ-stable if there exist integers a and b with −n <
a < 0 < b < n such that (i) for all z ∈ [a, b]
other than s we have s ≻ s ⊕ z and (ii) ρs ≥
max{ρs⊕a, ρs⊕b} + δ. The persistence of s is then

the maximal δ for which s is δ−stable.

We use persistence as follows. The two immedi-

ate neighbors of index sl at a local minimum belong

to segments that are associated with two distinct lo-

cal maxima, call them m1,m2 during the sweep. As-

sume that m1 ≻ m2, so that m2 is “younger” than

m1. Segment m2 is merged into m1 if m2 is either

insignificant in extent along the boundary, or both of

the following conditions are met: the persistence of

m2 is too small 1 and the radial coordinates of the

two local maxima m1,m2 are too close to each other.

This yields line 18 of Algorithm 1, where τsize, τπ ,

and τvalue are positive thresholds which we set to 5
pixels, .1 radii, and .1 radii in all our experiments.

The threshold τsize removes very small segments.

Of the remaining segments, highly-persistent ones

are meant to represent at least partially extended fin-

gertips. Segments that cover enough of the boundary

and have a local maximum that is significantly lower

than the maximum of an adjacent segment are re-

tained with the intent to capture knuckles, or shorter

fingers that touch longer ones.

A boundary signature is a concatenation of the

descriptors for each segment found by Algorithm 1.

Each segment is described by (i) the normalized an-

gular coordinates φa and φb of its endpoints; (ii) the

persistence πm of its local maximum (φm, ρm); and

(iii) a weight w = (φb ⊖ φa)(ρm − 1) that approx-

imates the area between the segment and the largest

inscribed circle. The arm is typically the segment

with the greatest weight w, which we remove from

the signature. We also remove all segments whose

normalized angle φ is within 0.2 from the wrist, be-

cause they are unlikely to represent fingers.

6. Comparing Signatures

We define a measure of dissimilarity between sig-

natures S = {S1, ...,Sm} and T = {T1, ...,Tn} by

(i) defining soft (that is, fractional) matches between

segments in S and segments in T and then (ii) mea-

suring the aggregate discrepancies between matched

segments, as described next.

6.1. Soft Matches

We perform soft matching through a variant of the

Earth Mover’s Distance (EMD, [13]), which solves a

linear program to determine the smallest amount of

work needed to transform the masses wSi in S into

the masses wTj in T or vice versa. Work is the sum

WORK(S ,T ,F) =

m
∑

i=1

n
∑

j=1

dijfij (5)

1
Since the persistence for m2 is greater than or equal to ρm2

− ρs .
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Figure 2: (a-2) shows polar coordinates of normalized boundary. (a, b, c, d, e) each show the signature for a different hand

pose, positioned with the wrist (grey) median at 0 and with each segment represented by a different color.

where the matrix F of unknown flows fij must be

nonnegative, have rows and columns that add up to

wSi or wTj , and have L1 norm equal to the smaller

of the signature masses wS =
∑m

i=1 w
Si and wT =

∑n

j=1 w
Tj . We set the ground distances dij in (5)

to be equal to the angular distance dφij used in FEMD

[12]: zero when the two angular supports overlap

fully and min(|φSi
a ⊖ φ

Tj
a |, |φ

Si

b ⊖ φ
Tj

b |) otherwise.

Since it makes little sense for a segment in one

signature to match one in the other with a very differ-

ent angular support, we introduce a distance thresh-

old ∆ that is of the order of half the angular extent of

a finger width. We set ∆ = 0.06 (≈ 22◦) in all our

experiments, finding the value non-critical. We then

add extra segments S0 and T0 to signatures S and T

with weights wS0 = wT and wT0 = wS , and define

dij =

{

dφij i 6= 0, j 6= 0

∆ otherwise
. (6)

Flows between signatures such that dφij > ∆ are

thus shunted into the extra segments, because they in-

cur less work, and matches between excessively dis-

tant segments are discarded, i.e., replaced by matches

with the extra segments. Setting d00 = ∆ prevents

S0 and T0 from simply matching each other.

6.2. Signature Dissimilarity

The EMD provides an initial measure for the dis-

similarities between signatures if modified as follows

to account for the extra segments:

EMD
x(S ,T ) =

∑m

i=0

∑n

j=0 dij f̂ij

min(
∑m

i=1 w
Si ,

∑n

j=1 w
Tj )

(7)

where the flows (soft matches) f̂ij minimize (5). The

denominator does not include the extra segments, so

finger segments in one signature are either matched

to nearby segments in the other signature or dis-

carded if no such match exists. The missing matches

are still penalized by ∆ units per unit of flow.

Rather than using EMD
x directly to measure signa-

ture dissimilarity, we introduce an additional cost C
for the reasons that follow. Fractional matches be-

tween segments account properly for segmentation

errors. In addition, a fractional match may represent

a match between fingers that are stretched to differ-

ent extents in the two hands. For instance, Figure 2

shows the signature of a hand with index and mid-

dle finger fully extended in (a), and only partially ex-

tended in (b). In (c), only the index is visible, fully

extended. The EMD computes the correct flows both

for the (a, b) pair and for the (a, c) pair. However,

the two corresponding signature distances (7) are ap-

proximately equal to each other, and this is often un-

desirable: The pose of the hand in (a) is not too far

from that in (b), while that in (c) is more distant from

that in (a), at least in the L2 or L∞ norm. To address

this issue, we introduce optional, additional ground

distances ki0 and k0j between regular and extra seg-

ments, and define these as some convex function of

the EMD flows, for instance

ki0 =
(

f̂i0/w
Si

)2

and k0j =
(

f̂0j/w
Tj

)2

.

(8)

Before explaining how these terms are used, we dis-

cuss the possible need for another term. In some clas-

sification tasks, the pose of a hand whose extended
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index and middle finger touch may represent a differ-

ent category from one where the two fingers are kept

slightly separate—for example, the letters ’U’ (fin-

gers touching) and ’V’ (separate fingers) in finger-

spelling. When these distinctions are important, it is

useful to add an “abduction” term

kabdij = αabd(πSi
m − πTj

m ) (9)

which assumes that persistence reflects part separa-

tion. For example, in Figure 2 the configurations in

(a) and (d) can be differentiated by the persistence of

the index finger, which is much greater in (a) than

in (d). We set αabd to 0 for regression and to 1 for

classification in our experiments.

Our signature dissimilarity multiplies ki0, k0j ,

and kabdij by the EMD flows f̂ij , and levies the re-

sulting penalties after the EMD computation:

DSIG(S ,T ) = (1− α)EMDx + αC (10)

where we set α = 0.5 in all our experiments,

C(S ,T , F̂,K) =

∑m

i=0

∑n

j=0 kij f̂ij

min(
∑m

i=1 w
Si ,

∑n

j=1 w
Tj )

(11)

and the matrix K has entries

kij =















kabdij i 6= 0, j 6= 0
ki0 i 6= 0
k0j j 6= 0
−∆ i = 0, j = 0 .

(12)

The term −∆ for i = 0, j = 0 subtracts away an

irrelevant cost for any flow between extra segments.

Indexing Speedup. The EMD between two signa-

tures is no less than the distance between their cen-

troids if the two signatures have equal mass and the

ground distance is induced by a norm [13]. While

these assumptions do not hold for our signatures, we

have found a threshold on this distance, normalized

by total flow, to be an effective heuristic for limiting

the number of EMD computations. We also cluster

our database by the number of segments with persis-

tence greater than a threshold and match signatures in

the same cluster. The combination of these heuristics

leads to significant speedups (Section 7). As long as

the thresholds used in them are generous (in the sense

of over-clustering), their values are not critical.

7. Results

We compare with state-of-the-art methods for ges-

ture classification and joint-pose regression that re-

port quantitative results. The methods compared (in-

cluding ours, SIG) are summarized in Table 3. Table

method % match mean runtime

FEMDthresh 90.6 .5004s

FEMDncvx 93.9 4.0012s

SIG 97.4 1.021s

SIG (speedup) 97.6 .0417s

Table 1: Classification performance on QFEMD for our

method SIG with and without indexing speedup shows im-

provement from thresholded and near-convex FEMD [12].

4 describes both the test datasets used for evaluation

(Q) and the databases (Λ) we used for pose estima-

tion. These include both standard benchmarks and

our own databases (CG). We build the latter with an

Intel DepthSense 325 depth sensor and a 23 DOF Cy-

berGlove III sensor glove to collect input and ground

truth data without manual annotation.

Classification. Table 1 compares our method (SIG)

with Ren et al.’s thresholded and near-convex Finger-

Earth Mover’s Distance (FEMD) [12] methods by the

correct-classification rate on the QFEMD gesture recog-

nition dataset [12]. Like our method, FEMD does not

add local optimization or use temporal information.

However, it requires the user to wear a black band

to identify the wrist [12]. FEMD does not account

for partial correspondences nor does it accommodate

an abduction term, and would fail to differentiate,

for instance, between ’U’ and ’V’ in finger-spelling.

Our results show significant improvements both in

classification rate and speed (when speedup is used).

When using the speedup we actually get a slight im-

provement in classification rate. This is due to elimi-

nating possible false positives and the nature of QFEMD

’s small size, specific gesture classes and variance.

Table 2 shows the classification rate for our

method SIG on our own test dataset QASL(CG) using

an estimation database ΛASL(CG) tailored to finger-

spelling. QASL(CG) and ΛASL(CG) are captured at sep-

arate times using our CG method and contain data for

letters ’A’ - ’Z’ and numbers ’0’ - ’9’ with multiple

global orientations and jitter (more details in Supple-

ment). While rates are fairly good, we observe two

main types of failures. The first occurs when classes

are very similar in pose space and image space. For

example, ’Z’, ’G’ and ’1’ have slightly different wrist

rotations. The second type of failure results from the

silhouette not capturing differences in pose. For ex-

ample, when differentiating between classes like ’A’,

’S’, and ’T’ that have similar 2D silhouettes, depth

information could improve performance.

Regression. Figure 4 shows a comparison of our

single-camera method with several state-of-the-art
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Figure 3: ASL classes used to test QASL(CG) with Λ
ASL(CG)

(not shown - ’0’ is fist). ’Red’ - slight global abduc-

tion/adduction. ’Orange’ - more significant rotation. ’Yel-

low’ - cases where silhouettes may not differentiate.

Subset % match

easy 100

medium 92

hard 87

Table 2: Classification rate for our method SIG on differ-

ent subsets of our CyberGlove III QASL(CG) dataset. Subset

’easy’ is basic finger-spelling, ’med’ adds jitter and class

variance, and ’hard’ increases speed and varies viewpoint.

regression methods using multiple test datasets. For

consistency with the literature, we use the mean Eu-

clidean distance between the estimated and ground

truth joint positions of the fingertips (in millimeters)

averaged over a test dataset.

We compare against Tang et al.’s latent regres-

sion forests (LRF) [18], Keskin et al.’s multi-layer

random decision forest classifier (KESKIN) [8] and

Melax et al.’s model-based approach (MELAX) [9] us-

ing the publicly available test datasets QLRF [18] and

previous reported results [18]. QLRF is left-handed, so

instead of our right-handed database ΛSIG(CG) we use

the provided left-handed training database ΛLRF[18].

We also compare with Sridhar et al.’s sum of

anisotropic Gaussians (SAG, 5 RGB cameras) [16]

and earlier sum of Gaussians (SoG, 5 RGBD cam-

eras) [15] approaches using their publicly available

Dexter 1 (QDEX [16]) with 7 datasets with varying

speed, degrees of wrist rotation and occlusions.

We use QDEX to compare with SAG, SoG, and LRF,

which was evaluated on 3 of the 7 datasets. Perfor-

mance for our methods on QDEX was evaluated us-

ing both database ΛSIG(CG) and an approach similar

to cross-validation, because ΛSIG(CG) does not contain

the range of wrist rotations present in QDEX. Specif-

ically, we test each of the 7 subsets of QDEX using

the other 6 subsets as ΛDEX. Our performance on

QDEX has a much greater standard deviation when us-

ing database ΛDEX instead of ΛSIG(CG), as some sub-

sets contain poses not found in other subsets. How-

ever, the error for our method and baseline is much

lower using ΛDEX, likely because of similarity in hand

shape, environment and motions to QDEX.

Our own baseline method (NN) uses the ground

truth to search for the nearest neighbor in

pose space to show the relative difficulty of

the test datasets, listed increasing to the right:

QASL(CG), QSIG(CG), QLRF, QDEX. This is possibly a re-

sult of both the motion complexity and occlusions, as

well as database coverage.

We also compare the results for our method using

the first nearest neighbor (SIG1) and the best result

from the 5 nearest neighbors (SIG5).

Our method is the only one that does not take ad-

vantage of local optimization or temporal informa-

tion. We examine the potential impact of adding a

local optimization step to our methods by finding the

rotation and translation that minimizes the error be-

tween ground-truth and estimated pose (Figure 4).

Unlike our methods that only requires single-

camera input, SAG uses 5-camera RGB input and SoG

requires 5-camera RGB and depth input. Both SAG

and SoG also require the user to wear a long black

sleeve to help identify the wrist.

8. Conclusion

We estimate per-frame hand pose by encoding im-

age silhouettes with signatures whose elements cor-

relate well with fingers and knuckles, and indexing

a database of real (signature, pose) pairs through a

novel variant of the EMD that discards implausible

matches but treats partial matches appropriately. Our

method starts with a single 2D descriptor yet fares

well even when compared with multi-camera meth-

ods. Our database samples natural hand poses in a

balanced way and requires no manual annotation.

The obvious next step is to refine our pose es-

timates by fitting a hand model to the input point

cloud, taking advantage of 3D data to resolve sen-

sitivities to wrist and finger rotation. It will also be

interesting to see if our methods can be used to train a

pose regressor or a classifier [1], making the database

unnecessary at runtime.
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