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Abstract

We present a wearable assistance system for visually im-

paired persons that perceives the environment with a stereo

camera and communicates obstacles and other objects to

the user. We develop our idea of combining perception

on an increased level of scene understanding with acous-

tic feedback to obtain an intuitive mobility aid. We describe

our core techniques of scene modelling, object tracking, and

acoustic feedback and show in an experimental study how

our system can help improving the mobility and safety of

visually impaired users.

1. Introduction

People with severe visual impairment are faced with

huge challenges when moving through unknown environ-

ments. For many people independent movement is re-

stricted to well known areas. The traditional white cane

allows to sense the space directly in front of the person, but

it does not provide any information about objects further

away. Overhanging objects like tree branches or open win-

dows, which pose great danger, cannot be sensed. Guide

dogs as the most auxiliary assistive aid are unaffordable for

most blind persons. The development of intelligent and af-

fordable technical mobility aids would be an important con-

tribution to increase the autonomous mobility of these per-

sons.

Early approaches towards assistance systems for the vi-

sually impaired trace back to the 1960s, when experiments

with wearable ultrasonic range sensors were carried out

(e.g. [12, 20]). Several approaches have been developed in

the recent years [6]. Most of these systems notify the user

about non-traversable directions in the scene [8, 17, 10], or

they guide the user into walkable free space [23, 16]. Both

options do not require a deep technical level of scene un-

derstanding. Either the difficult task of correctly interpret-

Figure 1: Our assistance system detects obstacles in the

surrounding and transmits them to the user through spatial

sounds.

ing the haptic or acoustic feedback is left to the user [15],

which can cause substantial cognitive load, or the naviga-

tion is completely taken over by the system.

Meanwhile, the progress in the field of environment per-

ception and scene understanding becomes visible with the

launch of intelligent applications and systems as seen in

robotics, driving assistance, or surveillance. These sys-

tems are able to understand different aspects of their en-

vironment, they detect and track objects, assess risks and

act accordingly. This has motivated us to develop an assis-

tance aid which interprets its environment in order to offer

feedback on a high level of abstraction to the user. This

facilitates the usage significantly, but also entails high re-

quirements since the system must be wearable, lightweight,

and unobtrusive. Furthermore, the sensed information must

be conveyed in an intuitive manner to the visually impaired

user, which does not interfere the natural sensing.

In this paper we describe the basic design of such as-

sistance system. We introduce the methods for scene un-

derstanding and show how acoustic feedback is applied to

intuitively inform the user about its environment. We report
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Figure 2: Prototype setup built out of a bicycle helmet, a

binocular camera, headphones and an inertial measurement

unit (IMU).

on a experimental study which shows how blind persons can

benefit from such system.

2. Requirements and System Design

A mobile navigation aid must provide reliable informa-

tion in an intuitive form to the user. The purpose of our mo-

bility aid is to inform the user about objects in the local en-

vironment. This information shall enable the person to plan

further ahead and avoid obstacles more prospectively. We

convey the location and relevant semantic information of

objects through binaural acoustic feedback. Using a head-

phone, the natural acoustic environment is augmented with

sounds which can be localized in terms of direction and dis-

tance. This idea is exemplified in Fig. 1.

The environment perception (Section 3) of our system

builds upon a head-worn binocular camera. This allows

to perceive the environment from a natural point of view,

and offers to easily direct the viewing range towards points

of interest or objects of interaction [14]. These opportu-

nities come along with the challenging task of operating

under almost unconstrained and unpredictable camera mo-

tion. Based on the binocular camera images we detect and

track generic static and moving objects and classify them

into predefined groups of obstacles.

Special care needs to be given to the aspect of communi-

cating the information to the user. The generated feedback

needs to transport as much information as possible of the

sensed environment, while it needs to be intuitive enough to

be used without extensive training. Acoustic feedback has

been shown to offer this potential [11], but is critical to ap-

ply in our context since visually impaired persons strongly

rely on the hearing sense. Acceptance can only be expected

if natural sounds are not blocked but carefully augmented

with artificial sounds. Physically, we ensure this by plac-

ing the headphones slightly in front rather directly on the

outer ear. Bone conduction speakers can be considered as

an alternative, but require more careful setup and position-

ing. Furthermore, the selection and filtering of these sounds

is critical for intuitive and pleasant usage. We summarize a

range of experiments regarding this in Section 5.

The generated sounds are perceived relative to the head

orientation. To create a realistic acoustic impression of a

world-fixed sound source, the sound position relative to the

moving head needs to be updated frequently and with min-

imal delay. These requirements are hard to achieve with a

sequential computer vision process chain since computing

times are by orders of magnitudes higher than the required

acceptable delay between head and sound motion. For this

reason an important building block in our system design is

a module that estimates the head orientation with minimal

delay fusing data from an inertial measurement unit (IMU)

and camera (Section 4).

3. Binocular Environment Perception

One of the technical core challenges in the develop-

ment of the assistance aid was to develop algorithms for

the camera-based environment perception which are reli-

able and efficient enough to be operated in real time on a

wearable system with limited computation power.

A forward directed camera with limited aperture angle

perceives only a small part of the environment surrounding

the user. This might be sufficient to warn of imminent col-

lisions but it is not sufficient to inform about objects next or

even behind the user. To inform about such vanished objects

we need to keep track of everything that was once seen.

In comparison with traditional travel aids like the laser

cane [3] it is not sufficient to detect the walkable free space,

we rather need to understand what is limiting the free space.

In urban environments with buildings, parking cars, cycles,

trees and bushes, shop displays, chairs and tables, stairs

leading up and down, or moving pedestrians this is a large

amount of information. Only a small part of this informa-

tion can be communicated to the user. Hence, it is required

to condense the information into an abstract representation

of the environment, in which we ignore irrelevant details.

This representation has to be flexible and expressive enough

to depict the variety of different objects and their motion

relative to the user, while it needs to be compact enough to

keep the computational processing load small.

A large part of inner-urban scenes is covered by high

walls, building facades, fences, or bushes. These kind of

natural and man-made structures can be understood as a

scene background in front of which small, independently

positioned objects define a foreground. Foreground and

background differ strongly in their extension and the fact

that the scene background is always static. The scene back-

ground can provide high-level context knowledge that can

be applied for obstacle detection. Furthermore, the align-

ments of building facades are valuable orientation hints for

visually impaired users. Objects of interest are usually part

of the foreground, which motivates us to model the geomet-

ric scene background structure independently of movable

foreground objects in our environment representation.
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The underlying environment model can best be described

as a blocks-world composed of planar surfaces representing

the scene background geometry and independently moving

aligned boxes which represent foreground objects or obsta-

cles. This provides information on a level beyond any tra-

ditional mobility aid for the visually impaired.

The task of the vision system is to build and maintain this

environment model while the user is moving through the

scene. A dense disparity estimator provides the basis for

extracting the geometric scene background structure (Sec-

tion 3.1) within which we detect and track generic obstacles

(Section 3.2). To handle objects moving out of camera view

we represent all measurements in a global reference frame

and estimate our position within that frame using a combi-

nation of visual odometry and the inertial measurement unit

(Section 4).

3.1. Scene Geometry

Our scene geometry model consists of a composition of

planar surfaces in global 3d-space. Specifically, we keep

track of a common ground plane, and structures like build-

ing facades, fences or bushes which constitute planes or-

thogonal to the ground plane.

3.1.1 Plane estimation

Measuring such planes is a multi-model fitting problem that

we treat with a combination of multi-model RANSAC plane

fitting and least-squares optimization. To avoid the non-

linear stereo reconstruction error in Euclidean XY Z-space

[21] we determine planes directly in disparity (uvδ-)space

as

αu+ βv + γ + δ(u, v) = 0 (1)

with (u, v) being the image coordinates and δ(u, v) the ac-

cording disparity measurement. Given the camera calibra-

tion, the uvδ plane can be expressed in XY Z-space through

a normal vector and camera distance as p = (n, d)

nxX + nyY + nzZ + d = 0 (2)

(nx, ny, nz, d) ∝ (αf, βf, αcu + βcv + γ, bf) (3)

with focal length f , principal point (cu, cv) and stereo

baseline b.

We apply the RANSAC scheme and generate plane hy-

potheses by repeatedly sampling planes through 3 random

points. A plane is evaluated by counting the support points

with point-to-plane distance |αu+βv+γ+δ(u, v)| smaller

than a disparity margin ǫ around the plane to find the best

hypotheses.

Having obtained an initial solution we optimize the pa-

rameters using robust iterative least-squares estimation. The

set of uvδ plane support points (ui, vi, δi), i = 1, . . . , N
is used to update the plane parameters by solving the linear

system
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This estimation is applied a few iterations until no con-

siderable update in the parameters remains.

3.1.2 Plane tracking

An estimated plane is transformed into an XY Z-plane

plocal and added to the global environment model as

pglobal =
(
T−1

k

)T
plocal with Tk being the current ego-

pose (cf. Sec. 4). In the next video frame we estimate Tk+1

and use the predicted plane p−

local = TT
k+1

pglobal as initial-

ization for the least-squares plane optimization.

Using this plane detection and refitting scheme our sys-

tem is able to keep track of the ground plane. Special care

needs to be taken in order to handle cases of heavy oc-

clusion and situations in which the camera is temporarily

pointed away from the surface. To handle theses situations

we extract the vertical scene vanishing direction from the

input images. It is represented by a vector nV which coin-

cides with the plane normal vector n estimated in the dis-

parity data. Both information are fused in a Kalman filter

and allow robust tracking of the ground in cluttered envi-

ronments [22].

3.1.3 Vertical structures

To estimate planes which represent vertical scene structures

we want to constrain the plane orientation to be orthogo-

nal to a given plane (here the ground plane, represented

by its normal vector n), i.e. enforce the inner product of

their Euclidean normal vectors to be zero, while optimizing

the plane parameters in uvδ space. We seek the parameters

which minimize

minimize
α,β,γ

N∑

i=1

(α · ui + β · vi + γ + δi)
2

subject to nx(αf) + ny(βf) + nz(αcu + βcv + γ) = 0

(5)

The constraint can be reformulated to

γ = −(
fnx

nz

+ cu)

︸ ︷︷ ︸

=:k1

α+−(
fny

nz

+ cv)

︸ ︷︷ ︸

=:k2

β (6)

and inserted into the cost term. The resulting linear sys-

tem for α and β is listed in equation (7).

To initialize planes vertical to the ground we apply a

RANSAC variant in which vertical plane hypotheses are

created from two uvδ-points and the orthogonal ground
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(7)

plane normal vector. Planes are deleted from the environ-

ment model when they could not be remeasured for a few

subsequent frames.

3.2. Generic Obstacle Detection and Tracking

In contrast to vision systems trained to detect obstacles

of specific categories like pedestrians, cyclists or cars based

on their appearance (e.g. [7]), our detection stage needs

to be independent of obstacle appearance in order to detect

arbitrary obstacles. Furthermore it is not sufficient to detect

obstacles based on their motion [1, 5], since most parts of

the scene which we are analysing are static.

In our case an obstacle can be defined as an assembly of

spatially neighboured points, which do not belong to parts

of the scene background geometry. Hence, detecting obsta-

cles leads to a segmentation problem, in which each seg-

ment represents an object detection [24], which needs to be

associated with known objects to be tracked over time [2].

Segmentation of low-resolution disparity data is a challeng-

ing problem and hardened by the facts that the number of

objects is usually unknown and hardly any prior knowledge

about their shape or size can be applied – foreground objects

can be as tall as a truck and as small as a post.

We treat this problem as a combination of clustering and

tracking before detection. To avoid merging objects close

  

(a) (b)

(c) (d)

Figure 3: Vision algorithms applied in the system. (a) Fea-

ture flow of moving objects (b) dense disparity estimation

(c) tracked ground plane (green) and building facades (pur-

ple) (d) tracked obstacles with aligned bounding boxes. The

line indicates the predicted motion of the cyclist.

together into one detection we partition the foreground dis-

parity points into small segments in which all points are

clearly located close to each other. We apply single link-

age agglomerative clustering and use as distance measure

the difference of disparity of two points to yield an over-

segmentation of the scene with small computational ex-

pense.

After segmenting we group the segments into objects.

We apply a reasoning process based on the previously in-

stantiated object tracks in the environment model. Each seg-

ment becomes assigned to the closest object based on two

features, (a) the overlap ratio in image space of a segment

with the projected contour of an object
ASegment∩AObject

ASegment
,

and (b) the Mahalanobis distance in 3d-space between the

ground plane projection of segment and the objects’ center

of gravity. The group of segments that was assigned to the

same object forms an observation for this object.

The state of an object consists of its position, its velocity

and direction, and a 3d aligned bounding box. An extended

Kalman filter with constant velocity model updates the state

with the observed objects. Furthermore, each object keeps

a history of reconstructed 3d points of the past 20 obser-

vation. This allows us to determine the object contour in

the current camera image for segment assignment and to

measure the object extend in order to update the bounding

Figure 4: Disparity over-segmentation and object grouping

for situation in Figure 3: Disparity segments are shown as

colored dots. 3d points of existing obstacles are projected

into the current view to find their contour in image space,

here depicted as red polygons.
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(a) (b) (c) (d)

Figure 5: Results of the vision algorithms. (a) and (b) Estimated scene geometry with ground surface and building facades

shown as colored overlay (bottom row), and estimated obstacle bounding boxes (top row) with their velocity indicated by

a line. (c) small posts detected in 12m distance (top), passing cyclist tracked up to 20m distance (bottom). (d) Cluttered

disparity data of parking cars (top left) and its segmentation (top right) after removing the scene geometry (bottom left).

Resulting obstacles (bottom right) with two small erroneous instantiated objects in the vicinity of the car (green and blue).

box dimensions. We align the boxes with the main princi-

pal component of their 3d points projected onto the ground

plane (white dots in Figure 4).

We initialize objects in the environment model with seg-

ments which could not be assigned to any existing object.

Objects are deleted from the representation when they are in

the field of view, but have not been re-detected for a number

of consecutive frames.

3.3. Results

The algorithms are embedded into a parallelized soft-

ware framework in order to ensure a high data throughput.

We capture images of 640x480 pixels with 30fps. The dis-

parity is estimated using OpenCV semi-global matching at

half-resolution while the egomotion is computed parallel by

means of visual odometry (libViso2 [9]) with around 20fps.

Using the disparity data we update the scene geometry and

the foreground objects parallel with around 15fps on an i7

2.4 GHz dual-core notebook.

Figure 5 shows results of obstacle detection and geome-

try estimation. Depending on the size, objects are initialized

into the tracking scheme in a distance between 10 (small

posts) and 20 meters (cars) and tracked until they leave the

field of view. Possible kinds of errors are close objects

merged into a single track, or objects becoming segmented

in multiple tracks (Fig. 5d). While the first is normally un-

critical in our application, the second can lead to confusing

feedback when single obstacles are reported with multiple

sound sources. To avoid confusing the user with such ghost

objects we apply temporal filtering and delay the initializa-

tion until an object was successfully observed 5 times.

As in all object detection methods based on surface mod-

els, the proper estimation of scene geometry is important

to avoid wrong object initializations. Since we align all

building facades relative to the ground, the estimation of

the ground plane is the most significant. Our plane tracking

scheme shows to be robust also in situations of temporary

total occlusion or situations in which the user’s head is tem-

porarily pointing too far up. In these cases we predict the

plane until it is visible again and new measurements can be

made.

4. Egopose Estimation

The information of camera position and camera orien-

tation w.r.t the environment model is used in two ways:

First, it is needed to update the global environment model

with measurements obtained from processed camera im-

ages. Secondly, a delay free localization enables to pre-

dict a local view onto the model which we use to gener-

ate feedback. The localization needs to be locally accurate

enough to update the environment model with current mea-

surements, but we do not require a globally consistent long

term estimation.

This task of head tracking can be solved by camera based

visual odometry. A few conditions need to be met here:

scene illumination has to be sufficient to avoid motion blur

and the captured scene needs to contain textured and ap-

parent static parts. Rapid camera motion must be lim-

ited, which can not be guaranteed with uncontrolled head-

worn cameras. A principal drawback in our application is

the larger latency of up to 50ms, which can cause confu-

sion when perceiving the artificial, environment-fixed sound

sources.

As an alternative, an inertial measurement unit can be
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Figure 6: Measurements of IMU and visual odometry re-

lated to the orientation measurement. At points in time tk
and tk+n we obtain rotation estimates from visual odometry

while in between we only obtain updates from the IMU.

applied which offers incremental absolute orientation esti-

mation with heading and roll compensation based on a com-

bination of 3-axis accelerometers, gyroscopes and magnetic

field sensors. Because of high processing rates this estima-

tion is also precise under strong motion and can outperform

camera motion estimation here. However, translational mo-

tion can not be directly measured and would require a global

reference like GNSS for a drift-free estimate.

To overcome the shortcomings of both methods we com-

bined both in an integrated approach. We can obtain delay-

free orientation measurements even under strong head ac-

celerations and benefit from accurate orientation and trans-

lation estimation through visual odometry in low-velocity

situations. To fuse both measurements one has to deal with

the different update rates and latencies of the two sensors.

Our implementation builds upon libViso2 [9] to estimate

the camera motion and fuses inertial measurements into the

estimation using a Stochastic Cloning Kalman filter [18].

The core of the filter is a common orientation filter based

on inertial and magnetic field measurements (compare e.g.

[13]). The filter state contains the orientation represented

by a quaternion qk and the bias of the gyroscope. Simi-

lar to a gyroscope, visual odometry also measures the ro-

tation. Integrating the gyroscope over the interval between

the capturing of subsequent video frames yields the same

measurement as the rotation calculated by the visual odom-

etry using these frames. Thus, while the visual odometry

does not provide any new information, it can statistically

improve the orientation estimation and can also help to de-

tect or handle irregular measurements, e.g. in the case of

magnetic distortion. This fusion scenario with the involved

measurements is sketched in figure 6.

The stochastic cloning approach proposed in [19] al-

lows us to consider incremental measurements which relate

a state at time tk with a state at time tk+n. For that pur-

pose, the state is augmented at time tk with a clone of it.

Figure 7: Estimated trajectory for a walk using pure vi-

sual odometry (blue) and the stochastic cloning Kalman

filter (red). Further improvements are achieved by includ-

ing measurements of the earths’ magnetic field (pink and

black). The ground truth is depicted with a green dashed

line.

This clone will remain an estimate for the time tk so that

the augmented state at time tk+n contains an estimate for

the time tk+n as well as for the time tk, which can be used

for correction with the incremental measurement. Accord-

ingly, stochastic cloning is suitable to fuse the orientation

information given by the gyroscope and visual odometry in

a statistical consistent way.

Every time, say tk, when a new pair of video frames is

captured the state is augmented by a clone of the orienta-

tion quaternion. Then, at time tn+k = tk + ∆tV ideo =
tk + n∆tIMU the next pair of video frames is captured and

visual odometry determines the rotation based on the pair

of subsequent camera images. Obviously, the incremental

rotation calculated by visual odometry is a measure of the

difference between the orientation at time k and k+n which

can be calculated as the difference between the present ori-

entation estimate and the cloned orientation. This provides

the innovation step of the filter.

The position of the head is determined outside of the fil-

ter according to the translation provided by visual odometry

every n IMU samples. As the translation dk+n calculated

by visual odometry is given in the local frame it has to be

rotated into the global frame before it can be incremented:

tk+n = tk + (q−1

k,k+n ⊗ dk+n ⊗ qk,k+n) (7)

where ⊗ denotes quaternion multiplication. The current

egopose (as used in Sec. 3) is expressed as affine trans-

formation

T =

[
R(qk+n) tk+n

0T 1

]

(8)

with R(q) the left-handed rotation matrix equivalent to the

rotation quaternion q.
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Fig. 7 provides the estimated trajectory for a walk of

approximately 500 m.

5. Acoustic Feedback

The acoustical feedback generated by the system shall

offer an enhanced perception of the surrounding environ-

ment. This can have a warning as well as an informing

function. On the basis of the environment model detailed

in Section 3 and the ego-pose estimation in Section 4, the

distances and directions of objects and obstacles around

the user can constantly be calculated relative to the current

head pose. Each object is represented by a sound source

which encodes the spatial location through binaural render-

ing. Binaural rendering refers to the technique of creating

sounds that can be localized in direction and distance using

a headphone. It requires the head-related transfer function

(HRTF) of both ears to render a sound depending on the di-

rection and distance as if it was naturally distorted through

the outer ear and delayed according to the ear distance [4].

An acoustic image of the environment arises which the user

can freely interact with by turning or moving the head. The

acoustic representation of the environment can carry lots of

information. Several aspects need to be considered in or-

der to keep the cognitive load of interpreting the feedback

small and the system intuitive to use. The most crucial is

the selection of appropriate sounds, which we treated in a

row of surveys and simulator studies with visually impaired

as well as sighted persons.

To avoid confusion, the system sounds need to be clearly

distinguishable from natural environmental sounds. Addi-

tionally, they need to be pleasant to listen to and transport

semantic information about the obstacle, e.g. its kind, its

motion or its potential danger in an intuitive way. To keep

the cognitive load small and minimize required training ef-

forts, the number of different sounds has to be limited. We

conducted a study with 26 visually impaired persons to find

an appropriate categorization based on a set of 40 differ-

ent obstacles. The best fitting categorization consisted of

(a) wide objects (e.g. ticket machines, cars, benches), (b)

pole-like objects, (c) elevated objects (awnings, barriers)

and (d) approaching dynamic objects. Additional desirable

categories were drop-offs and holes, high curbs and stairs,

and crosswalks. Objects of these categories are currently

not modelled in the vision framework.

The technical aspect of locatability plays an important

aspect. Localising sounds in terms of their direction and

distance requires the sound to be composed of a wide fre-

quency spectrum. The human outer ear distorts the fre-

quency spectrum depending on the sound direction to al-

low sound source localisation. Sounds exhibiting wide fre-

quency spectra often conflict with the requirement of com-

fort. Especially high frequencies can only be used carefully.

The sounds selected should furthermore be in some kind of

harmony with each other since usually multiple sounds will

be rendered simultaneously. To find appropriate sounds,

we carried out an experimental study with 30 persons (15

of which visually impaired) in a sound simulator. Using a

headphone we played 18 synthesized sounds from 20 dif-

ferent directions distributed in a 140◦ field in front of the

head. The participants pointed a marker towards the per-

ceived sound source which we used to automatically mea-

sure the localization error. Furthermore, we asked to assign

the sounds to the previously defined categories and asked

a grade to judge the comfort. On the horizontal plane, ex-

perimental studies with real sounds reveal angular localiza-

tion accuracies of around 10◦.The localization errors in our

virtual sound experiments were about twice as high. How-

ever, in reality we are able to turn the head towards a sound

source, which strongly increases the localization accuracy

but is not reflected in our experiments.

A final important step is the selection of relevant obsta-

cles in the current situation. In urban environments there

are typically many more objects in the vicinity of a person

than the number of sounds that are distinguishable simulta-

neously. To keep the acoustic feedback intuitive we select

the three most relevant objects in terms of distance and de-

viation from the current walking direction. Sound sources

are virtually placed at their positions. Using the current ego-

pose (Sec. 4) the sound locations are transformed into local

head coordinates, convolved with the HRTF of the users and

their amplitudes adapted to the distance.

6. Experiments

The experimental setup consists of two Flea2 cameras

with a baseline of around 18 cm and wide-angle lenses of

3.5 mm focal length mounted on a helmet (Figure 2). The

IMU (Xsens MTi-300) is flush-mounted into the helmet on

top of the person’s head. The cameras are calibrated to each

other and to the IMU. The headphones are Sennheiser PX

100-II and mounted to the helmet sharing the IMU coordi-

nate frame. Thereby we avoid the required extrinsic calibra-

tion between headphone and camera frame. The computing

platform is an i7 2.4GHz dual-core notebook carried in a

backpack.

6.1. Field Test

Proving the system concept and assessing its value and

usefulness for visually impaired persons required testing the

system under realistic conditions. Since the behaviour of

the user is influenced by the system output, it was impor-

tant to test the whole control loop containing the perception

algorithms, the acoustic feedback and the user behaviour.

The developed prototype was put to a field test with 8

visually impaired persons at the age of 20 to 50 years. Five

of the participants are independently mobile, the remaining
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Figure 8: Parcours used in the fieldtest.

three persons are more restricted in their mobility and rely

on the support of others.

As a first part of the test we set up a training scenario

consisting of two big obstacles on an open field. The partic-

ipants were asked to navigate towards the obstacles and pass

between them to validate the sound localization concept.

The feedback principle was immediately clear to all the par-

ticipants. The scenario is well suited to experience the con-

cept of spatial sound and allows simple interaction by ap-

proaching the object or passing it, which causes the sound

to move correspondingly around the user. After around 10

minutes we moved on to a more complex 2nd parcours.

The parcours consisted of a more complex scenario with

the purpose to find out whether the participants could use

the acoustic information to redirect their path of travel in

order to avoid collisions. The task was to navigate along the

turf between a pavement and lawn as orientation guideline

using the white cane. Along this path we placed different

obstacles (low boxes, high poles and one obstacle hanging

overhead) with a few meters distance, some directly on the

path, some to the left and right (see Figure 8). The sys-

tem classified these obstacles into flat, pole-like, dynamic

and overhead obstacles, each with a distinct sound. In the

beginning the participants tended to shortly stop walking

whenever a new obstacle was sonified and turn their head

in order to confirm the sound direction. Later, new obsta-

cle sounds caused them to decrease their walking speed un-

til the white cane touched the obstacle. It turned out that

the distance to objects was difficult to assess based on the

sound intensity alone. The training period was too short to

develop a proper sense for the relationship between sound

volume and distance. This effect was intensified by the use

of four different sounds, which were perceived differently

loud by the individual participants. During a second and

third walk through the parcours some probands had devel-

oped a sense that allowed them to avoid obstacles before

they could touch them with the white cane. The biggest re-

ported difficulty was to assess the object extension, since it

was not reflected in the feedback.

Most participants were sceptical about the principle of

artificial spatial sounds after participating in our simulator

studies. The experience with the system under real condi-

tions turned out more positive than expected for these users.

The acoustic overlay did not cause them to feel limited in

their natural sense of hearing. The concept of informing the

person about the environment rather than generating navi-

gation clues was received positive. Devolving the decision

making to the assistance system is a high hurdle for most

visually impaired persons, they like to stay in control. All

of our participants could imagine to apply such system for

assistance.

7. Conclusion

With the aim of improving the individual mobility of

visually impaired persons we have developed a wearable,

camera based aid. In this work we developed our con-

ceptual idea of combining scene perception on object level

with spatial acoustic feedback to overcome the limitations

of present assistive aids. A core challenge in this develop-

ment was to bring together the limited technical possibilities

of a wearable platform with the demands of the users.

The perception of the environment was based on the esti-

mation of the geometric scene background and the detection

and tracking of generic static and dynamic objects within

the scene foreground. This compact abstract representation

serves as a base for the acoustic feedback. A robust tech-

nique for head-tracking was developed which combines an

inertial measurement unit with camera based visual odom-

etry to allow high frequent measurements of head position

and orientation with small delay.

In a set of surveys and simulator studies we adapted the

feedback concept to the wishes of the visually impaired

users. We selected sounds which allow good obstacle lo-

calization and intuitive interpretation of the virtual acoustic

world. The developed concept notifies and warns about po-

tential dangers, but the user stays in control how to use this

information, which increases acceptance of such systems.

Our final experiments under realistic conditions gave ev-

idence that the assistance system is useful for visually im-

paired persons and that it can be used in an intuitive way.

It extends the sensing range from approximately 1 m (white

cane) to 10-20 m and, thus, allows the user to avoid obsta-

cles and dangerous situations earlier. Moreover, it allows to

detect obstacles like tree branches or barriers, which cannot

be recognized with the white cane.
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