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Abstract

Mirroring occurs when one person tends to mimic the

non-verbal communication of their counterparts. Even

though mirroring is a complex phenomenon, in this study,

we focus on the detection of head-nodding as a simple non-

verbal communication cue due to its significance as a ges-

ture displayed during social interactions. This paper intro-

duces a computer vision-based method to detect mirroring

through the analysis of head gestures using wearable ca-

meras (smart glasses). In addition, we study how such a

method can be used to explore perceived competence. The

proposed method has been evaluated and the experiments

demonstrate how static and wearable cameras seem to be

equally effective to gather the information required for the

analysis.

1. Introduction

Mirroring occurs when one person mimics the non-

verbal communication (head movements, hand gestures, fa-

cial expressions, tone of voice, verbal accent, breathing,

etc.) of their counterparts. The role of mirroring is to signal

empathy between people and is an early indicator of a po-

sitive outcome (agreement or recognition) in an interaction.

It has been observed that head gestures, such as nodding,

increase the opportunities for a person to be liked [6], while

the occurrence of behavioral mirroring is an early predictor

of acceptance [11, 18, 19]. For some applications, as in ne-

gotiation, it is essential to have real-time feedback assessing

the state of the conversation, a prediction of the interaction

outcome, or whether there has been a break-point between

the interlocutors.

Even though mirroring is a complex phenomenon [5, 7,

30], in this study we focus on the detection of head-nodding

as a simple non-verbal communication cue due to its sig-

nificance as a gesture displayed during social interactions.
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Apart from the obvious function of signaling a yes, head

nods are used as backchannels to display interest, enhance

communication or anticipate the counterpart’s intention for

turn claiming [1, 25]. In the current work, head noddings

are recognized using cumulative histograms of facial fea-

tures (as extracted by the algorithm introduced by Xiong

and De la Torre [34]). After nodding recognition, mirroring

is inferred based on a variable temporal window between

two sequences of noddings. As our results reflect, even this

reduced perspective of the problem is useful to robustly in-

fer mirroring using either a static or a wearable camera.

This paper introduces a computer-vision method to de-

tect mirroring through the analysis of head gestures using

wearable devices. In our scenario, there is a dyadic conver-

sation taking place between a service provider and a cus-

tomer (see Figure 1). The social interaction is recorded with

wearable cameras (see the smart glasses in Figure 2), and a

pair of fixed-cameras, facing each participant. The smart

glasses possess a high-definition video-camera located in

the bridge between the two lenses. The role of the fixed

cameras is twofold: (i) To compare the performance of

the wearable devices against stable video and (ii) to extract

ground-truth for head nodding detection. These recordings

generate a set of images designated by I(t). These ima-

ges are fed into a head-gesture recognizer for automatic no-

dding recognition η(t). The synchronous recognition of

head nods leads to mirroring detection µ(t). After each

recorded session, a set of qualitative interviews was carried

out with the customers in order to assess their perception

on the competence of the service provider, thus creating the

classification space C. The analysis of these interviews allo-

wed us to perform a competence assessment L (i.e., if the

customer considered that the service provider was compe-

tent in addressing her/his requests). Our goal was to see if

we could reach a similar result by automatic detection of the

mirroring activity.

Our main contribution is twofold: (i) We propose a so-

lution for automatic mirroring detection based on wearable

technology, i.e., smart glasses, and (ii) the proposed algo-

rithm is used for competence assessment, by analyzing the
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Figure 1. Visual representation of the steps involved in the automatic mirroring detection and its application to competence assessment

amount of mirroring activity generated during a dyadic con-

versation.

The choice for using wearable cameras is motivated by

the fact that such devices offer a first-person perspective,

compared to the classical fixed cameras, which offer a third-

party perspective. For this reason, we strongly believe

that the results of our work will motivate the use of smart

glasses as assistive technology for people suffering of a

wide range of disorders of the visual system: Visual impair-

ment, prosopagnosia (face blindness), Asperger syndrome

(difficulty to decode/understand emotions and other social

signals), etc. Furthermore, the compact design of this de-

vice (due to the fact the camera is embedded in an everyday

artifact used by a significant number of people), is a guaran-

tee for a high probability of its acceptance.

The rest of the paper is organized as follows. In Section

2, we provide an overview of the related literature on auto-

matic recognition of mirroring behavior. Section 3 presents

our approach on automatic mirroring recognition. In Sec-

tion 4, we present the experimental results for mirroring

detection and its relation to competence assessment. Fi-

nally, in section 4.3 we present our conclusions and provide

guidelines for future work.

2. Related Work

Although psychological research on role analysis dates

back to the early 1970s, the computational approach for

studying mirroring behavior has only recently started to

address this problem. Several technologies have been used,

but the one represented by computer vision occupies a cen-

tral role. Some comprehensive surveys on this topic can be

found in Delaherche et al. [9] and Wagner et al. [32]. In the

Figure 2. Smart glasses used as wearable camera. The glasses have

a high-definition camera embedded in the bridge connecting the

two lenses (by Pivothead Inc., with permission).

remaining of this section, we review only the most relevant

works related to our research.

Ramseyer and Tschacher [26] estimated mirroring based

on the cross-correlation of motion energy features com-

puted over a temporal window of a few seconds. Here,

motion energy is defined as the difference between con-

secutive frames and is used as a measure of global value

of activity. Their experiments demonstrated that nonver-

bal synchrony is higher in genuine interactions when con-

trasted with pseudo-interactions. A similar approach has

been reported by Sun et al.[28] with a more sophisticated

analysis. In their approach, the information provided by

motion energy is converted into histograms, but the image

is not processed holistically. Instead, the region containing

the body parts is divided in sub-regions through quad-tree

decomposition for more efficient feature extraction. Subse-

quently, they use a traditional template-based action recog-

nition approach to compute behavior similarities of corre-

sponding temporal windows (sequence of frames). This
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approach has been tested upon a custom dataset containing

people engaged in face-to-face conversation.

These techniques have been replaced by more refined

computer vision techniques. For instance, Girard et al.[16]

showed the feasibility of measuring automatically facial

expressions included in the Facial Action Coding System

(FACS)[10]. In their experiment, they analyze 400,000

video frames, obtained from fixed cameras, from 80 people.

For automatic detection of facial expression, they automati-

cally extracted facial landmarks[34], measured the face de-

formation with SIFT features, and trained SVM classifiers

to detect each expression. Their results show that fewer than

6% of the frames had to be coded manually. In our case,

we also extract facial landmarks but as a step toward the

construction of 3D models and head pose estimation. The

automatic measures of facial actions and head motion have

been used as behavioral predictors[15].

The previous approach has been extended by also incor-

porating the non-verbal information contained in the audio

channel. More precisely, Sun et al. [29] extracted from the

acoustic signal the following prosodic features: Pitch, in-

tensity, energy and speaking rate. Following a similar mul-

timodal framework, Delaherche and Chetouani [8] studied

synchrony on a cooperative task where both partners have

to coordinate in order to build an assembled object. To

identify the coordination between demonstrator and exper-

imenter, they used the Pearson correlation and magnitude

coherence between all pairs of features. For instance, they

found that the lowest percentage of coordination was ob-

tained in pitch and pause. On the other hand, regarding

the visual domain, it is apparent that the image of motion

history is the feature that best captures the synchrony of ac-

tions. Also in a multimodal framework, Bilakhia et al.[4]

proposed a method to detect mimicry behavior in audiovi-

sual data. They used a corpus of naturalistic dyadic interac-

tions, and their approach was based on a temporal regres-

sion model, represented by long short-term memory net-

works, in order to reproduce one subject’s behavior from the

other’s. Recently, Bilakhia et al.[3] introduced MAHNOB,

an annotated set of audiovisual recording of dyadic interac-

tions for the study of mimicry behavior. Their video is ob-

tained with fixed cameras, which made it unsuitable for our

research purposes. As we based our study on head-nods,

it is interesting to note that about 60% of the 11 gestures

they annotate are noddings. In their experiments, they con-

sider eleven face and head movements, which include smile,

laughter, frown, eyebrow raise, head nod, head shake, head

pose shift, shoulder shrung, left hand movement, right hand

movement, and torso shift.

Recently, Michelet et al. [22] presented an unsuper-

vised method to estimate mirroring. For this purpose, they

computed Bag-of-Words models [13] around some feature

points from the spatio-temporal analysis of the sequence.

Then, similarity between bag-of-words models is measured

with dynamic-time-warping, giving an accurate measure of

imitation between partners. A threshold has been used in

order to discriminate between mimicry and non-mimicry.

A similar approach, based on time-series processing, has

also been pursued [27, 24]. At their end, Messinger et al.

[21] studied the face-to-face interaction between infants and

their parents. More concretely, they introduced a machine

learning framework to explore the predictability of infant-

mother behavior. For instance, it was expected that mothers

smiled predictably in response to the smiles of the infants,

and the initiation of the smiles of the infants become more

predictable over developmental time. The smiles have been

manually annotated in video data using FACS [10]. Two

types of models have been used: A causal and a temporal

one which were characterized in terms of turn-takings. A

turn-taking event was defined as a mother or infant tran-

sition that was immediately preceded by the transition of

the other partner. Another interesting application was intro-

duced by Yu et al.[35]. They develop an automated method

to detect deception out of interactional synchrony. They

used Face-to-Face interactions and video-conference ses-

sions. In all their sessions, they used fixed cameras. They

automatically track head gestures and expressions. They

built an SVM classifier, which has a detection accuracy of

74%, compared to the 54% accuracy one could expect from

a typical unaided individual. The characteristics they use in-

clude facial expressions, like smiling and looking forward,

and head movements, like nodding. The most effective fea-

tures, i.e., the ones which achieves the best performance

in the classification task, are selected via a Genetics algo-

rithms. In our case, we have applied mirroring to the assess-

ment of perceived competence.

In a nutshell, our research distinguish itself from the

state-of-the-art in that we pioneer the use of wearable de-

vices to detect mirroring and study its use in novel applica-

tions, as it is assessment of perceived competence. Overall,

we contribute the body of research on that is being called

social signal processing[23].

3. Mirroring Inference

The procedure for automatic mirroring detection consists

of the following steps: 1) facial features extraction and sta-

bilization; 2) head nodding gestures recognition; and 3) mi-

rroring inference. A detailed explanation is provided for

each of these steps in the remainder of this section.

3.1. Facial Features Extraction and Stabilization

To extract the facial features, we used non-rigid face

tracking with the Supervised Descent Method (SDM)

from [34]. Then, we applied a stabilization step to compen-

sate for camera motion (user’s ego-motion). Unlike tradi-

tional video stabilization approaches where the whole frame
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is warped and smoothed in order to create a stable version

of the video [2, 17, 20], in our case we only stabilize the

tracked facial features. Figure 3 shows a comparison of

the facial features position from a static camera, a wearable

camera, and the stabilized version, respectively. The three

plots display the facial features changes in the horizontal

and vertical directions (orange and blue respectively). The

red vertical lines mark the start and end of head gestures

(nods). The middle plot shows the effect of the camera’s

ego-motion. This motion triggers false head gestures de-

tection. The third graph shows the results of ego-motion

stabilization. The stabilization process attenuates camera

motion, preserving head motion for gesture recognition.

To stabilize ego-motion, our procedure detects and tracks

background features; it then fits a motion model for the

camera and finally, it compensates for camera motion. To

estimate camera motion, we extracted sparse features of the

background and track them using optical flow. We dis-

carded features inside the face region to prevent the use

of head motion as background motion. More formally,

we created a set of n pairs of matched features, located

in (xj
t−1

, yjt−1
) and (xj

t , y
j
t ), for j = 1, . . . , n, from the

previous and current frames. Using this set of features,

we estimated the interframe motion represented as a two-

dimensional linear model with four parameters similar to

the one proposed in Battiato et al. [2]:





xj
t

yjt
1



 =





λ cosφ −λ sinφ Tx

λ sinφ λ cosφ Ty

0 0 1









xj
t−1

yjt−1

1



 ,

x
j
t = Cx

j
t−1

,
(1)

where φ is the rotation angle, Tx and Ty the translation in

the x and y direction, and λ is a scale parameter.

Some tracked features may have different motions due

to wrong matches or moving objects in the background. To

remove these outliers from the set of features, we used lo-

calized RANSAC as described by Grundmann et al. [17].

Once we removed the outliers, we remained with a set of k
feature pair and solved (1) for the four variables using linear

Least Squares to obtain the motion matrix C. Therefore,

one can establish a relationship between the facial features

with camera motion x
w = [xw, yw, 1]

T
and the motionless

facial features x
s = [xs, ys, 1]

T
via the camera motion C

as

x
w = Cx

s. (2)

3.2. Head Nodding Gestures Recognition

Once we have stabilized the head motion, we created his-

tograms of orientations (HOO) that will be used as predic-

tors for a Random Forests classifier.

Raw motion observations are susceptible to noise and

scale changes. Figures. 4(a) and 4(c) show the raw mo-

tion of a nodding gesture and other head gesture respecti-

vely. These motion time-series are noisy and can change

dramatically at different distances and resolutions. To ob-

tain distance and resolution invariant, we scaled down the

motion using the face size (from the facial features). Then

we extracted a compact representation of the motion using

a Histogram of Orientations [14] with the following pro-

cedure (see algorithm 1): First we tracked a facial fea-

ture (i.e., tip of the nose) during k consecutive frames,

n and n − 1, obtaining its motion p = (px, py), where

p = pn − pn−1; then we calculated its orientation, θ =
arctan(py, px) (taking care of the case px = 0, and mag-

nitude, M =
√

p2x + p2y; then we added the magnitude M

to the bin b = ⌊θ/360⌋B, which belongs to the B-bins his-

togram h.

Call : < h,pn >← HOO (pn,pn−1,h)
input : Corresponding feature pn−1 and pn, and

histogram of orientations h with B bins

output: An updated histogram of orientations h

// Compute the motion of a feature

between frames n− 1 and n.
Here p = (px, py).

p← pn − pn−1;

// Calculate its orientation in

the range 0◦ ≤ θ ≤ 360◦. Take

care of px = 0
θ ← arctan(py, px);
// Calculate its magnitude

M ←
√

p2x + p2y;

// Compute the histogram index

b← ⌊θ/360⌋B;

// Add the magnitude to the bin

h[b]← h[b] +M ;

Algorithm 1: Histogram of Orientations. The his-

togram of orientations h was computed across the

frames of the sequence with the use of a particular

feature. In the process, the bin B corresponding to

a certain orientation θ was weighted by the magni-

tude of the movement M .

Figures. 4(b) and 4(d) show the non-normalized his-

togram for the corresponding gesture at its left. Notice that

a nodding gesture, which is described as moving the head

up and down has large bins at 90◦ and at 270◦. On the

contrary, other head gestures have contributions elsewhere

without a concrete pattern.
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Figure 3. Head Motion. Horizontal and vertical motion (dotted and solid lines respectively) of the head in ten seconds of video. Vertical

lines mark the start and end of head nodding. The first plot shows the motion inferred from a static camera video. The second plot shows

the same event as viewed from a wearable camera, displaying the camera motion effect. The third plot shows the stabilized sequence.

3.3. Automatic Mirroring Detection

Inspired by the approach of Feese et al.[12], but mea-

suring mirroring in both directions, we defined two events:

Person A is mirroring Person B or (mAB); and Person B
is mirroring Person A or (mBA). To count an mAB event,

person A needs to start displaying gesture ξ after person

B started and within a time ∆t after person B stopped dis-

playing gesture ξ. In case that person A displays ξ multiple

times while B is displaying ξ, only one event is counted.

Similarly, a mBA event is triggered when person B starts

displaying gesture ξ after person A started and within ∆t
after person A stopped displaying gesture ξ. Gesture repe-

titions were treated the same way. More formally, given a

sequence of gestures gξ
1...Nξ of person A, the start and end

times of each gesture is given by t1

(

gξi

)

and t2

(

gξi

)

res-

pectively. An mAB event is triggered if (following [12]):

gAi = gBj ,
t1
(

gBj
)

< t1
(

gAi
)

< t2
(

gBj
)

+∆t.
(3)

Figure 5 shows a fragment of 1,000 frames (about 30 sec-

onds) from one of the videos in our dataset. The top row

shows the nodding gestures performed by person A, the

middle row shows the nodding gestures performed by per-

son B, and the bottom row shows the mirroring events. The

first three mirroring events are triggered by person A. In

the first event of this sequence, person A mirrors person B
after person B stopped displaying the nodding gesture, but

within a predefined window ∆t. The other mirror events

occur just after person B started the nodding gesture. The

fourth mirroring event is due to the person’s B response to

the nodding gesture triggered by A. The window ∆t is

heuristically determined, taken into consideration the ana-

lysis of our dataset, where the average time lapse between

gestures is 1.36s.

4. Experimental Results

In this section we first describe our dataset. Then, we

present the performance of automatic nodding recognition

and mirroring detection. Finally, we perform a competence

assessment based on the individual interviews conducted

with each subject participating in the experiment.

4.1. Mirroring dataset

We defined a realistic conversation scenario, in which a

student was instructed to ask a psychologist for advice re-

garding academic orientation and support. The conversa-

tions revolved around three questions: i) What to do in a
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Figure 4. Head Gesture Motion and Histograms of Orientations

(HOO) (best seen in color). (a) Shows the horizontal (solid red)

and vertical motion (dashed blue) for a typical nodding gesture.

(b) Shows the HOO of a nodding gesture, (c) shows the motion

(solid red for the horizontal, and dashed blue for the vertical dis-

placement) for an exemplary gesture other than nodding, and (d)

shows its HOO.

Figure 5. Mirroring detection (best seen in color). Rows one (solid

red) and two (dashed blue) show the number of frames when ges-

tures from either person A or person B occur. Note that there is a

fixed interval of time dt when the mirroring effect may take place.

The third row displays the occurrence of mirroring. In frames

1,050, 1,210, and 1,690 person A mirrored person B (green). In

frame 1,900, person B mirrored person A (brown).

given situation? ii) What is the psychologist’s experience

with similar problems? and, iii) How many therapy ses-
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Figure 6. Training Error rate. This plot shows how the error rate

changes with the number of trees during the training phase. In this

plot we see that beyond 60 trees the error rate stays unchanged.

sions are needed? The confederated psychologist answered

the questions to each participant in the same verbal style

but controlling his nodding gestures. We created a mirro-

ring dataset consisting of 48 sessions (with a unique student

per session) of three minutes each, on average. We recorded

each session with two static HD cameras and two wearable

cameras. For the static cameras we used Microsoft LifeCam

Studio, fixed on the table and aimed at each participant.

Three trained sociology students annotated the starting

and ending times of the nodding gestures in the videos using

ELAN Linguistic Annotator [33]. These annotations served

as gestures’ ground truth and we used them to calculate the

mirroring ground truth following the approach described in

Section 3.

4.2. Head Nodding Recognition and Mirroring De­
tection

Since mirroring detection is mainly determined by cor-

rect head nodding recognition, we first report experimen-

tal results on it. Combining our dataset with the one pre-

sented in [31], we split our mirroring dataset into a train-

ing set (50%), a validation set (25%), and a test set (25%).

From these sets, we extracted the histograms of orientations

(HOO) and we trained a Random Forests classifier using

the training set for nodding recognition. Figure 6 shows

how the error rate varies with the number of trees during

the training phase. From this plot we could appreciate that

when the number of trees is above 60 the error rate remains

stable. For this reason, to perform the remaining experi-

ments, we kept this number of trees (60).

Another aspect we wanted to evaluate is how nodding

duration affects the accuracy of the classifier, since the ges-

tures in our dataset are variable in length, ranging from 15

frames (0.5s) up to 120 frames (4s). To evaluate the effect,

we trained multiple Random Forests classifiers with vari-

able length using our validation set. As result, we noticed
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Figure 7. ROC Curves. This plot shows ROC curves for multi-

ple gesture lengths ranging from 10 frames up to 50 frames. The

curves show that the performance improves with larger gestures

settling down around 40-50 frames.

that the recognition improves with increasing duration of

gestures, stabilizing around 50 frames. Figure 7 shows a

ROC curve for multiple gesture lengths ranging from 10

frames up to 50 frames.

Once we found the optimal value for parameters that

guarantees an optimal head nodding recognition, we conti-

nued with the evaluation of mirroring detection using wear-

able cameras. We considered the results obtained with the

same algorithm running on the fixed cameras as baseline.

Using the validation set, we ran the mirroring detector mul-

tiple times varying the sensibility of the classifier. For this

we used the confidence of the classification —calculated as

the proportion of decision trees that classified the sample to

the positive class— by varying the classification threshold

between 0.1 to 0.9. For each case, we calculated the true

positives (tp), false positives (fp), and false negatives (fn).

With these values we constructed the Precision-Recall curve

presented in Figure 8. Finally, we selected the model with

the highest F1-score given by

F1 =
2tp

2tp+ fp+ fn
. (4)

For the fixed cameras the F1-score is 0.69, while for the

wearable cameras it is 0.6. Figure 8 shows the position for

the highest F1-score as solid circles. In order to evaluate

the generalization capability of our algorithm, we ran our

classifier on the test set obtaining the results shown in Table

1. The reduction in performance of the wearable cameras

is due to an increment of false positives given the camera

motion.
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Figure 8. Mirroring Detection. The solid circle in the curves shows

the position for the highest F1-score in the validation set. For static

cameras it is 0.68, while for wearable cameras it is 0.62.

Table 1. Mirroring performance on test set.

Static camera Wearable camera

Precision 0.80 0.65

Recall 0.62 0.62

F-Score 0.70 0.63

For experiments, our algorithm was implemented in C++

and was capable of detecting gestures at 20 frames/sec

on HD video. The performance was achieved on a PC

equipped with 8GB of RAM and an Intel Core i5 micro-

processor running at 1.9GHz.

4.3. Competence Assessment

To demonstrate the usefulness of our algorithm for mi-

rroring detection in the case of wearable devices, we apply

it to assess the competence 1 derived from the dyadic social

interactions. For this purpose we considered all four possi-

ble combinations of image sources: student←static cam-

era, psychologist←static camera, student←static camera,

psychologist←wearable camera, student←wearable cam-

era, psychologist←static camera and student←wearable

camera, psychologist←wearable camera. The ← symbol

can be read as was observed by the.

As starting point for our study, we relied on the qua-

litative interview outcome that followed each session and

where the student was asked about the satisfaction of the

interaction. Based on the qualitative analysis of the inter-

1By competence assessment we refer to the ability of the psychologist

to satisfactorily answer the student’s questions - thus reflecting the stu-

dent’s viewpoint.
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(a)

Figure 9. Perceived Competence. The ROC curve shows the av-

erage performance (solid line) for 1000 cycles of traning/testing,

bounded by a standard deviation (dashed lines). fpr, tpr and auc

stand for false positive rate, true positive rate, and area under the

curve, respectively. Both the student and the psychologist were

using wearable cameras. The area under the curve for the mean

performance was 0.74.

views, we labeled the conversations contained in the mirro-

ring dataset in two classes: competent or non-competent,

based on the student’s assessment. Using the number of

times either the student or the psychologist mirrored each

other, and the combination of images taken with the static

and wearable cameras, we constructed a linear SVM cla-

ssifier to distinguish between these two classes. Ideally,

the SVM computes the hyperplane that best separates be-

tween both classes. However, due to the non-linearity be-

tween the two classes (and to minimize the number of out-

liers), we translated the hyperplane in order to obtain dif-

ferent classification performances. In each trial we used

50% of the interviews to construct the classifier and 50%

to test it. To assess uncertainty we repeated this procedure

1000 times. From these 1000 trials we estimated the aver-

age and standard deviation for the performance. Figure 9

shows the ROC curve for the case where the student and the

psychologist were using wearable cameras. As overall mea-

sure of performance we computed the area under the curve

(auc), which for the mean performance gives 0.75, 0.74,

0.75 and 0.74, for the cases discussed above. Therefore,

our results indicate that all combinations of static/wearable

cameras seem to be equally supportive to evaluate the per-

ceived competence.

Conclusion and Future Work

In this paper we presented a computer-vision based so-

lution for automatic mirroring detection using wearable de-

vices (i.e. smart glasses). Mirroring was detected by the

analysis of a temporal window between two consecutive

head noddings. We tested our approach on a custom dataset

consisting of 48 dyadic conversations between a customer

and a service provider. After that, we demonstrated that

our approach can be successfully applied for competence

assessment derived from the analysis of qualitative inter-

views recorded after each session. The encouraging results

obtained so far motivate us to pursue the use of our approach

in a real-world application. Future work will be devoted to

enhance the dictionary of recognized head and facial ges-

tures (shaking, emotional expressions, etc.) but also to ex-

plore its use as assistive technology for visually impaired

people.
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