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Abstract

Tracker fusion i.e. the fusion of the outputs of differ-

ent tracking methods is an interesting new concept. Thus

it should also be considered in the VOT challenges. In this

paper we evaluate the performance of tracker fusion on the

VOT2013 and VOT2014 datasets. Furthermore, we utilize

the fusion concept to create novel fusion based measures for

evaluating trackers. Fusion based evaluation is interesting

as it does not evaluate trackers independently but in the con-

text of all other trackers. It allows us for example to identify

trackers that could despite poor average performance be in-

teresting for research in object tracking. We found e.g. that

all state-of-the-art trackers lack some strengths of a simple

NCC tracker. Tracker fusion can exploit this and profit from

an additional NCC tracker. We raise the question: Can this

also be exploited in a more direct way i.e. can we e.g. com-

bine NCC concepts with a state-of-the-art tracker?

1. Introduction

Visual object tracking is an important problem in com-

puter vision with a wide range of applications. Existing

tracking methods vary strongly in their approach. Some

methods are e.g. based on optical flow, some use object

templates instead, some use classifiers, some perform track-

ing by detection and some are combining different strate-

gies, to name just a few approaches. The variety of ap-

proaches also leads to a variety of different behaviors of

tracking methods witch makes a good detailed evaluation

challenging. In our previous work [3] we e.g. figured out

that on the tracking benchmark [15] the on average sec-

ond worst method SMS [6] outperforms the on average best

method SCM [16] on the “lemming” sequence – SMS even

outperforms all 28 competing methods on this sequence.

This shows that a tracking method can still be very inter-

esting even if it performs on average poor compared to the

state-of-the-art.

In our previous works [4, 3] we exploited this fact

that different tracking methods have different strength and

weaknesses. There, we designed tracker fusion approaches

that fuse the output trajectory of different tracking methods

into one fused trajectory. We showed that a fused result cre-

ated based on many tracking results clearly outperforms the

performance of all single input trackers. Furthermore, we

showed in [3] that tracker fusion can even outperform sin-

gle trackers in runtime if only fast trackers are fused. In

our tests we were able to create a fusion approach that runs

around 20 times faster than the best tracker SCM [16], while

providing a similar performance (See Figure 4 a) in [3]).

With the runtime of SCM we could outperform it by far.

As a result, tracker fusion can be seen as serious com-

petitor to single tracking methods and should as such also

be considered in the VOT challenges [11, 10]. Our first con-

tribution is to provide the missing tracker fusion results for

the VOT2013 [11] and VOT2014 [10] challenges based on

our approach [3] in Section 2.

As discussed above tracking methods (like SMS) can

be very interesting despite bad average performance if they

provide an outstanding performance in some situations and

if the outstanding performance can be exploited for bet-

ter tracking results (e.g. by tracker fusion). So far popu-

lar evaluation measures only consider the average perfor-

mance. This can lead to an underestimation of the potential

of interesting tracking concepts.

As a result, our second contribution are novel measures

for tracker evaluation that are based on the tracker fusion

concept [3]. These measures do not evaluate trackers inde-

pendently, but in the context of all other trackers i.e. they

allow to estimate how interesting a tracker still is consid-

ering the existence of all the other trackers. Outstanding

strengths likely will support a tracker in these measures

while outstanding weaknesses will have the opposite effect.

Common strengths and weaknesses shared by many track-

ers likely have no big effect on these measures. Further-

more, the measures guarantee that the strengths of interest-

ing trackers do not only exist but can also be exploited (it is

guaranteed that they can at least be exploited by our tracker

fusion approach). We will show that our measures actu-
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ally highlight rather uncommon tracking concepts (trackers

based on uncommon concepts require a clearly lower av-

erage performance for a good rating). Of course our mea-

sures are also interesting for the tracker fusion concept it-

self. Here they can be applied directly (without further in-

terpretation).

Note that the VOT challenges contain many trackers and

as we want to cover all of them our paper contains complex

tables. We will not discuss all of them in the text, but en-

courage readers to to examine the tables on their own e.g.

to check the numbers for their own trackers or trackers they

are interested in. We refer to the VOT papers for references

to the trackers evaluated in the tables of this paper.

2. Fusion Results

In this section we present tracker fusion results (based

on [3]) for the VOT2013 and VOT2014 challenges. There

are some challenges and limitations in evaluating tracker

fusion on the VOT results that we will discuss in Section 2.1

and 2.2, respectively. In Section 2.3 we present and discuss

the actual tracker fusion results.

2.1. VOT Specific Fusion Result Creation

A challenge in evaluating fusion on VOT results is the

fact that trackers are reinitialized whenever they fail (over-

lap to ground truth = 0). In more detail: If a tracker fails it

does not track for 5 frames and is then reinitialized with the

current ground truth. After reinitialization tracking results

are not considered for accuracy calculation for 10 frames to

avoid giving them an unfair advantage (For details see [10]).

For comparability, we also use the same procedure of reini-

tialization for the tracker fusion approach.

Tracker fusion is usually following several similar track-

ing results at the same time (by a weighted average). If a

tracker is removed from the weighted average due to fail-

ure it cannot make the fusion approach to fail as well, any-

more. To avoid this we do not remove the bounding boxes

of failed trackers. Instead we simulate their bounding boxes

for the 5 + 10 = 15 frames (see above) where the reinitial-

ized tracking result is not valid, yet. Failed trackers are sim-

ulated with the velocity they had before failure. With this

approach we can make sure that fusion fails as well when

the trackers it is building on are failing.

2.2. VOT Specific Limitations

For a fair comparison it is also necessary to reinitialize

all underling trackers when tracker fusion fails (as they are a

part of the “fusion tracker“). This is not possible as we only

have the raw VOT tracking results but not the source codes

of the trackers to perform own experiments. As a result,

our reinitialized fusion is not building on freshly reinitial-

ized trackers. Instead, it is building on trackers that are al-

ready tracking for a longer time period. From such a tracker

we can on average expect a lower accuracy and a shorter

time to next failure than from a freshly reinitialized tracker.

Thus, we expect a certain penalty for fusion on VOT results

( i.e. results would probably be better with proper reinitial-

ization). Still we think that the provided fusion results are

meaningful.

2.3. Results

As can be seen in Table 2 and 3 the basic tracker fu-

sion approach of [3], which we call ”Fusion“ always out-

performs the best tracking method in success score.1 How-

ever, the difference between the best tracker and the tracker

fusion result (”Fusion“) is smaller for all VOT results than

in the evaluation of our previous work [3]. We think that

an important reason for this is that reinitialization leads to

smaller differences in success score between trackers. The

difference is 167% between the best and worst tracker for

the results in [15] (used by [3]), while it is only 75% for

VOT2013 and 56% for VOT2014 (baseline results). Thus,

it is obvious to also expect a smaller advance for tracker

fusion on the VOT results. Considering this, the tracker fu-

sion results on VOT are comparable to the original fusion

results in [3].

Only on the baseline results of VOT2014 the advantage

is noticeable smaller. Conspicuous here is that the best

three trackers clearly outperform the other trackers with a

great distance in success score. The tracker fusion approach

does not know which trackers have a good performance and

thus has to consider all 38 trackers with the same attention.

Therefore, it is no big surprise that the advantage of tracker

fusion is smaller if the best three trackers in the tracking set

are positive outliers. If we remove them from the fusion set

we can obtain a success score of of 0.664, which is consid-

erably better than the best tracker in the reduced fusion set

(the 4. best tracker in the full set). This fact supports our

explanation above.

An important reason why positive outliers have a limited

influence is that we also fuse trackers that are disadvanta-

geous for tracker fusion. There are ways to deal with this

issue. A simple way, is to only fuse the best n trackers.

The value ”Last 5 only“ in Table 2 and 3 show the achieved

success score if the basic approach in [3] is only performed

on the last 5 trackers in the table (with the highest success

score). For the VOT 2014 dataset this leads to clearly better

results than fusing all 38 trackers. For VOT 2013 the result

is ambiguous (positive on baseline and negative on region

noise). Still, it makes a lot of sense to fuse only the best

trackers, especially if we consider the much lower effort of

fusing fewer trackers.

Instead of keeping the best trackers we can also just keep

the trackers that are beneficial for fusion. Beneficial track-

1success score is the average overlap between the tracker bounding box

and the ground truth. See [3].
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Trackers Success

1 tracker KCF 0.661

2 trackers KCF+SAMF 0.673

3 trackers DSST+DGT+LT-FLO 0.701

4 trackers DSST+SAMF+DGT+LT-FLO 0.714

5 trackers DSST+KCF+eASMS+DGT+LT-FLO 0.720

Table 1: The best trackers for fusion on the baseline exper-

iment of VOT2014.

ers are determined by iteratively removing trackers that are

adverse for fusion (in success score) from the set of trackers

until no tracker is adverse anymore for fusion (see Global

Removal in [3]). The ”Fusion+“ rows in the tables show

the result if only beneficial trackers are fused. The result is

expectably the best in success score. ”FusionF+“ does the

same but we avoid removing trackers with low failure rate

here (PLT13, PLT14). This allows to obtain a lower failure

rate. ”FusionFT+“ is ”FusionF+“ with the online trajectory

optimization approach of [3] instead of their basic approach.

Trajectory optimization avoids leaps in the trajectory. As

can be seen, this also helps to lower the failure rate.

The failure rates of tracker fusion are among the best.

Only few trackers have a lower failure rate than the consid-

ered tracker fusion approaches. We found that the failure

rate can be further decreased at the cost of decreasing suc-

cess score by increasing the σ parameter of [3].

Table 4 shows the tracker fusion performance under dif-

ferent conditions. Only for illumination change ”Fusion“

does not outperform single trackers. Here only two track-

ers (DSST [7] and KCF [9]) strongly outperform all other

trackers. Furthermore, the 3. best tracker also clearly

outperforms the 4. best. Thus, we again have the ef-

fect of few strong positive outliers (that we have discussed

above), which is unfavorable for fusion. For illumination

change even ”Fusion+“ outperforms the best two trackers

only slightly. We think this is because there are not many

illumination changes that are not successfully handled by

DSST [7] and KCF [9], but by other trackers. The best fu-

sion results can be achieved for size change and occlusion.

Best Trackers for Fusion Table 1 shows the optimal

tracker sets of size 1-5 for tracker fusion on the VOT2014

baseline results. The best trackers a tracker set of size two

are the two trackers with the highest success score KCF [9]

and SAMF. For larger sets they are often not chosen. This

shows that the best performing trackers are not necessarily

the most attractive for fusion.

The ”Fusion+“ set is much larger. It consists of

ABS, DSST [7], DynMS, FSDT, IMPNCC, KCF [9],

MCT, MIL [2], NCC, OGT [12], PLT14, SAMF, aStruck,

CMT [13], DGT, eASMS, FoT [14], FRT [1], HMMTxD,

LGTv1 [5] and LT-FLO. However, note that it was deter-

mined by a greedy approach, while the results in Table 1

are the global maximums.

3. Tracker Evaluation with Fusibility Mea-

sures

In this section we introduce our novel tracker fusion

based evaluation measures (fusibility measures) and discuss

VOT evaluation results based on these measures. As dis-

cussed in the introduction fusibility measures can be very

interesting for tracker evaluation.

The remainder of this section is structured as follows:

First we introduce our novel fusibility measures in Sec-

tion 3.1. There, we also motivate them regarding tracker

fusion. In Section 3.2 we motivate their usefulness for

tracker evaluation. In Section 3.3 we discuss interesting

evaluation results i.e. we show what we can learn from the

fusibility measures about singe trackers in the VOT chal-

lenges. Finally, we perform experiments to identify the

main competing and supporting trackers for each tracker

in Section 3.4 (competing trackers have similar strengths,

supporting trackers complement each other).

3.1. Fusibility Measures

The fusion columns in Table 2 and 3 show how a tracker

affects fusion. We have to perform two experiments to de-

termine the fusibility measures for a tracker: fusion with all

trackers and fusion with all trackers, excluding the tested

tracker. For each frame we determine the difference in over-

lap (success score) between the two experiments. The dif-

ference (impact) can be positive or negative in each frame.

The total impact a tracker has on the fusion result is cal-

culated independently for the total positive impact and the

total negative impact. For D being all frames of all tested

sequences, FT the fusion result for the set of all tracker T ,

O(x) the overlap of a tracking result to the ground truth

the total positive (∆O+
t (FT )) and negative (∆O−

t (FT )) im-

pacts are calculated as:

∆O+
t (FT ) =

∑

f∈D

max
(

0, O(FT (f))−O(FT\t(f))
)

0.001|D|

(1)

∆O−
t (FT ) =

∑

f∈D

min
(

0, O(FT (f))−O(FT\t(f))
)

0.001|D|

(2)

The ”Gain“ column in Table 2 and 3 is calculated as:

Gain = Ot(FT ) = O+
t (FT ) +O−

t (FT ) (3)

The ”+Seq“ column counts the percentage of sequences

with an gain > 0 (gain calculated by sequence instead of all

frames). Note that in VOT each sequence is processed three

times. We consider these three runs as individual sequences.
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The ”+Seq“ measure is interesting to see if the fusion gain

is fairly equally distributed over different sequences. This

is the case for most trackers. A serious outlier in this re-

gard is aStruck [10] on the baseline experiment. Despite its

on average strong positive gain the gain is only positive for

42.7% of the sequences. The ”+/-“ column is calculated as:

+/- =
O+

t (FT )

O−
t (FT )

(4)

The gain measure rates the overall influence of a tracker

and shows if it is positive or negative. However, it does

not show if for example a positive gain (e.g. 1) is achieved

mainly by positive influence (e.g. +1.2 and -0.2) or only

by a slight overhang of strong positive and negative in-

fluence (e.g. +10 -9). A tracker with high influence in

both directions influences the fusion result strongly. For a

new untested sequence this can easily lead to strong posi-

tive but also strong negative effects i.e. the gain is unsta-

ble/unreliable. A tracker with in general low influence but

strong positive overhang should act mostly unobtrusive e.g.

by behaving similar to the majority of trackers. However, if

it stands out the effect is usually positive. Obviously, the lat-

ter is preferable. The ”+/-“ measure rates this (larger means

better/more reliable).2

3.2. Using Fusibility Measures for Tracker Evalua­
tion

We think that large gain and ”+/-“ values can reveal inter-

esting trackers not only for fusion. If there is e.g. a tracker

t1 and improved versions of this tracker t2...tn then adding

t2...tn to the fusion set will significantly lower the gain and

the ”+/-“ value of t1. This is because the strengths of t1
are also covered by t2...tn and thus t1 cannot utilize these

strengths anymore to improve fusion, while the weaknesses

of t1 that are not shared by t2...tn can still harm fusion.

On the other hand, a tracker with poor average performance

but large gain and ”+/-“ value is likely a tracker with much

originality that has strengths that are that original that they

are not even covered by the top performing trackers in the

fusion set.3

As a result, gain and ”+/-“ values are providing clues for

how interesting a tracker can be for future research. Usu-

ally, top performing trackers gain the most attention in the

research community, which makes it likely that upcoming

trackers are building on similar concepts. While there is no

need for considering trackers without serious originalities,

2Note that a negative gain leads to ”+/-“ values < 1. Bellow 1 larger

values mean less reliability. Still, even here larger values are better. An

unreliable negative effect is better as it has the possibility to turn positive,

while a reliable negative effect is negative for sure.
3 This is because, the other trackers fail in clearly lowering the gain and

”+/-“ value of the tracker, which they could do by covering the strengths

of the tracker.

whose strengths are widely covered by better performing

trackers, the concepts behind trackers with high originality

and thus likely large gain and ”+/-“ values have the potential

to improve future trackers – even if the average performance

of the considered tracker is low. In fact this is not only a po-

tential as our tracker fusion approach is already successfully

utilizing it.

3.3. Interesting Evaluation Results

When searching Table 2 and 3 for which poorly perform-

ing trackers have the highest ”+/-“ and gain we find that this

are mostly either methods with simple concepts like NCC

including IMPNCC (template tracking) and Meanshift (in-

cluding DynMS) or methods with novel tracking ideas that

are not utilized by state-of-the art trackers like LGT [5] (lo-

cal + global tracking), FSDT (dynamic feature selection),

STMT (combined camera and object tracking). On the other

hand, methods with small gain and ”+/-“ are often methods

that are building on approved concepts like classifier learn-

ing (e.g. MIL [2], Struck [8]). For methods building on

approved concepts it is likely that better trackers are using

similar concepts, but they are doing better which makes the

original method redundant.

The fact that trackers with simple concepts like NCC

and Meanshift can obtain a positive gain in fusion shows

that even state-of-the art trackers still lack strengths of these

simple concepts. Also the strengths of novel concepts like

local + global tracking (LGT), dynamic feature selection

(FSDT) and combined camera and object tracking (STMT)

seem to be not covered by state-of-the-art trackers. Thus,

an interesting question is: Can these concepts be utilized

e.g. by incorporating them into a state-of-the-art tracker to

create a even better tracker?4

Interesting is also, that there is a strong diversity in the

”+/-“ and gain values in Table 4. FRT [1] has e.g. a very

good gain and ”+/-“ value for illumination change but a neg-

ative gain for size change and occlusion. Furthermore, gains

and ’+/-“ values are in general large for illumination change

(in positive as well as negative direction), while they are in

general small for occlusion. Remarkable is also, that the

occlusion set allows the simple NCC tracker to outperform

all other trackers in gain and ”+/-“.

3.4. Competitors and Supporters

Table 5 shows the main competitors and supporters of

each tracker. Competitors cost the tracker gain if they are

added to the fusion set, while supporters help the tracker

to improve the gain. The values ”∆ gain“ are determined

by determining the gain with and without the compet-

ing/supporting tracker and taking the difference between

both gains. Supporters complement each other well in their

4It is clear that tracker fusion can achieve this, but can we do it even

better if we directly incorporate the concepts on a lower level?
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baseline

General Fusion

Name Failures Success +Seq. +/- Gain

MORP 1740 0.376 37.5% 1.77 0.94

CACTuS-FL 237 0.386 45.83% 1.2 0.76

STMT 312 0.395 66.67% 1.98 3.08

CT 101 0.472 14.58% 0.39 -6.15

RDET 69 0.492 14.58% 0.38 -5.82

Meanshift 60 0.498 70.83% 1.75 3.31

HT 195 0.514 39.58% 0.89 -0.72

LGT 12 0.536 58.33% 1.43 2.36

MIL 70 0.537 16.67% 0.53 -4.58

LGTpp 4 0.538 64.58% 1.68 3.21

SwATrack 126 0.549 43.75% 0.89 -0.81

ORIA 105 0.566 77.08% 2.8 6.72

Struck 189 0.584 39.58% 0.59 -4.08

PJS-S 76 0.595 81.25% 2.35 5.45

Matrioska 90 0.598 41.67% 0.76 -2.3

TLD 321 0.599 54.17% 1.21 1.49

IVT 87 0.602 60.42% 1.24 1.64

CCMS 21 0.602 43.75% 0.9 -0.96

EDFT 42 0.608 43.75% 0.81 -1.81

DFT 63 0.61 54.17% 1.48 3.08

PLT 0 0.611 60.42% 1.3 2.1

AIF 64 0.621 47.92% 0.76 -2.4

GSDT 42 0.632 56.25% 0.7 -2.9

LT-FLO 78 0.634 83.33% 2.83 8.29

SCTT 105 0.645 77.08% 2.32 6.1

FoT 66 0.657 81.25% 2.84 7.19

Fusion 9 0.712 ⇐ Last 5 only: 0.721

Fusion+ 10 0.743 -

region noise

General Fusion

Name Failures Success +Seq. +/- Gain

MORP 1754 0.375 31.25% 1.41 0.77

STMT 318 0.392 77.08% 3.04 4.13

CACTuS-FL 207 0.392 52.08% 0.95 -0.2

CT 80 0.466 29.16% 0.51 -3.86

RDET 63 0.498 35.41% 0.43 -5.68

HT 236 0.501 54.16% 1.21 1.12

MIL 77 0.511 35.41% 0.57 -3.52

Meanshift 116 0.515 62.5% 1.4 1.9

LGT 8 0.516 62.5% 1.52 2.33

ORIA 108 0.532 70.83% 1.73 2.98

LGTpp 7 0.537 79.16% 2.26 4.6

SwATrack 115 0.539 56.25% 1.06 0.42

Struck 226 0.551 29.16% 0.67 -2.51

IVT 98 0.561 56.25% 1.13 0.81

Matrioska 81 0.564 39.58% 0.74 -2.17

AIF 63 0.564 50% 0.86 -1.08

PJS-S 81 0.565 77.08% 2.05 4.04

DFT 69 0.571 41.66% 0.87 -0.98

LT-FLO 77 0.576 75% 1.7 3.28

CCMS 23 0.582 45.83% 1.01 0.12

TLD 314 0.583 66.66% 1.31 1.85

EDFT 49 0.586 45.83% 0.87 -0.98

PLT 4 0.591 50% 0.9 -0.8

SCTT 107 0.594 75% 1.8 4.1

GSDT 65 0.594 50% 1.15 1.14

FoT 70 0.618 79.16% 2.37 5.77

Fusion 11 0.670 ⇐ Last 5 only: 0.664

Fusion+ 10 0.702 -

Table 2: Our results on the VOT2013 data. See text for details (Section 2 for Fusion rows. Section 3 for the fusion column.).

Colors are form full red (worst) to full green (best). Cyan is used for fusion results that outperform the best tracking results.

strengths, while competitors are blocking each other. Simi-

lar trackers are likely to be competitors as the gain achieved

by the common strength has to be shared between both

trackers (e.g. Struck and ThunderStruck). Interestingly,

the main supporter for the best performing tracker KCF [9]

is the simple NCC tracker. This again shows, that simple

tracking concepts like NCC are not outdated and that a com-

bination of a state-of-the-art method like KCF with a simple

concept like NCC can lead to a better tracker.

4. Conclusion

In this paper we evaluated tracker fusion on the

VOT2013 and VOT2014 benchmarks and evaluated singe

trackers regarding their fusibility. We found that fusion

can also help to identify interesting trackers/tracking con-

cepts among the non top performing trackers. We found

that state-of-the art trackers lack some strengths of simple

tracking concepts like NCC and tracking ideas like ”local +

global tracking“ or ”combined camera and object tracking“

as these were never incorporated into the state-of-the-art. A

limitation of our evaluation is that we did not consider the

failure rate (robustness) in Section 3. In future work we

want to perform these tests also regarding failure rate.
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General Fusion

Name Failures Success +Seq. +/- Gain

MIL 199 0.376 40% 0.8 -0.97

IMPNCC 257 0.407 44% 1.09 0.43

CT 253 0.449 41.3% 0.76 -1.5

IIVTv2 220 0.455 49.3% 0.93 -0.32

PTp 106 0.463 52% 0.8 -1.28
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LGTv1 56 0.475 62.7% 1.24 1.12

CMT 198 0.477 34.7% 0.76 -1.55

IPRT 147 0.485 45.3% 0.82 -1.18

aStruck 196 0.486 48% 0.91 -0.45

BDF 113 0.488 44% 0.77 -1.46

FSDT 213 0.497 50.7% 1.17 0.88

EDFT 139 0.506 53.3% 0.97 -0.16

FoT 207 0.507 60% 1.09 0.52

SIRPF 160 0.507 58.7% 1.18 0.92

NCC 526 0.51 53.3% 1.31 1.38

ThunderStruck 160 0.511 44% 0.76 -1.53

ACT 142 0.514 52% 0.9 -0.59

Matrioska 250 0.516 38.7% 0.76 -1.42

ABS 92 0.516 58.7% 1.2 1.11

Struck 165 0.517 41.3% 0.79 -1.32

DynMS 128 0.517 65.3% 1.51 2.25

MatFlow 110 0.517 49.3% 0.8 -1.26

LT-FLO 199 0.517 81.3% 2.14 3.57

qwsEDFT 135 0.529 52% 0.84 -0.94

OGT 238 0.532 56% 1.27 1.47

VTDMG 86 0.534 69.3% 1.28 1.44

PLT13 22 0.54 58.7% 1.12 0.69

PLT14 22 0.546 49.3% 0.93 -0.49

ACAT 135 0.547 64% 1.12 0.69

MCT 88 0.552 62.7% 1.28 1.44

eASMS 83 0.561 61.3% 1.43 2.44

HMMTxD 114 0.584 74.7% 1.63 2.9

DGT 83 0.594 81.3% 2.59 5.47

SAMF 112 0.606 68% 1.87 4.22

KCF 117 0.607 64% 1.32 1.87

DSST 92 0.61 74.7% 1.67 3.02

Fusion 104 0.654 ⇐ Last 5 only: 0.679

Fusion+ 101 0.691 -

FusionF+ 76 0.690 -

FusionFT+ 72 0.685 -

Table 3: Our results on the VOT2014 data. See text for details (Section 2 for Fusion rows. Section 3 for the fusion column.).

Colors are form full red (worst) to full green (best). Cyan is used for fusion results that outperform the best tracking results.
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illumination change

Name Succ. +/- Gain

MIL 0.4 0.86 -0.34

CT 0.39 0.46 -2.62

PTp 0.38 0.38 -5.42

IMPNCC 0.53 3.41 6.19

FSDT 0.53 2.44 3.87

IPRT 0.43 0.81 -0.8

LGTv1 0.48 1.86 2.7

IIVTv2 0.47 0.72 -1.36

IVT 0.57 1.03 0.17

FRT 0.48 3.48 5.49

SIRPF 0.48 0.91 -0.5

BDF 0.55 0.27 -10.4

ThunderS. 0.46 0.21 -10.23

CMT 0.51 0.54 -4.9

ABS 0.45 0.57 -2.53

FoT 0.56 1.31 1.54

MatFlow 0.52 0.15 -13.55

DynMS 0.51 3.08 4.1

Matrioska 0.51 0.26 -10.25

aStruck 0.62 3.07 6.71

EDFT 0.57 0.29 -11.48

Struck 0.52 0.26 -9.77

MCT 0.59 1.5 2.4

ACT 0.56 0.16 -15.47

VTDMG 0.44 0.33 -5.08

NCC 0.56 4.81 8.28

PLT13 0.53 0.56 -2.97

qwsEDFT 0.58 0.24 -11.56

eASMS 0.47 1.77 2.75

PLT14 0.52 0.21 -11.25

ACAT 0.63 2.12 6.92

OGT 0.57 4.17 7.93

LT-FLO 0.62 6.26 9.12

DGT 0.49 1.03 0.13

HMMTxD 0.6 4.33 8.84

DSST 0.76 5.65 12.53

SAMF 0.68 3.23 9.83

KCF 0.76 6.5 14.88

Fusion 0.69 -

Fusion+ 0.77 -

motion change

Succ. +/- Gain

0.41 1.04 0.16

0.42 0.52 -2.37

0.46 0.63 -2.47

0.51 2.2 3.55

0.51 1.38 1.44

0.48 0.91 -0.47

0.48 1.47 1.68

0.5 0.9 -0.43

0.49 0.71 -1.81

0.49 1.32 1.24

0.49 1.06 0.33

0.52 0.55 -3.6

0.5 0.48 -4.16

0.5 1.05 0.24

0.54 1.37 1.9

0.56 1.71 2.82

0.53 0.49 -4.23

0.54 1.64 2.34

0.52 0.52 -3.54

0.51 1.26 1.24

0.54 0.58 -3.8

0.53 0.53 -3.89

0.55 1.24 1.17

0.56 0.58 -3.59

0.54 0.65 -2.87

0.55 1.44 2.04

0.56 0.92 -0.48

0.56 0.45 -5.42

0.56 1.37 2.17

0.58 0.88 -0.93

0.58 1.65 3.35

0.58 1.93 3.92

0.58 2.54 4.44

0.6 2.28 5.23

0.62 2.49 6.73

0.66 2.93 7.12

0.68 2.38 7.1

0.68 2.28 7.28

0.69 -

0.74 -

size change

Succ. +/- Gain

0.37 1.25 1.14

0.36 0.59 -2.24

0.39 0.66 -1.99

0.45 2.79 5.14

0.44 1.66 2.7

0.43 0.86 -0.91

0.45 1.81 2.76

0.45 0.99 -0.03

0.41 1.37 1.6

0.41 0.9 -0.59

0.42 1.1 0.58

0.43 0.68 -2.4

0.42 0.57 -3.29

0.46 1.61 2.74

0.49 1.87 3.93

0.51 2.1 4.26

0.45 0.69 -2.23

0.47 1.85 3.49

0.42 0.6 -2.56

0.41 0.81 -1.14

0.47 0.9 -0.85

0.42 0.51 -3.88

0.47 1.51 2.27

0.47 0.98 -0.19

0.47 0.86 -1

0.47 1 -0.01

0.48 0.98 -0.12

0.48 0.48 -5.79

0.51 1.42 2.84

0.51 1.2 1.42

0.5 2.42 5.04

0.52 2.13 5

0.5 2.26 4.11

0.58 3.52 9.03

0.55 2.29 6.64

0.53 2.8 6.72

0.57 2.09 6.2

0.58 2.37 8.41

0.61 -

0.68 -

occlusion

Succ. +/- Gain

0.29 1.72 1.68

0.43 0.4 -4.5

0.41 0.8 -0.8

0.4 1.4 1.2

0.54 1.04 0.19

0.46 1.18 0.81

0.34 2.23 2.05

0.53 1.55 2.16

0.4 1.36 2.04

0.52 0.76 -1.53

0.56 1.11 0.62

0.5 1.09 0.57

0.57 0.63 -3.04

0.52 1.35 1.73

0.46 1.74 2.39

0.49 3.53 5.03

0.55 0.65 -2.61

0.49 1.93 2.49

0.56 0.73 -1.67

0.44 0.81 -0.95

0.52 2.23 4.13

0.59 1.01 0.06

0.52 1.44 1.85

0.54 0.9 -0.64

0.57 1 0.01

0.61 2.73 7.27

0.58 0.78 -1.47

0.58 0.9 -0.74

0.57 0.89 -0.81

0.6 1.15 0.62

0.49 1.61 2.5

0.51 1.24 1.18

0.49 2.18 3.3

0.49 2.26 4.41

0.6 2.38 5.48

0.65 2.25 4.69

0.61 0.92 -0.52

0.64 1.96 5.88

0.66 -

0.78 -

camera motion

Succ. +/- Gain

0.41 1.13 0.42

0.44 0.63 -1.76

0.46 0.72 -1.65

0.5 2.14 3.4

0.53 1.64 2.21

0.48 0.98 -0.07

0.47 1.32 1.13

0.52 1.02 0.1

0.48 0.78 -1.31

0.51 1.4 1.65

0.54 0.96 -0.26

0.5 0.49 -4.1

0.53 0.5 -4.22

0.52 0.85 -0.91

0.52 1.28 1.31

0.51 1.28 1.19

0.53 0.39 -5.44

0.55 1.8 2.89

0.55 0.48 -4.44

0.52 1.3 1.39

0.53 0.51 -4.51

0.55 0.55 -3.95

0.56 1.51 2.2

0.56 0.52 -4.45

0.55 0.68 -2.43

0.59 1.83 3.6

0.56 0.76 -1.59

0.56 0.47 -4.94

0.56 1.33 1.75

0.57 0.61 -3.42

0.57 1.91 4.14

0.57 1.78 3.52

0.57 2.43 4.52

0.58 2.31 4.86

0.62 2.39 6.01

0.67 3.34 8.04

0.67 2.21 6.76

0.68 2.27 7.35

0.68 -

0.73 -

Table 4: Our results on the VOT2014 data under different conditions. See text for details. Colors are form full red (worst) to

full green (best). Cyan is used for fusion results that outperform the best tracking results.

tern Analysis and Machine Intelligence, IEEE Transactions

on, 35(4):941–953, 2013.

[6] R. T. Collins. Mean-shift blob tracking through scale space.

In Computer Vision and Pattern Recognition, 2003. Proceed-

ings. 2003 IEEE Computer Society Conference on, volume 2,

pages II–234. IEEE, 2003.
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main supporters main competitors

Method 1.supporter ∆ gain 2.supporter ∆ gain 2.competitor ∆ gain 1.competitor ∆ gain

ABS IPRT 0.412 ACT 0.384 SAMF -0.772 KCF -0.857

ACAT SAMF 1.25 HMMTxD 1.05 MIL -0.343 EDFT -0.592

ACT PLT13 0.806 EDFT 0.797 KCF -0.626 DSST -0.771

CT IPRT 0.457 ACT 0.306 SAMF -0.695 IMPNCC -0.7

DSST KCF 1.09 ACAT 1.02 qwsEDFT -0.98 EDFT -1.16

DynMS aStruck 0.366 ACAT 0.33 CT -0.539 ThunderStruck -0.788

FSDT PLT14 0.531 DGT 0.405 PTp -0.266 IIVTv2 -0.376

IIVTv2 ACAT 0.353 ACT 0.303 OGT -0.499 PTp -0.614

IMPNCC DSST 1.01 NCC 0.778 EDFT -0.672 qwsEDFT -0.93

IVT Matrioska 0.341 FSDT 0.308 DSST -0.716 KCF -0.953

KCF NCC 1.08 DSST 1.06 CMT -1.07 EDFT -1.16

MCT ACAT 0.575 PLT14 0.34 qwsEDFT -0.365 KCF -0.585

MIL ACT 0.405 ABS 0.267 LT-FLO -0.705 NCC -0.886

NCC KCF 1.34 HMMTxD 1.19 Struck -0.941 EDFT -1.2

OGT HMMTxD 0.792 NCC 0.618 Matrioska -0.765 qwsEDFT -0.862

PLT13 Matrioska 0.732 ACT 0.662 LGTv1 -0.686 NCC -0.716

PLT14 Matrioska 0.672 ThunderStruck 0.572 IMPNCC -0.519 LGTv1 -0.77

PTp ACAT 0.378 HMMTxD 0.294 DGT -0.597 VTDMG -0.714

SAMF ACAT 1.27 aStruck 0.655 EDFT -1.13 VTDMG -1.46

SIRPF VTDMG 0.642 BDF 0.619 IMPNCC -0.292 FoT -0.665

VTDMG PLT13 0.647 qwsEDFT 0.621 KCF -0.815 SAMF -1.41

aStruck FRT 0.886 PLT14 0.653 Struck -0.65 MIL -0.672

BDF SIRPF 0.581 eASMS 0.387 SAMF -0.683 KCF -1.31

CMT qwsEDFT 0.64 VTDMG 0.562 SAMF -0.934 KCF -1.27

DGT NCC 0.708 ACT 0.57 SAMF -0.643 ABS -0.844

eASMS ACAT 0.752 ACT 0.603 DGT -0.522 SAMF -0.688

EDFT ACT 0.87 CMT 0.565 KCF -1.14 DSST -1.16

FoT DynMS 0.334 aStruck 0.3 MIL -0.533 ACT -0.593

FRT aStruck 0.849 NCC 0.541 ABS -0.458 VTDMG -0.459

HMMTxD ACAT 1.1 NCC 0.729 ThunderStruck -0.312 PLT14 -0.369

IPRT ACT 0.532 SIRPF 0.497 KCF -0.415 SAMF -0.505

LGTv1 ACAT 0.66 NCC 0.467 PLT13 -0.678 PLT14 -0.757

LT-FLO KCF 0.517 DSST 0.462 MIL -0.691 EDFT -0.805

MatFlow PLT13 0.667 SIRPF 0.602 IMPNCC -0.691 KCF -0.876

Matrioska PLT13 0.963 PLT14 0.759 KCF -0.81 SAMF -0.948
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Struck ACAT 0.601 SIRPF 0.54 NCC -0.884 ThunderStruck -0.949

ThunderStruck qwsEDFT 0.686 PLT14 0.566 NCC -0.777 Struck -0.963

Table 5: Main supporters and contributors of trackers on the VOT2014 results. See text for details.
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