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Abstract

The Visual Object Tracking challenge 2015, VOT2015,

aims at comparing short-term single-object visual trackers

that do not apply pre-learned models of object appearance.

Results of 62 trackers are presented. The number of tested

trackers makes VOT 2015 the largest benchmark on short-

term tracking to date. For each participating tracker, a

short description is provided in the appendix. Features of

the VOT2015 challenge that go beyond its VOT2014 pre-

decessor are: (i) a new VOT2015 dataset twice as large

as in VOT2014 with full annotation of targets by rotated

bounding boxes and per-frame attribute, (ii) extensions of

the VOT2014 evaluation methodology by introduction of a

new performance measure. The dataset, the evaluation kit

as well as the results are publicly available at the challenge

website1.

1. Introduction

Visual tracking is diverse research area that has attracted

significant attention over the last fifteen years [20, 48, 18,

27, 49, 79, 43]. The number of accepted motion and track-

ing papers in high profile conferences, like ICCV, ECCV

and CVPR, has been consistently high in recent years

(∼40 papers annually). But the lack of established perfor-

mance evaluation methodology combined with aforemen-

tioned high publication rate makes it difficult to follow the

advancements made in the field.

Several initiatives have attempted to establish a com-

mon ground in tracking performance evaluation, starting

with PETS [80] as one of most influential tracking perfor-

mance analysis efforts. Other frameworks have been pre-

sented since with focus on surveillance systems and event

detection, e.g., CAVIAR2, i-LIDS 3, ETISEO4, change de-

tection [22], sports analytics (e.g., CVBASE5), faces, e.g.

FERET [56] and [30], and the recent long-term tracking and

detection of general targets6 to list but a few.

This paper discusses the VOT2015 challenge organized

in conjunction with the ICCV2015 Visual object tracking

workshop and the results obtained. The challenge consid-

ers single-camera, single-target, model-free, causal track-

ers, applied to short-term tracking. The model-free prop-

erty means that the only supervised training example is

provided by the bounding box in the first frame. The

short-term tracking means that the tracker does not per-

form re-detection after the target is lost. Drifting off the

1http://votchallenge.net
2http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1
3http://www.homeoffice.gov.uk/science-research/hosdb/i-lids
4http://www-sop.inria.fr/orion/ETISEO
5http://vision.fe.uni-lj.si/cvbase06/
6http://www.micc.unifi.it/LTDT2014/

target is considered a failure. The causality means that the

tracker does not use any future frames, or frames prior to

re-initialization, to infer the object position in the current

frame. In the following we overview the most closely re-

lated work and point out the contributions of VOT2015.

1.1. Related work

Several works that focus on performance evaluation in

short-term visual object tracking [38, 36, 34, 64, 65, 76, 61,

77, 42] have been published over the last three years. The

currently most widely used methodologies for performance

evaluation originate from three benchmark papers, in par-

ticular the Online tracking benchmark (OTB) [76], the Am-

sterdam Library of Ordinary Videos (ALOV) [61] and the

Visual object tracking challenge (VOT) [38, 36, 34]. The

differences between these methodologies are outlined in the

following paragraphs.

Performance measures. The OTB and the ALOV eval-

uate a tracker by initializing it on the first frame and letting

it run until the end of the sequence, while the VOT resets

the tracker once it drifts off the target. In all three method-

ologies the tracking performance is evaluated by overlaps

between the bounding boxes predicted from the tracker with

the ground truth bounding boxes. The ALOV measures the

tracking performance as the F-measure at 0.5 overlap. The

OTB introduced a success plot which represents the per-

centage of frames for which the overlap measure exceeds

a threshold, with respect to different thresholds, and intro-

duced an ad-hoc performance measure computed as the area

under the curve in this plot. It was only later proven theoret-

ically by other researchers [64] that the area under the curve

equals the average overlap computed from all overlaps on

the sequence. In fact, Čehovin et al. [64, 65] provided a

highly detailed theoretical and experimental analysis of a

number of the popular performance measures. Based on

that analysis, the VOT2013 [38] selected the average over-

lap with resets and number of tracking failures as the main

performance measures.

In the recent paper [34], the VOT committee analyzed

the properties of average overlap with and without resets in

terms of tracking accuracy estimator. The analysis showed

that the OTB no-reset measure is a biased estimator while

the VOT average overlap with resets drastically reduces

the bias. A more significant finding was that the variance

of the no-rest estimator [76] is orders of magnitude larger

than for the reset-based estimator [34], meaning that the

no-reset measure becomes reliable only on extremely large

datasets. And since the datasets typically do not contain

sequences of equal lengths, the variance is even increased.

The VOT2013 [38] introduced a ranking-based methodol-

ogy that accounted for statistical significance of the results

and this was extended with the tests of practical differences

in the VOT2014 [36].
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It should be noted that the large variance of no-reset es-

timator combined with small number of sequences can dis-

tort the performance measurements. An overview of the

papers published at top five conferences over the last three

years shows that in several cases the no-reset evaluation

combined with average overlap is carried out only with se-

lected sequences, not the entire datasets. Therefore it is not

clear whether the improvements over the state-of-the-art in

those papers can be attributed to theoretical improvements

of trackers or just to a careful selection of sequences. Note

that this was hinted in the paper from Pang et al. [53] who

performed meta-analysis of second-best trackers of pub-

lished tracking papers and concluded that authors often re-

port biased results in favor of their tracker.

Datasets. The recent trend in datasets construction ap-

pears to be focused on increasing the number of sequences

in the datasets [75, 77, 42, 61], but often much less atten-

tion is being paid to the quality of its construction and an-

notation. For example, some datasets disproportionally mix

grayscale and color sequences and in most datasets the at-

tributes like occlusion and illumination change are anno-

tated only globally enthough they may occupy only a short

subsequence of frames in a video. The VOT2013 [38] ar-

gued that large datasets do not imply diversity nor richness

in attributes and proposed a special methodology for dataset

construction with per-frame visual attribute labelling. The

per-frame labelling is crucial for proper attribute-wise per-

formance analysis. A recent paper [34] showed that per-

formance measures computed from global attribute annota-

tions are significantly biased toward the dominant attributes

in the sequences, while the bias is significantly reduced with

per-frame annotation, even in presence of miss annotations.

Most closely related works to the work presented in this

paper are the recent VOT2013 [38] and VOT2014 [36] chal-

lenges. Several novelties in benchmarking short-term track-

ers were introduced through these challenges. They provide

a cross-platform evaluation kit with tracker-toolkit com-

munication protocol, allowing easy integration with third-

party trackers. The datasets are per-frame annotated with

visual attributes and a state-of-the-art performance evalua-

tion methodology was presented that accounts for statistical

significance as well as practical difference of the results. A

tracking speed measure that aims at reduction of hardware

influence was proposed as well. The results were published

in joint papers with over 50 co-authors [38], [36], while

the evaluation kit, the dataset, the tracking outputs and the

code to reproduce all the results are made freely-available

from the VOT initiative homepage7. The advances proposed

by VOT have also influenced the development of related

methodologies. For example, the recent [77] now acknowl-

edges that their area under the curve is an average over-

lap measure and have also adopted a variant of resets from

7http://www.votchallenge.net

VOT. The recent [42] benchmark adapted the approach of

analyzing performance on subsequences instead of entire

sequences to study the effects of occlusion.

1.2. The VOT2015 challenge

The VOT2015 follows the VOT2014 challenge and con-

siders the same class of trackers. The dataset and eval-

uation toolkit are provided by the VOT2015 organizers.

The evaluation kit records the output bounding boxes from

the tracker, and if it detects tracking failure, re-initializes

the tracker. The authors attending the challenge were re-

quired to integrate their tracker into the VOT2014 evalua-

tion kit, which automatically performed a standardized ex-

periment. The results were analyzed by the VOT2015 eval-

uation methodology.

Participants were expected to submit a single set of re-

sults per tracker. Participants who have investigated several

trackers submitted a single result per tracker. Changes in

the parameters did not constitute a different tracker. The

tracker was required to run with fixed parameters on all

experiments. The tracking method itself was allowed to

internally change specific parameters, but these had to be

set automatically by the tracker, e.g., from the image size

and the initial size of the bounding box, and were not to be

set by detecting a specific test sequence and then selecting

the parameters that were hand-tuned to this sequence.

Further details are available from the challenge homepage8.

The VOT2015 improvements over VOT2013 and

VOT2014 are the following:

(i) A new fully-annotated dataset is introduced which

doubles the number of sequences compared to VOT2014.

The dataset is per-frame annotated with visual properties

and the objects are annotated with rotated bounding boxes.

The annotation process was subject to quality control to in-

crease annotation consistency.

(ii) A new dataset construction methodology is intro-

duced that performs end-to-end automatic sequence selec-

tion and focuses on the sequences that are considered diffi-

cult to track.

(iii) The evaluation system from VOT2014 [36] is ex-

tended for easier tracker integration.

(iv) The evaluation methodology is extended by intro-

ducing a new performance measure which is easily inter-

pretable. The trackers are ranked and the winner is selected

using this measure.

(v) The VOT2015 introduces the first sub-challenge

VOT-TIR2015 that is held under the VOT umbrella and

deals with tracking in infrared and thermal imagery. The

challenge and VOT-TIR2015 results are discussed in a sep-

arate paper submitted to the VOT2015 workshop [16].

8http://www.votchallenge.net/vot2015/participation.html
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2. The VOT2015 dataset

The VOT2013 [38] and VOT2014 [36] introduced a

semi-automatic sequence selection methodology to con-

struct a dataset rich in visual attributes but small enough

to keep the time for performing the experiments reasonably

low. In VOT2015, the methodology is extended such that

the sequence selection is fully automated and that the selec-

tion process focuses on sequences that are likely challeng-

ing to track.

The dataset was prepared as follows. The initial pool of

sequences was created by combining the sequences from

two existing datasets OTB [76, 75] (51 sequences) and

ALOV [61] (315 sequences), PTR [69] and obtained over

30 additional sequences from other sources summing to a

set of 443 sequences. After removal of duplicate sequences,

grayscale sequences and sequences that contained objects

with area smaller than 400 pixels, we obtained 356 se-

quences. The new automatic sequence selection protocol

required approximate annotation of targets in all sequences

by bounding boxes. For most sequences the annotations al-

ready existed and we annotated the targets with axis-aligned

bounding boxes for the sequences with missing annotations.

Next, the sequences were automatically clustered according

to their similarity in terms of the following globally calcu-

lated sequence visual attributes:

1. Illumination change is defined as the average of the

absolute differences between the object intensity in the

first and remaining frames.

2. Object size change is the sum of averaged local size

changes, where the local size change at frame t is de-

fined as the average of absolute differences between

the bounding box area in frame t and past fifteen

frame.

3. Object motion is the average of absolute differences

between ground truth center positions in consecutive

frames.

4. Clutter is the average of per-frame distances between

two histograms: one extracted from within the ground

truth bounding box and one from an enlarged area (by

factor 1.5) outside of the bounding box.

5. Camera motion is defined as the average of translation

vector lengths estimated by key-point-based RANSAC

between consecutive frames.

6. Blur was measured by the Bayes-spectral-entropy

camera focus measure [35].

7. Aspect-ratio change is defined as the average of per-

frame aspect ratio changes. The aspect ratio change at

frame t is calculated as the ratio of the bounding box

width and height in frame t divided by the ratio of the

bounding box width and height in the first frame.

8. Object color change defined as the change of the aver-

age hue value inside the bounding box.

9. Deformation is calculated by dividing the images into

8 × 8 grid of cells and computing the sum of squared

differences of averaged pixel intensity over the cells in

current and first frame.

10. Scene complexity represents the level of randomness

(entropy) in the frames and it was calculated as e =∑255
i=0 bi log bi, where bi is the number of pixels with

value equal to i.

11. Absolute motion is the median of the absolute motion

difference of the bounding box center points of the first

frame and current one.

Note that the first ten attributes are taken from the

VOT2014 [37, 34], with the attributes object size and object

motion redefined to make their calculation more robust. The

eleventh attribute (absolute motion) is newly introduced.

To reduce the influence of the varied scales among the

attributes a binarization procedure was applied. A k-means

clustering with k = 2 was applied to all values of a given

attribute, thus each value was assigned a value, either zero

or one. In this way each sequence was encoded as an 11D

binary feature vector and the sequences were clustered by

the Affinity propagation (AP) [17] using the Hamming dis-

tance. The only parameter in AP is the exemplar prior value

p, which was set according to the rule-of-thumb proposed

in [17]. In particular, we have set p = 1.25αsim, where

αsim is the average of the similarity values among all pairs

of sequences. This resulted in K = 28 sequence clusters,

where each cluster k contained a different number of se-

quences Nk. The clustering stability was verified by vary-

ing the scaling value in range 1.2 to 1.3. The number of

clusters varied in range of ±3 clusters, indicating a stable

clustering at the chosen parameter value.

The goal of sequence selection is to obtain a dataset of

size M in which the following five visual attributes spec-

ified in VOT2014 are sufficiently well represented: (i) oc-

clusion, (ii) illumination change, (iii) motion change, (iv)

size change, (v) camera motion. The binary attributes were

concatenated to form a feature vector fi for each sequence

i. The global presence of four of these attributes, except

from occlusion, is indicated by the automatically calcu-

lated binarized values that were used for clustering. All

sequences were manually inspected and occlusion was in-

dicated if the target was at least partially occluded at any

frame in the sequence. To estimate the sequence tracking

difficulty, three well performing, but conceptually different,

trackers (FoT [67], ASMS [69], KCF [25]) were evaluated
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using the VOT2014 methodology on the approximately an-

notated bounding boxes. In particular, the raw accuracy (av-

erage overlap) and raw robustness (number of failures per

sequence) were computed for each tracker on each sequence

and quantized into ten levels (i.e., into interval [0,9]). The

quantized robustness was calculated by clipping the raw ro-

bustness at nine failures and the quantized accuracy was

computed by 9−⌊10Φ⌋, where Φ is the VOT accuracy. The

final tracking difficulty measure was obtained as the average

of the quantized accuracy and robustness.

With the five global attributes and tracking difficulty es-

timated for each sequence, the automatic sequence selection

algorithm proceeded as follows. First, the most difficult se-

quence from each cluster is selected as an initial pool of

sequences and a maximum number of samples {Sk}
K

k=1 for

each cluster k is calculated. From the selected pool of se-

quences the weighted balance vector b
0 is computed and

normalized afterwards. The balance vector controls the at-

tribute representation inside the pool of selected sequences.

We use weights to account for the unbalance distribution of

the attributes in the dataset and compute them as follows

w = Ns/
∑

i
fi, i.e., lowering weights to the attributes that

are most common, therefore would always over-represented

and the sequence without this attribute would be selected

most of the time (e.g. object motion attribute). After initial-

ization, the algorithm iterates until the number of selected

sequences reaches the desired number M . In each itera-

tion, the algorithm computes the attributes that are least

represented, aw, using a small hysteresis so that multiple

attributes can be chosen. Then, the Hamming distance be-

tween the desired attributes aw and all sequences is com-

puted, excluding the sequences already selected and the

sequences that belong to cluster which has already Sk se-

quences selected in the pool. From the set of most attribute-

wise similar sequences the most difficult one is selected and

added to the pool. At the end, the balance vector is recom-

puted and the algorithm iterates again. The sequence selec-

tion algorithm is summarized in Algorithm 1.

As in the VOT2014, we have manually or semi-

automatically labeled each frame in each selected sequence

with five visual attributes: (i) occlusion, (ii) illumination

change, (iii) motion change, (iv) size change, (v) camera

motion. In case a particular frame did not correspond to

any of the five attributes, we denoted it as (vi) unassigned.

To ensure quality control, the frames were annotated by an

expert and then verified by another expert. Note that these

labels are not mutually exclusive. For example, most frames

in the dataset contain camera motion.

The relevant objects in all sequences were manually

re-annotated by rotated bounding boxes. The annotation

guidelines were predefined and distributed among the an-

notators. The bounding boxes were placed such that they

approximated the target well, with a large percentage of pix-

Algorithm 1: Sequence sampling algorithm

Input : Ns, M , K, {Nk}
K

k=1, {fi}
Ns

i=1, w

Output: ids

1 Initialize, t = 0

2 {Sk}
K

k=1, Sk = ⌊NkM

Ns

⌋

3 select the most difficult sequence from each cluster

ids0 = {id1, . . . , idK}
4 b

0 = w
∑

i∈ids fi, b
0 = b

0/|b0|
5 Iterate, t = t+ 1
6 while |ids| < M do

7 aw= (h < min (h) + 0.1
n
), h = b

t−1

max (bt−1)

8 {id1, . . . } = argmin
i

dist(fi, aw)

s.t. if i ∈ cluster k then |cluster k ∩ idst−1| < Sk

9 select the most difficult sequence id∗ ∈ {id1, . . . }

10 idst = idst−1 ∪ {id∗}
11 b

t = w
∑

i∈ids fi, b
t = b

t/|bt|

12 end

els within the bounding box (at least > 60%) belonging to

the target. Each annotation was verified by two experts and

corrected if necessary. The resulting annotations were then

processed by approximating the rotated bounding boxes by

axis-aligned bounding boxes if the ratio between the short-

est and largest box edge was higher than 0.95 since the ro-

tation is ambiguous for approximately round objects. The

processed bounding boxes were again verified by an expert.

3. Performance measures

As in VOT2014 [36], the following two weakly corre-

lated performance measures are used due to their high level

of interpretability [64, 65]: (i) accuracy and (ii) robustness.

The accuracy measures how well the bounding box pre-

dicted by the tracker overlaps with the ground truth bound-

ing box. On the other hand, the robustness measures how

many times the tracker loses the target (fails) during track-

ing. A failure is indicated when the overlap measure be-

comes zero. To reduce the bias in robustness measure, the

tracker is re-initialized five frames after the failure and ten

frames after re-initialization are ignored in computation to

further reduce the bias in accuracy measure [37]. Stochas-

tic trackers are run 15 times on each sequence to obtain a

better statistics on performance measures. The per-frame

accuracy is obtained as an average over these runs. Av-

eraging per-frame accuracies gives per-sequence accuracy,

while per-sequence robustness is computed by averaging

failure rates over different runs.

To analyze performance w.r.t. the visual attributes, the

two measures can be calculated only on the subset of frames

in the dataset that contain a specific attribute (attribute sub-

set). The trackers are ranked with respect to each measure

6



separately. The VOT2013 [38] recognized that subsets of

trackers might be performing equally well and this should

be reflected in the ranks. Therefore, for each i-th tracker

a set of equivalent trackers is determined. In the VOT2013

and VOT2014 [38, 36], the corrected rank of the i-th tracker

is obtained by averaging the ranks of these trackers includ-

ing the considered tracker. The use of average operator

on ranks may lead to unintuitive values of corrected ranks.

Consider a set of trackers in which four top-performing

trackers are estimated to perform equally well under the

equivalence tests. The averaging will assign them a rank

of 2.5, meaning that no tracker will be ranked as 1. Adding

several equally performing tracker to the set will further in-

crease the corrected rank value. For that reason we replace

the averaging with the min operator in the VOT2014. In

particular, the corrected rank is computed as the minimal

rank of the equivalent trackers. As in VOT2014 [37] tests

of statistical significance of the performance differences as

well as tests of practical differences are used. The prac-

tical difference test was introduced in VOT2014 [36] and

accounts for the fact that ground truth annotations may be

noisy. As a result it is impossible to claim that one tracker is

outperforming another if the difference between these two

trackers is in the range of annotation noise on a given se-

quence. The level of the annotation ambiguity under which

the trackers performance difference is considered negligible

is called the practical difference threshold.

Apart from accuracy and robustness, the tracking speed

is also an important property that indicates practical use-

fulness of trackers in particular applications. To reduce the

influence of hardware, the VOT2014 [36] introduced a new

unit for reporting the tracking speed called equivalent fil-

ter operations (EFO) that reports the tracker speed in terms

of a predefined filtering operation that the tookit automati-

cally carries out prior to running the experiments. The same

tracking speed measure is used in VOT2015.

3.1. VOT2015 expected average overlap measure

The raw value of the accuracy and robustness mea-

sure offer a significant insight into tracker performance and

further insight is gained by ranking trackers w.r.t. each

measure since statistical and practical differences are ac-

counted for. The average of these rank lists was used in

the VOT2013 and VOT2014 [38, 36] challenges as the fi-

nal measure for determining the winner of the challenge. A

high average rank means that a tracker was well-performing

in accuracy as well as robustness relative to the other track-

ers.

While ranking does convert the accuracy and robustness

to equal scales, the averaged rank cannot be interpreted in

terms of a concrete tracking application result. To address

this, the VOT2015 introduces a new measure that combines

the raw values of per-frame accuracies and failures in a prin-

Ns

Nlo Nhi

Ns0.5 rank
123

Figure 1. The expected average overlap curve (left, up), the se-

quence length pdf (left, bottom) and the expected average overlap

plot (right).

cipled manner and has a clear practical interpretation.

Consider a short-term tracking example on a Ns frames

long sequence. A tracker is initialized at the beginning of

the sequence and left to track until the end. If a tracker drifts

off the target it remains off until the end of the sequence.

The tracker performance can be summarized in such a sce-

nario by computing the average of per-frame overlaps, Φi,

including the zero overlaps after the failure, i.e.,

ΦNs
=

1

Ns

∑
i=1:Ns

Φi. (1)

By averaging the average overlaps on a very large set of

Ns frames long sequences, we obtain the expected average

overlap Φ̂Ns
= 〈ΦNs

〉. Evaluating this measure for a range

of sequence lengths, i.e., Ns = 1 : Nmax results in the ex-

pected average overlap curve. See for example Figure 1.

The tracker performance is summarized as the VOT2015

expected average overlap measure, Φ̂, computed as the av-

erage of the expected average overlap curve values over an

interval [Nlo, Nhi] of typical short-term sequence lengths,

Φ̂ =
1

Nhi −Nlo

∑
Ns=Nlo:Nhi

Φ̂Ns
. (2)

The tracker performance can be visualized by the VOT2015

expected average overlap plot shown in Figure 1. The per-

formance measure in (2) requires computation of the ex-

pected average overlap Φ̂Ns
and specification of the range

[Nlo, Nhi]. This is detailed in the following two subsections.

3.1.1 Estimation of expected average overlap

A brute force estimation of Φ̂Ns
(1) would in principle re-

quire running a tracker on an extremely large set of Ns

frames long sequences and this process would have to be

repeated for several values of Ns to compute the final per-

formance measure Φ̂ (2). Note that this is in principle the

OTB [76] measure computed on Ns frames-long sequences.

But due to a large variance of such estimator [34], this

would require a very large dataset and significant compu-

tation resources for the many tracker runs, since the experi-

ments would have to be repeated for all values of Ns. Alter-
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natively, the measure (2) can be estimated from the output

of the VOT protocol.

Since the VOT protocol resets a tracker after each fail-

ure, several tracking segments are potentially produced per

sequence and the segments from all sequences can be used

to estimate the Φ̂Ns
as follows. All segments shorter than

Ns frames that did not finish with a failure are removed

and the remaining segments are converted into Ns frames

long tracking outputs. The segments are either trimmed or

padded with zero overlaps to the size Ns. An average over-

lap is computed on each segment and the average over all

segments is the estimate of Φ̂Ns
. Repeating this computa-

tion for different values of Ns produces an estimate of the

expected average overlap curve.

3.1.2 Estimation of typical sequence lengths

The range of typical short-term sequence lengths [Nlo, Nhi]
in (2) is estimated as follows. A probability density function

over the sequence lengths is computed by a kernel density

estimate (KDE) [33, 32] from the given dataset sequence

lengths and the most typical sequence length is estimated as

the mode on the density. The range boundaries are defined

as the closest points to the left and right of the mode for

which p(Nlo) ≈ p(Nhi) and the integral of the pdf within

the range equals to 0.5. Thus the range captures the majority

of typical sequence lengths (see Figure 1).

4. Analysis and results

4.1. Estimation of practical difference thresholds

The per sequence practical difference thresholds were

estimated following the VOT2014 [36] protocol. Briefly,

four frames with axis-aligned ground-truth bounding boxes

were identified on each sequence and the annotators anno-

tated those frames in several runs. By computing overlaps

among all bounding boxes per frame, a set of 3300 sam-

ples of differences was obtained per sequence and used to

compute the practical difference thresholds. Figure 2 shows

boxplots of difference distributions w.r.t. sequences along

side with examples of the annotations.

4.2. Estimation of sequence length range

The typical sequence range was estimated as discussed

in Section 3.1.2. A batch KDE from [32] was applied to

estimate the sequence length pdf from the lengths of sixty

sequences of the VOT2015 dataset, resulting in the range

values [Nlo = 108, Nhi = 371]. Figure 3 shows the esti-

mated distribution along with the range values.

4.3. Trackers submitted

Together 41 entries have been submitted to the VOT2015

challenge. Each submission included the binaries/source
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Figure 2. Box plots of differences per sequence along with exam-

ples of annotation variation.
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Figure 3. The estimated pdf of sequence lengths for the VOT2015

dataset (bottom).

code that was used by the VOT2015 committee for results

verification. The VOT2015 committee additionally con-

tributed 21 baseline trackers. For these, the default param-

eters were selected, or, when not available, were set to rea-

sonable values. Thus in total 62 trackers were included

in the VOT2015 challenge. In the following we briefly

overview the entries and provide the references to original

papers in the Appendix A where available.

Three trackers were based in convolutional neural net-

works, MDNet (A.29), DeepSRDCF (A.30) and SO-

DLT (A.18), two trackers were using the object propos-

als [86] for object position generation or scoring, i.e.,

EBT (A.25) and KCFDP (A.21). Several trackers were

based on Mean Shift tracker extensions [10], ASMS (A.48),

SumShift (A.28), S3Tracker (A.32) and PKLTF (A.8), one

tracker was based on distribution fields, DFT (A.59), sev-
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