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Abstract

Boosted by large and standardized benchmark datasets,
visual object tracking has made great progress in recent
years and brought about many new trackers. Among these
trackers, correlation filter based tracking schema exhibits
impressive robustness and accuracy. In this work, we
present a fully functional correlation filter based tracking
algorithm which is able to simultaneously model target
appearance changes from spatial displacements, scale
variations, and rotation transformations. The proposed
tracker first represents the exhaustive template search in
the joint scale and spatial space by a block-circulant
matrix. Then, by transferring the target template from the
Cartesian coordinate system to the Log-Polar coordinate
system, the circulant structure is well preserved for the
target even after whole orientation rotation. With these
novel representation and transformation, object tracking
is efficiently and effectively performed in the joint space
with fast Fourier Transform. Experimental results on
the VOT2015 benchmark dataset demonstrate its superior
performance over state-of-the-art tracking algorithms.

1. Introduction

Visual object tracking has long been an active research
topic in computer vision, with numerous practical appli-
cations in visual surveillance, human computer interaction,
intelligent transportation system, and robot navigation [27].
In the past years, due to the development and popularization
of several large standardized benchmark datasets [14, 15,

, 24, 16], the research on visual object tracking has
witnessed great progress, resulting many new algorithms
with very promising tracking performance [26, 24, 15].

For the class of online single arbitrary object tracking,
a general setting is to manually initialize a bounding box
around the target and then estimate its state in the following
frames.  Although much progress has been made for
this specific tracking task, it remains a very challenging
problem, especially when the target undergoes serious

jlxing, Jjgao, xcshi, giang.wang, wmhu}@nlpr.ia.ac.cn

variations in appearance, scale, pose, shape, motion, etc.

Recently, the correlation filter (CF) based tracking
scheme [3, 11, 12] has demonstrated very promising perfor-
mance with good computational efficiency. The core idea of
this tracking scheme comes from the Convolution Theorem
in signal processing which states that the correlation
operation in time domain corresponds to an element-wise
multiplication in the Fourier domain. Since the exhaustive
spatial template matching in the image plane can be viewed
as a correlation operation in the time domain, template
matching based tracking can be efficiently performed in
the frequency domain. What is more, by employing
the response of correlation filter as a similarity measure
between two image signals, a very reliable distance metric
for the observation model of the target can be obtained.

The early CF based trackers only [3, 11] perform
correlation operation with only one target template of
fixed size, thus can only model the positional changes and
is likely to fail when target changes its size or rotates
within the image plane. To deal with these problems,
we propose a fully functional correlation filter based
tracking algorithm. Compared to other CF based trackers,
our tracking algorithm is able to simultaneously model
target appearance changes from spatial displacements, scale
variations, and rotation transformations.

Although several CF based trackers with scale adaptation
have been proposed recently [5, 17], our tracking algorithm
performs scale-spatial correlation jointly using a novel
block-circulant structure for the object template, which
provides a principled solution for the object scale estimation
problem. Previous scale adaptation methods, provide only
an approximation [5] or ignores the correlations between
the translation and scale changes of the target [17].

To model target rotations, our algorithm proposes to
transform the object templates from the Cartesian coordi-
nate system to the Log-Polar coordinate system. With this
transformation, the circulant structure of the object template
undergoing rotation changes got preserved, thus enabling
the tracker to model the object rotations in the same
framework as spatial displacements and scale changes.
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After the transformation of the coordinate system, our
algorithm extracts dense cyclical training samples in the
whole orientation space. The trained model with these
samples, therefore, can deal with all possible rotations of
the target, which also provide a complete solution to the
object rotation estimation problem.

To model the object appearance in the CF tracking
framework, we employ a set of robust image features,
including the histogram of orientation gradients (HOG) and
the 10 dimensional color names (CN). With an early fusion
strategy, the obtained observation model of the target can
model the appearance variations of the target robustly .

By integrating all these innovations together, we have
obtained a very robust CF based tracker. Experimental
evaluation on the VOT2015 benchmark has demonstrated
that our tracker not only performs significantly better than
previous CF based trackers, but also exhibits obvious
superiority over many state-of-the-art tracking algorithms.

The main contributions of this work can be summarized
as follows: (1) we extend the correlation tracking to the
joint scale-spatial space with the observation of the block-
circulant structure in the dense template matching samples,
which leads to a new efficient scale adaptation scheme;
(2) we propose the correlation analysis in the whole
orientation space, which further enriches the correlation
tracking framework and gives a new perspective on rotation
estimation; (3) the competitive results of VOT2015 prove
our tracker’s robustness and adaptability.

2. Related Work

For online single arbitrary object tracking, appearance
model and tracking strategy are two key components,
on which extensive studies have been performed. Early
generative methods build object templates as the appearance
model and perform tracking by exhaustively searching for
the best candidate locations in the next frame [23, 4, 25,

].  This kind of methods are very straightforward to
implement, but are often very time-consuming and may fail
when an object changes its appearance in size, scale, pose,
etc.

To overcome the limitations of template matching based
tracking methods, discriminate learning methods [2, 10, 9]
formulate object tracking as a classification problem and
employ online learning methods to learn a discriminative
classifier between the target and the backgrounds, which
improves the tracking robustness to appearance changes of
the target. To avoid evaluating all possible samples from
the object and backgrounds, this kind of methods usually
selects only a small subset of the samples for training and
updating the classifier, as well as testing the candidate
states. The number and quantity of the selected samples,
therefore, will impact a lot on the tracking results.

Recently, the template matching based tracking methods

have regained attention due to the introduction of cor-
relation filters into the visual tracking problem [3, [1].
The main advantage of the correlation filter based tracking
scheme is that it can perform effective template matching
exhaustively while it keeps high computational efficiency.
This is achieved by transforming the spatial correlation
operation into the dot multiplication in the Fourier domain
by means of the fast Discrete Fourier Transform. By
employing the kernel trick on the correlation filter, the KCF
tracker [12] obtains very promising results on two recent
tracking benchmarks [24, 15].

Despite its great success, the original KCF method also
has some serious limitations, e.g., it can not deal with the
scale changes and rotations of the target. To surmount these
limitations, many extensions over the KCF algorithm have
been proposed [5, 17, 6, 20, 13, 18, 19, 22], which are
designed to adapt KCF algorithm to scale changes [5, 17],
perform part based KCF tracking [18, 19], or improve the
feature representations [0, 20, 13, 22]. In this work, the
proposed tracking algorithm is also inspired by the KCF
algorithm, but we provide a fully functional correlation
KCF tracker which can simultaneously deal with object
appearance changes from spatial shifting, scale variation,
and rotation transformation.

3. Overall Approach

In this section, we first briefly review the correlation
tracking scheme to make our paper self-contained. Then
we introduce our tracker which performs the correlation
operation in the joint scale and spatial space. After that, we
will present our rotation adaptation scheme in the tracker.
Lastly, we will describe our feature fusion strategy.

3.1. Correlation tracking

The correlation tracking [3, 1] provides an elegant
framework for efficient and effective object tracking. The
KCF tracker [11], kernelized version of the correlation
tracking, demonstrates impressive robustness and efficien-
cy. The key for its high robustness is that the KCF tracker
uses dense cyclic sampling to dig out the target’s structural
information and models this special structure with the
circulant matrix. Instead of exhaustively matching dense
samples to the target template in the spatial space, the
tracker performs efficient element-wise multiplication in the
frequency domain through Fast Fourier Transform (FFT).
The fast computation benefits from the circulant theorem
[7] and the convolution theorem [21].

In KCF, the template matching is trained on a single
M x N image patch x centered around the target. According
to the circular convolution theorem, to avoid spectrum
aliasing, the patch is usually larger than twice the size of
the target. When we sample continuously around the target,
without considering the boundary effect, the translation of
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the search window can be approximately considered as
the cyclic shift of the base sample x. Thus, all cyclic
shifts {Zomn bmef1,..., M-1},ne(1,...,N—1}, are considered as
the training samples for the template estimation. The
matching score is modeled as a Gaussian response y, so
that y(m, n) is the matching score for the training sample
Tm,n. The solution w is obtained by minimizing the ridge
regression error:

mlnz [{¢

where ¢ is the mapping to the Hilbert space induced by
the kernel «, defining the inner product as (¢(x), ¢(Z)) =
k(z, Z). The constant A > 0 is the regularization parameter
controlling the model simplicity.

After the nonlinear transform, the solution w can be
expressed as w = > a(m,n)¢(zm,n). We denote the
Discrete Fourier Transform (DFT) of a vector with a hat. So
the dual solution can be:
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where k7 = K(Zp,pn,x). Usually, we use the Gaussian
kernel to compute the kernel correlation k%% with efficient
element-wise products in the Fourier domain. For an image
patch with C feature channels, the base sample is the
concatenation © = [z1, Z2, . .., Z¢]. Thus, we have:
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where  represents element-wise products and c is the
index of feature channels.

In the tracking step, a patch z with the same size as x is
cropped out in the new frame. The matching scores for all
the cyclic patches of z can be calculated via

y=F"'k"*0a), 4)

where z* denotes the learned target appearance. The
target’s position in the new frame is then estimated by
finding the translation maximizing the matching score.

3.2. Joint scale-spatial correlation tracking

The KCF tracker is not qualified to deal with large scale
variance, because a single base sample only contains target
information from one scale level. Thus, to incorporate
scale estimation into visual tracking, the JSSC tracker [28]
extracts image patches continuously from the joint scale-
spatial space. For each scale level, there is a base sample
centered around the target. Consequently, the block-
circulant structure is dug out and similarly transform the

dense template matching problem into the Fourier domain.
Since the JSSC tracker estimates the target’s position and
size simultaneously, it is less likely to accumulate tracking
error and cause drift, which contributes to the improvement
of the performance of the correlation filter based trackers.
This is very different to the previous scale approximation
methods for KCF tracker [5, 17].

For simplicity, assume a 1D image and a single-
channel feature. The JSSC tracker is trained using S base
samples of size 1 x N obtained from the recent scale level
and neighboring levels. Taking advantages of the cyclic
property and appropriate padding, it considers all cyclic
shifts {zs(n)},s € 1,2,...,5,n € {0,1,...,N — 1} as
the training samples for the target template estimation. The
matching scores y obey a multivariate Gaussian distribution
in the joint scale-spatial space. To minimize the squared
error over sample response and the defined matching scores,
it uses the regularized Ridge Regression with the kernel

trick:
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where ys(n) is the matching score of the sample x4(n).
Furthermore, the closed-form solution in the dual space for
the Kernelized Ridge Regression is obtained:

w) = ys(n) > + Aw[®,  (5)

(zs(n)),

a=(K+Msn) 'y (6)

The S x S block matrix K is a collection of the kernel ma-
trices generated between different scale levels and reveals
their correlation. Concisely, a block K;;(i,7 =1,2,...,.5)
denotes the N x N kernel matrix calculated from the scale
levels x; and x;. Additionally, the output of the kernel
function for each pair of samples from the two scale layers
can be given by:

Kij(q,1) = k(zi(q), (1)), (¢, 1 = 0,1,...,N

It is time-consuming to calculate the inverse of a large
non-sparse matrix in (6). However, it can be quite simple
when the block matrix K implies block-circulant structure.
According to the KCF tracker [12], each block of the matrix
K can be shown circulant. Then, select elements from the
same place of each block of K and store them in an S' x
S matrix. Finally, an N x N block-circulant matrix K is
obtained, which can be diagonalized by the DFT matrix.
The first row of the block-circulant matrix K is considered
as the base block sequence, denoted [Uq, ¥s, -+, Un]. As
n [7], the block-circulant matrix is diagonalized as:

g(ur), -+, glun—1))WH,  (8)

glx) =0y + Vo + - + Uy L 9)
W=FlIg, (10)
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K = W diag(g(uo),
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where g(x) calculates the DFT of the base block sequence
and F' is the DFT matrix.

Since the JSSC tracker estimate the target’s size contin-
uously, the value S, the block size of the block diagonal
matrix, can be small. As a result, it iS convenient to
calculate the inverse of these small blocks. The JSSC
solution in the Fourier domain is extended as

ug = exp(—j

ar=(diag(g(uo), g(ur), - - glun—1)H+Xsn) "5, (12)
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where k;'"7 is the c—th element of the base sample of the

Gaussian kernel matrix K;;, the horizontal bars represent
the rearrangement.

In the tracking section, the candidates Z to be matched
with the target template are extracted in the same way from
the joint scale-spatial space. The matching scores can be
evaluated via

f(2) = K%Xa, (14)

where X is the learned target appearance in the joint
space. The block matrix 4% shows the kernel correlation
between all candidate patches and the target templates.
Considering the block-circulant matrix properties, the full
tracking response is given by

F(Z) = diag(h* (uo), h* (u), - - ,h*(uy_1))&, (15)
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Moreover, linear interpolation is adopted according to the
tracking response to ensure the continuity of the scale and
position estimation.

3.3. Adaptive rotation estimation

During tracking, an object may be viewed at different
orientations due to the object or camera motion. The
changes in object orientation may degenerate the tracking
performance of general trackers whose tracking bounding
box is aligned with the Cartesian coordinates. This is
mainly due to the fact that the appearance model may not
be appropriate at the moment and much more noise may be
introduced. This observation suggests that a good tracker
should model the object rotation transformations together
with the translation changes and scale variations of the

object. We propose to perform rotation estimation using
a unified correlation tracking framework by taking the Log-
Polar transformation.

The Log-Polar image geometry is motivated because
scaling and rotation in Cartesian domain corresponds to
pure translation in Log-Polar domain. Moreover, Log-Polar
transform of an image patch has high resolution at the center
compared to the periphery, which attaches more attention
to the target than the surrounding background. Log-polar
coordinates in the plane consist of a pair of real numbers
(p,0), where p is the logarithm of the distance between a
given point and the origin and 6 is the angle between the
reference line (the x axis) and the line through the origin
and the point. The formulas for the transformation from
Cartesian coordinates to Log-Polar coordinates are given by

p=log /2% + 12, (17)
f = arctan L (18)
x

In the training section, the target patch is extracted
according to the estimated target position, scale and ori-
entation. The base rotation sample x, can be obtained
by transforming the target patch to the Log-Polar domain.
Considering the properties of the Log-Polar transformation,
the rotation template can be trained on all the cyclic shift
versions of z,., denoted by z,.(0),0 € {1,2,...,R}. The
sample interval is A = %’. Each sample is also assigned
with a score generated by a Gaussian function y,.. Similarly,
by minimizing the regression error, we get the solution via

—, 19
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where k% is a vector whose ith element is x(z, (i), ;).
Since we just care about the shift along the angular
coordinate, we consider the logarithmic coordinate as multi-
feature channels. In visual tracking scenarios, the base
candidate patch is extracted according to the orientation in
the last frame. The template matching scores are calculated
as R

yr = F k™ @ &), (20)

where z7 denotes the learned target appearance in the
Log-Polar domain. The linear interpolation based on the
Gaussian response is also used to compensate for angular
sampling errors.

4. Experiments

To evaluate the performance of proposed tracking algo-
rithm, we conduct three different sets of experiments. In the
following, we will first introduce some experimental details
and settings about our tracker and the visual object tracking
(VOT) challenge. After that we will present the first set of
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Table 1. Comparisons of accuracy and robustness among correlation filter-based trackers in the baseline experiment.
accuracy (overlap ratio) robustness (failure times)
KCF | KCF14 | SAMF | DSST | RAJSSC | KCF | KCF14 | SAMF | DSST | RAJSSC

ball 0.702 | 0.758 0.775 | 0.568 0.767 1 1 1 1 0
basketball | 0.574 | 0.645 0.751 0.638 0.621 2 0 0 1 0
bicycle 0.454 | 0.630 0.618 | 0.583 0.712 1 0 0 0 0
bolt 0.522 | 0.490 0.562 | 0.562 0.705 3 3 2 1 0
car 0421 | 0.713 0512 | 0.742 0.734 0 0 0 0 0
david 0.746 | 0.822 0.818 | 0.807 0.796 0 0 0 0 0
diving 0.233 | 0.255 0.246 | 0.442 0.288 5 4 4 1 5
drunk 0.434 | 0.536 0.569 | 0.551 0.576 0 0 0 0 0
fernando 0402 | 0.411 0.395 | 0.340 0.468 1 1 1 1 1
fish1 0.438 | 0.419 0.496 | 0.321 0.436 3 3 3 1 5
fish2 0.299 | 0.266 0.299 | 0.353 0.432 4 6 5 4 2
gymnastics | 0.528 | 0.537 0.538 | 0.632 0.582 3 1 2 5 1
hand1 0.389 | 0.563 0.547 | 0.215 0.596 6 3 3 2 2
hand2 0.438 | 0.498 0.465 | 0.528 0.550 8 6 5 6 2
jogging 0.760 | 0.799 0.822 | 0.790 0.534 1 1 1 1 1
motocross | 0.372 | 0.366 0.402 | 0.421 0.661 5 2 4 4 1
polarbear | 0.662 | 0.780 0.709 | 0.635 0.712 0 0 0 0 0
skating 0.488 | 0.677 0.452 | 0.586 0.645 0 1 0 0 0
sphere 0.713 0.90 0.880 | 0.927 0.738 0 0 0 0 0
sunshade | 0.761 | 0.763 0.759 | 0.783 0.773 0 0 0 0 0
surfing 0.797 | 0.805 0.804 | 0.906 0.821 0 0 0 0 0
torus 0.757 | 0.857 0.841 | 0.811 0.791 0 0 0 0 0
trellis 0.546 | 0.798 0.825 | 0.808 0.817 0 0 0 0 0
tunnel 0.318 | 0.687 0.553 | 0.812 0.718 0 0 0 0 0
woman 0.755 | 0.744 0.761 | 0.790 0.653 2 1 1 1 1

MEAN 0.540 | 0.629 0.616 | 0.622 0.645 1.80 1.32 1.28 1.16 0.84

experimental results to evaluate the proposed tracker with
several competing trackers based on the correlation tracking
framework. And then we will present the second set of
experimental results to compare our algorithm with other
state-of-the-art tracking algorithms. Lastly, we will present
the full evaluation results on the VOT2015 challenge.

4.1. Experimental details and settings

We implement the proposed tracker by native Matlab
without optimization. All the experiments are conducted on
an Intel 17-4770 CPU (3.40 GHz) PC with 8 GB memory.
Let J; denote the scale coefficient of the last frame and
S = 5 be the number of scale layers. We resize the current
image with scale factors Jia!(l € {|—252], ..., 552 ]}).
Here, a = 1.02 restricts the sampling granularity in the
scale space. The scale variance of the multivariate Gaussian
distribution is 02 = 0_1)7227' We extract 36 samples from the
orientation space and the sample interval is A = %—g. The
orientation variance of the Gaussian distribution is same as
the spatial displacement variance 2. The learning rates for
the appearance model update are changed adaptively to the
steepness of the Gaussian response. Other parameters are
similar to those employed in KCF [12].

In all the experiments, we use the Pascal VOC overlap
ratio (VOR) as the evaluation criteria for accuracy [8].

It is defined as VOR = %ﬁgggg, where Br is

the tracking bounding box, and Bg is the ground truth
bounding box. The larger value means the more accurate
result. The robustness is the number of times the tracker
failed. A re-initialization is triggered when the overlap
drops to zero. Finally, the per-visual attribute normalized
AR-rank plot [15] is obtained by ranking trackers with
respect to each attribute and averaging the ranking lists.

Table 2. Comparisons of accuracy and robustness among
correlation filter-based trackers for the scale change attribute.

Accuracy (overlap ratio) Robustness (failure times)
KCF14[SAMF|[DSST[RAJSSC|KCF14[ SAMF [ DSST|RAJSSC

baseline 0.580 | 0.565 [ 0.528 | 0.592 20 18 15 13
perturbation | 0.524 | 0.518 | 0.510| 0.536 | 21.80 | 21.13 | 17.93| 17.87

4.2. Compare with other correlation trackers

To evaluate the performance gain of our fully functional
correlation filter based tracker, we compare it with four
variants of correlation filter based trackers on the VOT2014
benchmark including KCF [12], KCF14, an enhanced KCF
with scale estimation [15], SAMF [17], and DSST [5]. In
the baseline experiment, we run trackers on all sequences
by initializing them on the ground truth bounding boxes
in the first frame. In the experiment with bounding
box perturbation, we perform visual tracking with noisy
bounding boxes by drawing perturbations uniformly from
the +10% interval of the ground truth bounding box size
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Table 3. VOT2014 competition report. The top, second and third lowest average ranks are shown in red, blue and green respectively.

baseline region_noise

Acc. Rank Rob. Rank Acc. Rank Rob. Rank Acc. Rank Rob. Rank Rank

RAJSSC 4.96 11.49 6.17 11.41 5.56 11.45 8.51
DSST 5.99 12.52 12.87 5.98 12.69 9.33

SAMF 14.34 5.65 12.78 13.56

KCF 5.51 15.41 5.58 13.05 5.54 14.23 9.89
PLT_14 14.72 6.44 13.74 5.01 14.23 5.73 9.98
DGT 11.67 9.55 9.15 10.11 10.41 10.12
PLT_13 18.34 3.83 17.38 4.83 17.86 4.33 11.10
eASMS 14.22 13.87 11.42 14.34 12.82 14.11 13.46
HMMTxD 10.28 20.77 9.81 19.57 10.05 20.17 15.11
MCT 16.88 14.08 17.58 13.00 17.23 13.54 15.38
ACAT 13.84 15.23 17.81 14.96 15.82 15.10 15.46
MatFlow 22.00 19.14 14.64 20.57 11.76 16.17
ABS 20.68 18.62 15.44 15.29 18.06 16.95 17.51
ACT 20.85 16.63 22.27 15.22 21.56 15.92 18.74
qwsEDFT 17.58 19.45 18.64 21.06 18.11 20.25 19.18
LGTvl 29.23 11.78 26.45 27.84 10.59 19.21
VTDMG 21.48 18.40 20.65 16.98 21.06 17.69 19.38
BDF 23.17 17.93 21.74 18.15 22.45 18.04 20.25
Struck 20.87 21.12 21.51 18.85 21.19 19.99 20.59
DynMS 22.82 19.47 21.51 19.51 22.16 19.49 20.83

and the £0.1 radian range.

In these two experiments, our tracker achieves the best
performance in both accuracy and robustness. The overlap
ratio and the number of tracking failure for each sequence
and each tracker in the baseline experiment is shown in
Table 1. Compared to the best performance from the other
four trackers which provides average failure times of 1.16
and 1.283 in two experiments, our tracker fails respectively
0.84 and 1.197 times. Although the scale and rotation
adaptivity is considered in our tracker, it remains stable
and reliable. Since dense samples are taken from the joint
scale-spatial space and the orientation space, the difference
between target patches and noisy background patches is
carefully learned. Thus, the tracker is less confused when
the external disturbance occurs and is less likely to drift.
The average tracking accuracy of our tracker in these two
experiments is presented with overlap ratios of 64.5% and
59.0% respectively, while the best results given by the other
four trackers are 62.9% and 57.8%. Although they are re-
initialized more frequently with the ground truth bounding
boxes, their tracking precisions are still poorer than ours.

The scale variation is estimated in these trackers except
the general KCF. SAMF models each scale level individ-
ually and then makes a comparison among the maximal
responses of these scale levels. DSST trains a scale filter
after the target position is obtained. The scale adaptation
scheme of the enhanced KCF is not given. We model
the relationship of features from different scale levels
and positions with the block-circulant kernel matrix and
get the template matching scores from the joint scale-
spatial space. So we infer the target’s displacements and
scale variations simultaneously and thus obtain obviously

improved accuracy. For the scale change attribute, we
compare the four trackers in Table 2. Our tracker can well
handle the rotation variation of the rigid targets which can
be seen from the video motocross with higher accuracy
and robustness. There is less improvement for roughly
deformed targets like the cat in video fernando, because the
transformations for a non-rigid target are so complex and
massive that cyclic shifts are not enough to extract all the
examples.

4.3. Compare with other state-of-the-art algorithms

To ensure a fair and unbiased comparison, we use the
original results provided by the VOT committee. We
compare our approach to recent state-of-the-art algorithms
including the winner of the VOT2014 challenge, DSST
and other competitive trackers such as PLT_13 [15],
Struck [10]. The AR-rank plots and raw plots for the
baseline and bounding box perturbation experiments with
per-attribute normalization are shown in Figure 1. Table
3 shows the exact per-visual attribute normalized accuracy
and robustness ranks of the top twenty trackers. The top
performing tracker in robustness is PLT'_13, the winner of
the VOT2013 challenge. It is an extension of the Struck
tracker which uses a structured SVM on gray-scale patches
to learn a regression from intensity to center of object
displacement. However, PLT _13 applies histogram back-
projection as feature selection strategy in the SVM training.
The DGT tracker uses superpixels to decompose the target
into parts and constructs a graph to represent the structural
relationship of target parts. It casts tracking as graph
matching across consecutive frames. The complex model
ensures its robustness. Since correlation filter based trackers
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AR plot for experiment baseline AR plot for experiment region_noise

Ranking plot for experiment baseline Ranking plot for experiment region_noise
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Figure 1. The raw plots and the per-visual attribute AR-rank plots for the baseline and bounding box perturbation experiments. A tracker

is competitive if it resides close to the top-right corner of the plot

model the visual tracking as simple template matching
problems, their templates are easier contaminated by the
background clutters and occlusions. Nonetheless, our
tracker still gains some robustness compared with other
correlation filter based trackers. In terms of accuracy, the
top-performing trackers are these correlation filter based
trackers which apply holistic models. They form a cluster
in the raw plots and AR-rank plots. It seems dense template
matching is useful compared to the sparse sampling in
the SVM based trackers. Our tracker ranks first in the
baseline experiment while ranks forth in the bounding box
perturbation experiment. One reason is that we sacrifice
the tracking accuracy for higher robustness. Another
reason is that the orientation estimation is taken after the
displacements and scale estimation. Once the tracking
drift occurs, the base sample in the Log-Polar space maybe
changes a lot which accumulate the tracking error.

The raw AR plots for each visual attribute are shown
in Figure 2. At illumination changes, the correlation
filter based tracker shows their superiority in both accuracy
and robustness. The trackers which rely heavily on the
color information such as DGT, eASMS show poorer
performance. Our tracker gains high accuracy in terms
of motion and scale change, while loses some robustness
compared with the DGT tracker and the PLT _13 tracker.
The adaptability and reliability of the correlation filter based
trackers are further enhanced taking account of these three
attributes. It seems that our scale and rotation estimation
scheme is effective, while the regression framework itself
lacks a bit robustness. Moreover, problem is that the
occlusion-handling module is hard to be integrated into
the correlation filtering framework. The neutral visual
attribute does not present particular difficultics in robustness

analysis for most trackers, but the tracking accuracy varies
apparently.

4.4. VOT2015 challenge results

The VOT2015 challenge database comprises 60 short
challenging sequences where the targets undergo severe
deformation and external disturbance. The tracking results
of our tracker are compared with the NCC tracker and
summarized in Table 4. In terms of robustness, we have
more failure in video birdsI and soccer2. The reason is
that the target is too small for our tracker to capture the
structure information by cyclic shifts. For most videos, our
tracker fails much less than the NCC tracker, especially
when the target is undergoing large deformation like the
gymnastics and ice skaters. For the accuracy estimation,
we have an overlap ratio gain of 16% compared with the
NCC tracker. The targets’ sizes change a lot in video bag,
graduate, helicopter, pedestrian2, and is well estimated by
our trackers. Video motocrossl and bmx prove our rotation
adaptation scheme feasible.

Table 4. VOT2015 competition report.

Acc. Rank | Overlapratio | Rob. Rank | Failures
RAJSSC 1.15 0.52 1.11 1.63
NCC 1.88 0.36 1.89 10.74

5. Conclusions and future work

In this paper, we have presented a new correlation filter
based tracking algorithm designed to perform effective and
efficient tracking. The proposed algorithm simultaneously
models the spatial displacements, scale variations, and rota-
tion transformations of the object in a unified correlation
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Figure 2. The normalized AR-rank plots for the baseline experiment with respect to the six sequence attributes.

tracking framework, thus can perform joint optimization
of the object tracking state. In the VOT2014 Challenge,
our tracker demonstrate very competing performance over
many state-of-the-art tracking algorithms. In the future,
we plan to model the temporal variations of the object
appearance in a similar framework.
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