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Figure 1: Based on the analysis of a view-parameterized light field, a passive, monocular sensor could instantaneously

measure distances and velocities of objects from image derivatives in a window, even under extreme power constraints.

Abstract

We present an opportunity for the visual sensing of depth

and 3D velocity using a passive sensor that has extremely

low power requirements. This opportunity comes from a

new mathematical constraint, which we derive, that relates

depth and velocity to spatial and temporal derivatives of

image values captured by a coded-aperture camera that ob-

serves a moving scene. The constraint exploits the fact that

there are two causes of brightness change in this situation:

features move across the image due to motion, and contrast

changes because of time-varying optical blur. The sensor

that could be realized from this constraint is called a focal

flow sensor. We analytically characterize the working vol-

ume of such a sensor in relation to its size, and we provide

simulation results that affirm its viability.

1. Extreme Power Constraints

The miniaturization of technology is constantly advanc-

ing, and platforms such as tiny air vehicles increasingly

demand visual sensors that operate on smaller scales and

with less power than current technology can achieve [1, 6].

One way to reduce power requirements in these situations is

through computational sensing, where optics and inference

algorithms are co-designed in ways that lessen the complex-

ity of post-capture calculations. This paper presents mathe-

matical analysis that suggests a new type of computational

sensor, one that measures distance to visible surfaces and

3D velocity relative to those surfaces. This could provide a

low-power alternative to existing, high-power depth sensors

that either require an active light source (e.g. time-of-flight)

or substantial post-capture computation to solve a complex

inference problem (e.g. stereo, depth from defocus).

The cues studied here are motion and defocus. Deriving

depth from either of these signals independently can be ex-

pensive or unreliable, but their weaknesses can be mitigated

through a novel cue combination mechanism. Our contribu-

tion is the derivation of a per-pixel constraint,

[

Iy Ix xIx + yIy Ixx + Iyy
]

· ~v + It ≈ 0,

which holds when the aperture of a moving camera is

equipped with an apodizing filter that has a narrow Gaus-

sian profile. Over an image patch, depth and velocity are

recovered simply by taking spatial and temporal deriva-

tives, and solving a 4 × 4 linear system for coefficients

~v = (v0, v1, v2, v3). Scene parameters are then computed

from these coefficients in closed form using known intrinsic

camera parameters such as aperture size and focal length.

The proposed sensor can be understood as an optical

flow sensor with defocus. Traditional optical flow, where

all images are in focus, is computable from a linear system
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of equations on image derivatives in a receptive field [7].

This locally resolves time-to-contact [5], but it cannot in-

stantaneously give explicit local distance and velocity. We

show that when the camera is defocused and equipped with

an appropriate aperture function, a similarly simple calcu-

lation provides explicit depth and velocity. The derivations

of our results will be published at a later time.

2. View-Parameterized Light Field

We derive our constraint using a light field representa-

tion [2, 11], which has successfully been used to analyze a

variety of computational cameras [9, 10]. For clarity, we

present in two dimensions (flatland), where there is a 2D

space of light rays and a 1D image domain. As is com-

mon, we parameterize light rays by their intersections with

two parallel reference lines, but less common, we affix the

reference lines to the moving sensor. This makes a view-

parameterized light field. The references are parallel to the

photodetector line and located at the lens center and object-

side focal point, all of which are determined by the sensor’s

internal geometry and assumed known (middle of Figure 1).

We assume that locally the scene is fronto-parallel and

of matte reflectance, as shown in Figure 1. There are four

parallel lines of interest in the figure center: the local world

line parameterized by s, the photodetector (image) line pa-

rameterized by x, the first reference line at the lens cen-

ter parameterized by a, and the second reference line at the

object-side focal point parameterized by b. We use the word

texture for the radiance at the world line and denote it T (s),
and we assume that it is at least twice differentiable.

The axial distances from the lens center to the sensor

(µs) and focal point (µf ) are known quantities determined

by the sensor’s construction, while the distance to the world

plane, or depth, (Z) is to be measured. The origins of the

lens, focal, and sensor lines are at their intersection with

the optical axis. The world line has its own origin, so its

intersection with the optical axis is at world point s − X ,

with X the (unknown) time-varying lateral position of the

sensor. Our aim is to recover the depth Z and the sensor

velocity (Ẋ, Ż) from image measurements, and to do so in

a way that is invariant to the unknown texture T (s).
Each texture point induces a ray in the light field, and

the slope of these rays encodes depth. The light rays ro-

tate about their intersection with the line a = b in response

to axial motion Ż, and in response to transverse motion Ẋ
they translate along the line a = b. We are interested in the

radiance L(a, b) of the light ray that corresponds to a fixed

world point. This world point projects to a time-varying im-

age location x(t), and its radiance is determined by where

it intersects the texture plane:

L(a,b,T,X,Z) =T (s(a,b(x(t)),X(t),Z(t)). (1)

Figure 2: Time-varying images of a 1D front-parallel tex-

ture with a sinusoidal radiance pattern. Left: In the all-in-

focus case, there is no contrast loss, and the image P (x, t)
changes only in frequency and phase. Right: A finite aper-

ture incurs optical blur, and now the contrast of image

I(x, t) also changes over time, allowing explicit recovery

of depth and velocity without knowledge of texture.

3. Conventional All-in-Focus Constraint

Before proceeding to the focal flow constraint, it is worth

understanding how the classical linearized optical flow (or

constant brightness) equation [5] can be derived in this light

field framework. At time t, the all-in-focus (pinhole) image

P (x, t) corresponds to a slice through the light field along

line a = 0:

P (x(t), t) =L(0, b(x(t)), T,X(t), Z(t)). (2)

As the sensor moves through a static scene, the effective

light field skews, and the image changes. The left of Fig-

ure 2 is an example where the texture T (s) is sinusoidal and

the velocity is zero in X and constant in Z. Because there

is no optical blur, there is no loss of contrast over time, and

the imaged sinusoid changes only in frequency and phase.

The linearized optical flow constraint follows directly

from taking the total time derivative of Eq. 2 and noting

that, because of the fixed contrast, dP/dt = 0. Alterna-

tively, the partial image derivatives can be rearranged in the

form of a related linear constraint on time-to-contact (Z/Ż)

and bearing (Ż/Ẋ):

[

Px xPx

]

·
[

v1 v2
]

+ Pt = 0, (3)

time-to-contact: 1/v2 (4)

bearing: − µsv2/v1. (5)

Our derivation follows directly from the differentiability of

the texture T (s) and light field L(a, b(t)). It is an alter-

native to previous derivations based on a truncated Taylor

expansion of the image [3].

The linear constraint of Eq. 3 holds at every pixel, so im-

age derivatives from a small (non-degenerate) image patch

can be accumulated into a simple 2 × 2 linear system that

uniquely determines bearing and time-to-contact. However,

there is not enough information to resolve this into explicit

depth and velocity.
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4. Focal Flow Constraint

The view-parameterized light field makes it easy to add

an aperture. We give our sensor a finite aperture that passes

all rays through a ∈ [−A/2, A/2], and in the spirit of coded

aperture cameras [8, 12, 13] we include an attenuating trans-

mittance function k(a). In this case, the (possibly defo-

cused) image is

I(x(t), t) =

∫ A/2

−A/2

L(a, b(x(t)), T,X(t), Z(t))k(a)da.

(6)

As depicted in the right of Figure 1, at each pixel x this

is a vertical line integral of the light field, weighted by the

aperture function.

Now, when the sensor moves, changes in optical blur re-

sult in changing image contrast over time. The right of Fig-

ure 2 shows this effect for the special case of a sinusoidal

texture pattern. It is this change in contrast, which comes

in addition to the changes in frequency and phase, that pro-

vides additional information to resolve time-to-contact and

bearing into explicit depth Z and velocity (Ẋ, Ż).

Note that unlike the pinhole case, the total time deriva-

tive of Eq. 6 is not zero. Instead, it takes on a value
dI
dt = E(T ) that depends on the unknown texture pattern

T . However, it can be shown that for a suitable choice of

the aperture function k(a) this ‘error term’ is directly pro-

portional to a very measurable quantity: the second spatial

derivative of the image, E(T ) ∝ Ixx. The required function

is a truncated Gaussian,

k(a) =

{

e−
a
2

2Σ2 , |a| ≤ A/2
0 , |a| > A/2

, (7)

whose width is sufficiently narrow with respect to the aper-

ture (say, Σ < A/6).

The ratio between the image derivative Ixx and error

term E contains depth and velocity information and can be

estimated from the image alone, and this leads to the follow-

ing texture-independent constraint on depth and velocity.

[

Ix xIx Ixx
]

·
[

v1 v2 v3
]

+ It = 0, (8)

Z =
µ2

sΣ
2v2

µ2
sΣ

2v2/µf − µfv3
(9)

Ż =− Zv2 (10)

Ẋ =Zv1/µs (11)

This per-pixel linear constraint can be applied to a small

image patch for power-efficient estimates of depth and ve-

locity. The analogous constraint on two-dimensional tex-

tures that is shown in the introduction follows immediately

from the separability of the Gaussian aperture. In this case,

the other component of lateral velocity is Ẏ = Zv0/µs.

5. Working Range

There are many algorithmic choices for a sensor using

our constraint, such as the scale of image derivatives and

the grouping of pixels into appropriate patches. These are

longstanding questions in optical flow and time to contact

[4, 5] and instead of addressing them here we study the un-

derlying sensitivity of the system by considering observa-

tions of a sinusoidal texture. From these idealized images

we can derive bounds on depth error for sensors that vary

in aperture size and other physical dimensions, and we can

visualize how working range relates to sensor size.

When a moving camera observes a sinusoidal texture it

obtains sinusoidal images with frequencies ω(t) and am-

plitudes B(t). In this context, we can analytically derive

an upper bound on depth error by propagation of errors in

measured frequency (e.g. due to spatial resolution) and of

errors in measured amplitude (e.g. due to bit-depth and sen-

sor noise). If image frequencies and their changes are mea-

sured with error less than ǫω and ǫω̇ , and image brightnesses

and their changes within ǫB and ǫḂ , respectively, then the

error in estimated depth ǫZ is bounded as:

ǫZ ≤

√

(

∂Z

∂ω

)2

ǫ2ω+

(

∂Z

∂ω̇

)2

ǫω̇2+

(

∂Z

∂B

)2

ǫ2B+

(

∂Z

∂Ḃ

)2

ǫ2
Ḃ

=
Z

µf
|Z−µf |

√

ǫ2ω
ω2

+
ǫ2ω̇
ω̇2

+
ǫ2B
B2

+
ǫ2
Ḃ

Ḃ2
.

(12)

This error bound is shown in the left of Figure 3 for

sensors with the same aperture size but different distances

µs. For each sensor we plot the bounded errors for textures

located at distances Z within a 20cm window around the

object-side focal point. These graphs agree with the intu-

ition that the strength of the blur cue diminishes when the

texture moves too far from the focal point (recall the right of

Figure 2). The spike in the error bound at the focal point µf

is caused by the 1/Ḃ term in expression (12), and it reveals

the limitations of a first-order propagation-of-errors: in sim-

ulations of actual depth reconstructions, we do not see such

errors near the focal point. Note that the appearance of both

frequency and brightness error terms in expression (12) re-

veals a trade-off between spatial resolution and bit-depth.

For a desired level of depth accuracy, a camera with high

bit-depth (low ǫB and ǫḂ) or high pixel density (low ǫω and

ǫω̇) could make up for deficiencies in the other.

One can draw similar error graphs for different aperture

sizes A, and for each combination of µs and A we can com-

pute an ǫ-working range, defined as the range of positions

Z for which the sensor’s depth error is guaranteed to be

less than ǫ. The right of Figure 3 shows one such graph for

ǫ = 0.25cm. This visualization can be used to identify op-
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timal combinations of sensor length and width (µs and A)

in the face of constraints on fixed total area µs ×A.

We also verify the viability of this sensing method by

simulating noisy images of sinusoidal plaid textures, ap-

proximating derivatives by finite differences, accumulating

per-pixel constraints over a 50×50 window, and recovering

depth using Eq. 9. We do this for sensors of various dimen-

sions, with texture frequencies adjusted so that every sensor

captures the same image when the world plane is at its fo-

cal point. Figure 4 shows such distance estimates averaged

over 50 trials, for sensors having the same aperture size but

different lengths µs. Accuracy is higher near each sensor’s

focal point and degrades gradually over its working range.
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Figure 3: An exploration of noise sensitivity with ǫB =
ǫḂ/2 = ǫω = ǫω̇/2 = .05, ḋo = 1, and µf = 5µs, with

a sinusoidal texture of unit frequency in world coordinates.

Left: for A = 3, distance error ǫZ is shown over µs as a

function of distance, shifted to align each camera’s focal

point. Dotted line at 0.25cm marks threshold defining the

0.25-working range. Right: 0.25-working range for varying

camera dimensions. In white are level curves of camera area

A× µs, increasing by 4cm2 from bottom left.
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Figure 4: Simulated cameras of different size (A = 3 cm,

Σ = A/6 for all) show working ranges of varying size and

location. Near each camera’s focal distance, indicated by a

dashed vertical line of corresponding color, measurements

closely match ground truth.

6. Toward a Focal Flow Camera

To realize a focal flow sensor, we are currently explor-

ing robust estimation techniques that compute derivatives at

multiple spatial scales and that automatically discard image

windows that to not contain sufficient brightness variation

or do not back-project to fronto-planar scene planes. We

are also testing physical prototypes and exploring the math-

ematical space of apodizing functions that provide texture-

invariance in ways similar to the truncated Gaussian. More

generally, we believe that the view-parameterized light field

may be useful in modeling and designing other computa-

tional sensors that exploit various optical cues.
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