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Abstract

SONAR imaging can detect reflecting objects in the dark
and around corners, however many SONAR systems require
large phased-arrays and immobile equipment. In order to
enable sound imaging with a mobile device, one can move a
microphone and speaker in the air to form a large synthetic
aperture. We demonstrate resolution limited audio images
using a moving microphone and speaker of a mannequin in
free-space and a mannequin located around a corner. This
paper also explores the 2D resolution limit due to aperture
size as well as the time resolution limit due to bandwidth,
and proposes Continuous Basis Pursuits (CBP) to super-
resolve.

1. Introduction

Mobile phones are as of yet not capable of seeing in
the dark, through smoke, and around occluding objects.
While there is a race to commercialize time-of-flight sen-
sors [11, 7, 6], mobile phones have readily available au-
dio hardware which can perform audio imaging tasks. This
would be useful for rescue situations and indoor mapping.
[5, 10, 2]

In order to generate a sensing aperture to perform scene
reconstructions, a user moves their mobile phone to a set
of static positions which allows the user to sample a plane.
At each location the phone transmits and receives a signal,
similar to synthetic aperture sonar/radar. The received sig-
nals are then processed (pulse compression) and the data
inverted using backprojection to generate a 3D image.

Figure 3 shows an example of data acquisition. Each
row of the data is a range measurement taken from a mi-
crophone and speaker pair which is moved to another lo-
cation. The range measurements are then backprojected to
form an image. An ideal reflecting point lies on an ellipsoid
in space whose foci are the speaker and microphone. The
distance traveled by the sound is the major axis of the ellip-
soid. Through tomography, it is possible to reconstruct the
location of all reflectors.
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Figure 1.
our system. In B, an audio image returned by the system. One
can see that the hot spot of the audio image is located near where
the reflection of the mannequin should be. In C, a mannequin is
placed directly in front of the system, and in D, the corresponding
audio image.

In A, a mannequin is placed around the corner from

2. Experiment and Results

We implement mobile-audio imaging by moving a
speaker and microphone on an x-y stage, transmitting a
chirp between 20KHz and 30KHz. While today’s phones
cannot reliably produce sound in this range, microphones
and speakers exist which can easily operate in these ranges.
We move a microphone and speaker pair to 216 positions
(18 columns by 12 rows) in a Im x 1m 2D plane and per-
form a range measurement at each location (transmit and
receive). We demonstrate two imaging results, one with a
mannequin in front of the setup, and another with a man-
nequin located around a corner. The result with the man-
nequin in front of the setup is shown in Figure 1 in the
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Figure 2. Top, an artist’s vision of synthetic aperture audio imag-
ing, where a user moves a mobile phone in the air and reconstructs
an object around the corner. Graphic Credit Dina Bedri. Left, a
photo of our microphone and speaker pair used (20KHz - 30KHz
bandwidth). Right, 2D positioning rig used in the experiments.

upper-right. The result for imaging of a mannequin be-
hind a corner is shows in Figure 2. The system is able to
see around the corner since sound bounces specularly off
the wall, causing a virtual image of the mannequin to be in
view.

3. Angular Resolution Limit

The diffraction-limited angular resolution of a camera is
determined by its aperture and wavelength of illumination:
6 = 1.22 - A/ D[4]. The same equation applies for the syn-
thetic aperture covered by the motion of the microphone and
speaker, thus a larger area covered leads to more angular
acuity. When using the backprojection method, this defines
the lateral PSF of our system. By covering an aperture of
Im x Im with A/2 density, our experiment has a theoretical
rayleigh-limited angular resolution of 0.8cm.

4. Time Domain Resolution Limit

Hardware and physical limitations prevent the pulse
compression step from acheiving a delta response. This
means that an ideal reflection of a sound ping cannot be
localized to a single point in time and is usually spread over
a range. A more complete treatment of the model of how

sound travels in air will start with boundary conditions and
differential equations. In this paper, we will begin with a
simple intuitive model for how a pressure signal in the air
medium travels between a transmitter and a receiver. Here
we assume an ideal reflector k& of known position, a speaker
s of known position, an omni-directional microphone m of
known location. The received signal due to propogation in
air is proportional to:
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where,
e p(™, p(® and p{", respectively, are the 3D locations of
microphone, speaker, and k*" reflector.
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o T - is the propagation time
delay due to transmission and reflection.

e ¢ is the time-domain function transmitted by the speaker

o {a;}1 are the amplitudes of each reflection (based on
material and illumination properties).

In this case, we use a chirp signal instead of an impulse,
since it enables our system to transmit more energy over
a longer time period. The time-shifted signal f is shown
below:

¢ (t) = cos (&% + wt) Lo 7y (2) )
where ¢ relates to the slope of the chirp such that £ =
2% (fo — f1) and w = 2 f; is the initial frequency. Fur-
thermore, in (2), we use the indicator function defined on
domain D by,

SR TS

We assume that {7} ' € [0,7].

We utilize FMCW processing (multiplication of the
transmitted signal with the received signal and performing a
Fourier transform and a low-pass filter) to recover the shift
T.

¢(t) = cos(¥(t))Lo,ry(t)
¢t — 1) = cos(¢p(t) + 6(¢))Ljo,71 (t)

where

W(t) :th + wt

O(t) = — &t + €72 — 217 f1

therefore:
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Figure 3. A flow-chart of the rayleigh-limited reconstruction. In
A, the system transmits acoustic chirps. In B, thos chirps are com-
pressed through FMCW processing [9], and in C, the signals are
reconstructed through backprojection.

Bt — 1) - (1) = = [cos((8)) + cos((t)] L. (1)

2
and by examining the low-frequency portion by low-
passing above 2f; — iq—

cos(—¢&Tt + £r? — 27T7’f1)]1[0,T] (t)

Thus 7 is encoded into the frequency of the processed
cosine, and can be recovered via a fourier transform. In-
creasing the duration of the transmission window 7" has the
effect of reducing &, thus the limit in resolution depends

only on fi, fs.
4.1. Physical Bandwidth Limit

There is a hardware limit to the bandwidth of sound
which can be transmitted in-air. This limit is caused by
absorption in the air of high-frequency signals. The atten-
uation has been characterized by the following equation,
which means the attenuation of a signal in air is nearly
100dB at 50Khz at over 1m [1]:

Attenuation = « - L - f , where:

e « is the attenuation coefficient of air in units ——2——
MHz-ecm

e [ is the distance propagated

e f is the frequency of the sound

The limitations on the frequencies which can be reliably
transmitted through the medium impose a bandwidth limit
on the signal which is transmitted. This bandwidth limit
causes an ambiguity in the estimation of the signal delays
and thus the estimations for the distances to the target. This
puts the rayleigh-limited time-domain resolution to 10cm
for the 20KHz - 30KHz range of the audio spectrum.

5. Model-based Super-resolution

Due to physical hardware limitations for in-air imaging,
we turn to computational methods to address the imaging
problem. In the following sections, we describe how sparse

reconstruction can theoretically extend the resolution of the
system, and show simulations which achieve higher theo-
retical resolution.

5.1. Backprojection Matrix Coherence

One can use model based methods for time-domain
super-resolution by creating a dictionary of shifted signals
and searching for the support within the dictionary and the
corresponding coefficients that describe the received signal.
One method for recovering the sparse vector x is through
Basis Pursuit denoising (BPDN) which uses the ¢; penalty
instead of the expensive-to-compute ¢, penalty. BPDN has
advantages over greedy methods since it is guaranteed to
converge to the global minimum solution[§],

x* = argmin ||b — Dax|[5 + A[[x|; . 3)

Using sparse recovery algorithms, it is possible to find
the best sparse representation of the signal within resolution
of the shifts of the dictionary. However, this approach is not
guaranteed to work since the signal may lie in an off-grid
location. In order to reduce the chance of this happening,
one can form finer and finer sampling grids, however, this
leads to an increase in the coherence of the dictionary. The
algorithms can have a hard time choosing which atom is the
correct one, especially in the presence of signal or quantiza-
tion noise. The resolution of the estimation of the parame-
ter 7 is again limited by the coherence of the matrices using
these methods.

The coherence of a matrix is defined as follows [8]:

d; d;

DA) = max M3 nna.n:
nDa) = max Tl T
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5.2. Continuous Basis Pursuits

Continuous Basis Pursuit (CBP) overtakes on-grid meth-
ods by introducing a bilinear model which finds the atoms
of the dictionary which approximates the signal the best
and then improves that approximation by finding a coeffi-
cient for a corresponding dictionary which perturbs the ap-
proximation closer to the original signal. The result is a
recovery which is more accurate, and for sparse signals, re-
sults in a more sparse solution than BPDN for off-grid ele-
ments. In order to understand CBP, one can think of any N-
dimensional signal as a point in N-dimensional space. The
set of all time-domain shifts of the signal form a manifold
in N-dimensions. On-grid solutions approximate this man-
ifold by uniformly sampling it. CBP improves upon this
by forming an approximation of the shape of the manifold
(either Taylor or polar) and perturbing the sample points to
more accurately represent a shifted signal.
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Approximation of data using Sparse Reconstruction Methods
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Figure 4. Results of super-resolution in 1 dimensions. In A, approximations of the sum of shifted versions of ground-truth decaying
exponential signals (blue) and the result of sparse recovery techniques (Basis Pursuit DeNoising [BPDN] magenta, Continuous Basis
Pursuit Taylor [CBPT] green, Continuous Basis Pursuit Polar [CBPP] red). In B-E, recovered time shifts and their coefficients. From
upper left clockwise: True shifts in blue, upper-right, CBPP in red, most accurate, Lower Right, BPDN in magenta, Lower Left, CBPT in

green. Grid points are in black.

Figure 5. Result of 2D super-resolution. In A, simulation set-up, microphones in green, speakers in red, and reflectors in blue. On the
right, reconstruction using Continuous Basis Pursuit Taylor (B) and FMCW image (C).

6. Comparing Algorithms for Image Recon-
struction

In order to evaluate super-resolution, backrpojection
(linear inversion), BPDN, and CBP were compared for re-
construction. There is a challenge in comparing the perfor-
mance of algorithms, especially since they behave differ-
ently with different reconstruction parameters (A, A). Fur-
thermore, comparing reconstructions is difficult since con-
tinuous basis-pursuit returns vectors which are not on-grid,
thus recovered vectors cant be directly compared by dis-
cretely by taking the norm of the difference of the signals.
In order to measure accurate signal reconstruction, a simple

error term is defined:

~ K-1 - ~
E(©.0) =), (A —nla)’+[b-bl3 ©

where © = {ay, ?k},itol denotes the set of estimated pa-
rameters and ® denotes the ground truth. 73 are ordered
such that Zf:_ol ||7x — T%|| is minimized. b is the ground-
truth measured signal, and b is the signal produced by the
recovered parameters ©.

The error function is a trade-off between accurate time-
shifts and accurate data-matching. If the recovered time
shifts are inaccurate and the data is matched perfectly, then
the left part of the error will grow high. If the time shifts and
coefficients are accurate, then both the left and right parts of
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the error will be zero. If the time shifts are accurate but the
coefficients are zero due to lambda being too strong, then
the right part of the error function will grow. The following
signal was used as base-function in the 1D simulation (for
ease of visualization):

y(t) = 1[71700) (t) (t— Tl) emolt=m)
F Ly o) (£) (t — T2) e (7T,
6.1. Comparing 1D recovery

1D recovery is shown in Figure 4 for BP, BPDN, CBPT,
and CBPP. One can see that CBPP performs the best and
most accurately detects the time shifts in the most sparse
manner. BPDN approximates the signal with two coeffi-
cients on the grid points closest to each signal point. CBPT
also approximates the signal with two coefficients, however
the coefficients are closer to the signal. Figure 6 shows the
performance of each of the algorithms with different delta
(dictionary spacings) and lambdas (regularization parame-
ters). One can see that as the dictionary spacing increases,
the error increases. Similarly, for each delta, there is only
one lambda which is optimal. CBP-Taylor and CBP-Polar
both outperform BPDN such that for each delta, there is a
corresponding lambda in each of the other two algorithms
with lower error.

6.2. Comparing Image recovery

In order to simulate the audio-imaging process, a 2D
room was modelled with a set of 10 microphone/speaker
pairs and a two reflectors located 10cm apart. Each mi-
crophone/speaker measures the reflected signal from the
system separate from the other pairs. The algorithms are
applied to find range profiles at each measurement and a
backprojection algorithm is used to reconstruct the image.
One can see in Figure 6 that the model-based algorithms
(BPDN, CBP) perform much better than FMCW process-
ing and it is possible to discern two peaks. Furthermore,
the off-grid CBPT reconstruction performs better than the
on-grid BPDN reconstruction. One can see better defined
peaks at the reflectors.

7. Discussion

There are many uses for mobile audio imaging, including
searching for persons trapped in rubble, room reconstruc-
tion while your phone is in your pocket, mapping out caves,
automated vehicles, depth imaging, and kaleidoscopic re-
constructions of objects. However, there are many resolu-
tion limits due to bandwidth. On the high end, high fre-
quency sound does not carry in air, and on the low-end, the
system must operate outside of the human hearing range (so
it is not disturbing).

CBP is effective in finding a more accurate representa-
tion of off-grid signals, however the approximations neces-
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Figure 6. Heat maps showing error associated with varying deltas
(grid spacing) (Red = large error), lambdas (regularization param-
eters) and algorithms. In A, Continuous Basis Pursuit Taylor, In
B, Basis Pursuit Denoising

sary to perform CBP limit the types of signals one can use.
The CBP Taylor approximation assumes the function f is
differentiable on all points t, thus a discontinuity can ruin
the reconstruction. Furthermore Ekanadham [3] highlights
that the polar approximation deteriorates as the signal in-
creases in bandwidth.

A limitation to the CBP approach to audio imaging is
the failure of the assumption of sparsity in the scene. In the
super-resolution reconstructions, the scene was assumed to
consist of sparse-reflectors. Real-life scenes, however, are
composed of complex objects with curvatures and shapes.
The ideal omnidirectional reflector assumption breaks down
if you have a reflecting plane or surface. In-air scenes usu-
ally consist of a small number of objects, thus future work
will explore modelling the scene geometry as a set of prim-
itive shapes of varying sizes and locations, and use bilinear
or trilinear sparse recovery to estimate the shapes.
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