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Abstract

Recognition from a small number of photons is impor-

tant for biomedical imaging, security, astronomy and many

other fields. We develop a framework that allows a ma-

chine to classify objects as quickly as possible, hence re-

quiring as few photons as possible, while maintaining the

error rate below an acceptable threshold. The framework

also allows for a dynamic speed versus accuracy tradeoff.

Given a generative model of the scene, the optimal trade-

off can be obtained from a self-recurrent deep neural net-

work. The generative model may also be learned from the

data. We find that MNIST classification performance from

less than 1 photon per pixel is comparable to that obtained

from images in normal lighting conditions. Classification

on CIFAR10 requires 10 photon per pixel to stay within 1%

the normal-light performance.

1. Introduction

Vision systems are optimized for speed and accuracy.

Speed depends on the time it takes to capture an image (ex-

posure time) and the time it takes to compute the answer.

Computer vision researchers typically assume that there is

plenty of light and a large number of photons may be col-

lected very quickly1. Borrowing from the human vision

literature we call this regime photopic vision. The image,

while difficult to interpret, is (almost) noiseless; researchers

ignore exposure time and focus on the trade-off between ac-

curacy and computation time (e.g. see [6] Fig. 10).

Consider now the opposite situation, which we call sco-

topic vision2, where photons are few and precious, and ex-

posure time is long compared to computation time. The

design tradeoff is between accuracy and exposure time [7],

and computation time becomes a small additive constant.

1In images with 8 bits per pixel of signal (i.e. SNR=256) pixels collect

10
4
−10

5 photons [14]. In full sunlight the exposure time is about 1/1000

s which is negligible compared to typical computation times.
2The term ‘scotopic vision’ literally means ‘vision in the dark’. It is

usually associated to the physiological state where only rods, not cones,

are active in the retina. We use this term to denote the general situation

where a visual system is starved for photons, regardless the technology

used to capture the image.

Why worry about scotopic vision? We ask the oppo-

site question: “Why waste time collecting unnecessary pho-

tons?” In some situations this question is compelling. First,

one may be trying to sense/control dynamics that is faster

than exposure time that guarantees good quality pictures,

e.g. automobiles and quadcopters [5]. Second, in compet-

itive scenarios, such as sports, a fraction of a second may

make all the difference between defeat and victory [16].

Third, sometimes prolonged imaging has negative conse-

quences, e.g. because phototoxicity and bleaching alter a

biological sample [15] or because of health risks in medical

imaging [9]. Fourth, sometimes there is little light in the

environment, e.g. at night, and obtaining a good quality im-

age takes a long time relative to achievable computational

speed. Thus, we ask: “What is the minimal number of pho-

tons that are needed for good-enough vision?”, and “What

is the best way to trade-off exposure time and accuracy?”

and “How can one make visual decisions as soon as a suffi-

cient number of photons has been collected?” It should be

clear at this point that in scotopic vision photons are col-

lected until the evidence is sufficient to make a decision.

While scotopic vision has been studied in the context of

the physiology and technology of image sensing [1, 4], vi-

sual discrimination [8], and visual search [2], little is known

regarding the computational principles for high-level visual

tasks, such as categorization, in scotopic settings. Prior

work on photon-limited image classification [18] deals with

a single scotopic image, and does not study the trade-off be-

tween exposure time and accuracy. Moreover, scaling sco-

topic visual categorization even to modest-sized datasets,

such as MNIST and CIFAR10 [11, 10], remains a challenge.

Our main contributions are:

1. A computational framework to study the trade-off

between accuracy and response time in visual classification.

2. A self-recurrent, deep convolutional architecture to

obtain any-time, quasi-optimal classification performance.

3. Learning techniques to train classifiers directly from a

set of training data.
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Figure 1. Lowlight CIFAR10 im-

ages. Sample synthetic lowlight im-

ages from the CIFAR10 dataset [10]

with increasing average photons per

pixel (PPP). PPP is proportional to

the exposure time t.

2. Model

Our computational framework starts from a model of im-

age capture. Each pixel in an image reports the brightness

estimate of a cone of visual space by counting photons com-

ing from that direction. The estimate becomes increasingly

more accurate over time. Below, starting from a probabilis-

tic assumption of the imaging process and of the target clas-

sification application, we describe a theory that allows for

the best tradeoff between exposure time and classification

accuracy.

We make three assumptions: 1) the world is stationary

during the imaging process3; 2) photon arrival times follow

a homogeneous Poisson process (details below); 3) a gen-

erative model of the task is available. We relax assumption

(3) in Sec. 2.4.

Formally, the input X(t) ∈ N
d is an images with d pixels

where Xi(t) is the total number of photons arrived at pixel

i in the time interval [0, t]. The task is to identify the cor-

responding visual category Y ∈ {0, 1, . . . , C} of the image

X(t) with a given confidence level while minimizing expo-

sure time t.

The pixels in the image are corrupted by several noise

sources intrinsic to the camera [12]. We assume that the

fixed-pattern noise and quantization noise are either negli-

gible or removed by calibration. We focus on the shot noise

and dark current. When the illuminance of the environ-

ment is fixed, photons arriving at each pixel i are assumed

to follow a Poisson process with a constant rate. This rate is

governed by both the true intensity of the stimulus mapping

to the pixel and a small additive dark current. We assume

that the dark current makes the darkest pixel emits photons

at ǫ times the rate of the brightest pixel.

In addition, the average number of photons per pixel

(PPP) is linear in t, and we will use time and PPP inter-

changeably. Since the information content in the image is

directly related to the amount of photons, from now on we

measure response time in terms of PPP instead of exposure

time. Fig. 1 shows a series of images from the CIFAR10

dataset [10] with increasing PPP.

From Fig. 1 it is evident that images at different PPPs

have different statistics. It would appear that a special-

ized system is required for each PPP level. Fortunately,

one could exploit the structure of the input and build one

3This is rather restrictive and will deserve a proper treatment in future

studies.

system for images at all PPPs. The variation in the input

X(t) has two independent sources: one is the stochastic-

ity in the photon arrival times, and the other the intra- and

inter- class variation of the real intensity values of the ob-

ject. Current computer vision techniques such as convo-

lutional networks [11] excels at cases where only the first

source of noise is present (i.e. when the photon counts has

a high signal-to-noise ratio). The classical sequential proba-

bility ratio test (SPRT) developed by Wald [17] shows near-

optimal speed-accuracy tradeoff when the second source of

noise is absent.

We propose WaldNet, a deep network for speed-accuracy

tradeoff (Fig. 2 (b-c)) that combines deep networks with

SPRT. WaldNet assumes a generative model (Sec. 2.2) of

the input X(t) and uses it to compute the log posterior prob-

ability for each category (Sec. 2.3). This probability is fed

into the SPRT (Sec. 2.1) to decide whether to collect more

photons or terminate the task and report a decision. If a

generative model is unavailable, WaldNet can be learned

(Sec. 2.4) directly from low-light images.

2.1. Sequential probability ratio test

We first review SPRT [17]. Assuming a generative

model of the images X(t) is available, one can com-

pute the log posterior probability of each visual category:

logP (Y = c|X(t)), ∀c ∈ {0, 1, . . . , C}. SPRT is a simple

accumulation-to-threshold procedure as follows:

if logP (Y = c|X(t)) > θ, ∃c : report Y = c

otherwise : increase t (1)

When a decision is made, the declared class c has at least

posterior probability eθ according to the generative model,

therefore the error rate of SPRT is at most 1− eθ.

For simple binary classification problems, SPRT is op-

timal in trading off speed versus accuracy in that no other

algorithm can respond faster while achieving the same accu-

racy [17]. In the more realistic case where the categories are

rich in intra-class variations, SPRT is shown to be asymp-

totic optimal, i.e. it gives optimal error rates as the exposure

time becomes large [13]. Empirical study has also shown

that even for short exposure times SPRT is near-optimal [3].

2.2. Deep generative model

SPRT requires full knowledge of a deep generative

model, which is often impractical. However, we can spec-
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Figure 2. WaldNet for lowlight visual recognition. (a) A deep

generative model (Eq. 2-4) of the sequence of input images of pho-

ton counts X(t). Only the bottom stack and the lower part of

the second stack are shown. Grey arrows represent full connec-

tions. Bi-directional arrows means full undirected connections.

(b-c) WaldNet. (b) A deep network performs approximate infer-

ence on the generative model in (a) to compute the log posterior

probability of the classes. Green arrows indicates accumulation

of log likelihood ratios over time. (c) Sequential probability ra-

tio test (SPRT) makes a decision as soon as the log posterior ra-

tio crosses a threshold (two color-coded thresholds are shown in

dash). (e) Speed accuracy tradeoff curves (sketch) produced by

running WaldNet over many images and many repetitions of each

image. Higher threshold leads to lower error.

ify a general architecture of the generative model and learn

the parameters from data. The general structure we pick is

a stack of smaller generative models. Each stack consists of

an input vector v, a hidden vector h ∈ {0, 1}nH and a pool-

ing vector m ∈ {0, 1}nM , and their connectivity is shown

in Fig. 2(a).

We start from the bottom stack where the input is the

cumulative raw photon counts v = X(t) over time t. Each

binary element mk of the pooling vector oversees a group

Gk of hidden units. mk represents the presence of an image

feature within a spatial neighborhood Gk of the image, and

hj represents the exact location of the feature. Given the

feature location hj’s, the input Xi(t) at each pixel i for each

point t in time is sampled according to

P (Xi(t)|h) = Poiss(Xi(t)| exp(
∑

j

hjWij + ci)t) (2)

where W ∈ R
d×nH and c ∈ R

d are weights and biases of

the model.

The generative models at the higher layers of the stack

is a deep belief network (DBN) [10] that models the activa-

tion probability of the max pooling units of the layer below.

Details are in Appendix A.1.

2.3. Approximate inference

Given the input X(t) at a specific time t, the generative

model is a variant of the DBN, and the same techniques for

efficient inference apply. Starting from the input X(t), we

can infer the hidden unit hj of the bottom stack using:

Shj
(t)

△
= log

P (hj = 1|X(t))

P (hj = 0|X(t))
=

∑

i

WijXi(t) + bjt

(3)

where b ∈ R
nH is the biases for the hidden units. In addi-

tion, we introduce a unit h0 in each feature group to repre-

sent that the feature is absent. Naturally, Sh0
(t) = 0.

The log likelihood ratio of the pooling unit mk is:

Smk

△
= log

P (mk = 1|X(t))

P (mk = 0|X(t))
≈ max(0,max

j∈Gk

(Shj
(t)))

(4)

which is equivalent to the standard max pooling and

ReLu operations in modern deep networks.

Smk
then becomes the input to the deep belief network

above, which we use to infer the class label. Details of the

inference procedure for DBNs are in Appendix A.1.

While Eq. 3 and Eq. 4 discuss the inference procedure

where the input X(t0) and the model share the same expo-

sure time t0, in most scenarios, we would like to classify

input at arbitrary time t1 using models trained with images

at a different time t0 > t1. Fortunately, this can be done by

marginalizing out the unobserved data from t1 to t0. The

marginalization (Appendix A.2) results in the following ap-

proximation for the hidden unit log probabilities:

Shj
≈

∑

i

WijXi(t1) + bjt0 + aj(t1 − t0) (5)

where aj is a scalar for each hidden unit hj , and nontrivial

to compute. Instead we learn aj from data (see below).

In conclusion, the procedure to infer the class variable

from images generated by a deep generative model resem-

bles the computational flow in deep networks [10]. Thus,

we can borrow the deep learning machinery for effective

learning.

2.4. Learning

As discussed in Sec. 2.2, in practice, parameter learning

is typically required for WaldNet with a predefined archi-

tecture (number of stacks, number of units in each stack,

etc). We maximize the log posterior of the correct class

logP (y = c|X(t)) using stochastic gradient descent. We

use images from multiple exposure times where the weight

W is shared across time, and the bias b are estimated inde-

pendently per time. Then we solve for the aj’s from the bias

estimates using Eq. 5. See Appendix A.3.

3. Experiments
We study the effectiveness of WaldNet in trading off

speed versus accuracy in two recognition tasks. We
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Figure 3. Speed accuracy tradeoff of WaldNet. CIFAR10 (left)

and MNIST (right). WaldNet is trained on images from multi-

ple PPP levels. Models labeled with PPP= x are “specialists”

that have the same model complexity as WaldNet but trained us-

ing images from PPP=x only, and are used to access the optimal

ER achievable by models of the same architecture at those PPPs.

WaldNet makes decisions typically in less than 1 photon per pixel.

consider two standard datasets: MNIST [11] and CI-

FAR10 [10]. We synthesize lowlight images by generat-

ing a sequence of photons for each pixel, treating the pixel

values as the ground truth intensity. We set the dark cur-

rent ǫ = 3%. The brightest image we synthesize has about

28 photons, which corresponds to a pixel-wise maximum

signal-to-noise ratio of 16 (4-bit accuracy), whereas the

original MNIST images has (7 to 8-bit accuracy) that corre-

sponds to 214 to 216 photons. We train WaldNet using im-

ages with light levels at PPP∈ {0.2, 3.0, 220} for MNIST,

and {0.2, 2.2, 22, 220} for CIFAR10, where the PPP is pro-

vided in tandem with the images so that network can adjust

the biases according to Eq. 5. Details of model architecture

and training protocol are in Appendix. A.3.

As a baseline, we train an ensemble of “specialist” mod-

els. Each specialist is a deep convolutional network with

the same model architecture as the WaldNet, but is trained

using only images at a single PPP. While these specialist

models can not in theory be applied to images at different

PPPs, we use a sensible strategy to do so. We scale their

biases linearly with time to account for the increase in mag-

nitude in the input (note that this is almost identical to Eq. 5

apart from using the wrong scaling factor). As the num-

ber of specialists approaches infinity, the ensemble gives a

performance upper bound on WaldNet.

As shown in Fig. 3, WaldNet is very close to the best

performance of the ensemble of specialists in trading off

speed versus accuracy, despite the fact that the ensemble

uses 3−4 times the parameters. Overall, to stay with in 1%
degradation from the optimal performance, WaldNet only

requires about 10 PPP in CIFAR10 and < 1 PPP in MNIST.

4. Discussion and Conclusions
‘Scotopic vision’ is vision starved for photons. This hap-

pens when available light is low, and image capture time is

longer than computation time. In this regime vision compu-

tations start as soon as the shutter is opened, and algorithms

should be designed to process photons as soon as they hit

the photoreceptors. To our knowledge, our study is the first

to explore the exposure time versus accuracy trade-off of

visual classification, which is essential in scotopic vision.

The proposed WaldNet provides an efficient approach to

combining photon arrival events over time to form a coher-

ent probabilistic interpretation, which allows the model to

make a decision as soon as sufficient evidence has been col-

lected. The proposed algorithm may be implemented by

a deep feed-forward network that is very similar to a deep

convolutional network. Despite the similarity of architec-

tures, an experimental comparison of our adaptive network

with the conventional kind shows large performance differ-

ences, both in terms of model parsimony and response time.
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