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Abstract

Any multi-party conversation system benefits from

speaker diarization, that is, the assignment of speech sig-

nals among the participants. We here cast the diariza-

tion problem into a tracking formulation whereby the active

speaker is detected and tracked over time. A probabilis-

tic tracker exploits the on-image (spatial) coincidence of vi-

sual and auditory observations and infers a single latent

variable which represents the identity of the active speaker.

Both visual and auditory observations are explained by a

recently proposed weighted-data mixture model, while sev-

eral options for the speaking turns dynamics are fulfilled by

a multi-case transition model. The modules that translate

raw audio and visual data into on-image observations are

also described in detail. The performance of the proposed

tracker is tested on challenging data-sets that are available

from recent contributions which are used as baselines for

comparison.

1. Introduction

In human-computer interaction (HCI) and human-robot

interaction (HRI) it is often necessary to solve multi-party

dialog problems. For example, if two or more persons are

engaged in a conversation, one important task to be solved,

prior to automatic speech recognition (ASR) and natural

language processing (NLP), is to correctly assign speech

segments to corresponding speakers. This problem is of-

ten referred to as speaker diarization in the speech/language

processing literature and a number of solutions has been

recently proposed, e.g., [2]. When only auditory data are

available, the task is very difficult because of the inherent

ambiguity of mixed acoustic signals captured by the micro-

phones. An interesting alternative consists in combining au-

ditory and visual data. The two modalities provide comple-

mentary information and hence audio-visual approaches to

speaker diarization are likely to be more robust than audio-

only approaches.

Figure 1: The auditory and visual data are recorded with

two microphones and one camera. The audio signals are

segmented into frames and each frame (vertical grey rectan-

gle) is transformed into a binaural spectrogram. This spec-

trogram is composed of a sequence of binaural vectors (ver-

tical rectangles) and each binaural vector is mapped onto

a sound-source direction which corresponds to a point in

the image plane (green dots). The proposed audio-visual

tracker associates people detected in the image sequence

with these sound directions via audio-visual clustering that

is combined with an active-speaker transition model.

Several audio-visual diarization methods were recently

proposed, e.g., [14, 2, 12]. Noulas et al. [14] proposed a

graphical model, where latent discrete variables represent

speaker identities and speaker visibilities over time. The

main limitation of [14] as well as of other audio-visual ap-

proaches reviewed in [2] is that these methods require the

detection of frontal faces and of mouth/lip motions. Indeed,

audio-visual association is often solved using the temporal

correlation, over several seconds, between facial features

and audio features [15]. Minotto et al. [12] learn an SVM

classifier using labeled audio-visual features, which is de-

pendent on the acoustic properties of the training data. They

combine voice activity detection with sound-source local-
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ization using a linear microphone array. The latter can only

provide the azimuth (horizontal) sound direction. Their

method relies on mouth tracking, hence frontal views of the

speakers are required as well.

More generally, audio-visual association for speaker di-

arization can be achieved on the premise that a speech sig-

nal coincides with a person that is visible and that emits

a sound. This coincidence must occur both in space and

time. In formal multi-party conversations, diarization is fa-

cilitated by participants that talk sequentially, presence of

a short silence between speech turns, and participants fac-

ing the cameras while remaining seated or static. In these

cases, audio-visual association based on temporal coinci-

dence seems to provide satisfactory results, e.g., [9]. In

informal settings which are very common, particularly in

HRI, the situation is much more complex. The perceived

audio signals are corrupted by environmental noise, rever-

berations, and several persons may occasionally speak si-

multaneously. Moreover, people may wander around, turn

their heads away from the sensors, be occluded by other

people, suddenly disappear from the camera field of view,

and appear again later on.

These problems were addressed by several authors in dif-

ferent ways. For example, [5] proposed a multi-speaker

tracker using approximate inference implemented with a

Markov chain Monte Carlo particle filter (MCMC-PF). In

[13] a 3D visual tracker is proposed, based on MCMC-PF

as well, to estimate the positions and velocities of the par-

ticipants which are then passed to blind source separation

based on beamforming [19]. Reported experiments of both

[5, 13] require a network of distributed cameras to guaran-

tee that frontal views of the speakers are always available.

More recently, [10] proposed to use audio information to

assist the particle propagation process and to weight the ob-

servation model. This implies that audio data are always

available and that they are reliable enough to properly re-

locate the particles. While audio-visual multiple persons

tracking methods provide an interesting methodology, they

do not address the challenging speaker diarization problem.

In this paper we propose to enforce audio-visual spatial

coincidence, e.g., [1, 8, 10], rather than temporal coinci-

dence, e.g., correlation [9, 16], into diarization. We consider

a setup consisting of people that are engaged in a multi-

party conversation while they are free to move and to turn

their attention away from the cameras. We propose to com-

bine an online multi-person visual tracker [3], with a voice

activity detector [17], and a sound-source localizer [4], e.g.,

Fig. 1. Assuming that the image and audio sequences are

synchronized, we propose to group auditory features and

visual features based on the premise that they share a com-

mon location if they are generated by the same speaker. We

introduce a latent variable representing the active-speaker,

and we devise an on-line tracker such that the identity and

location of the active speaker is estimated over time. We

propose a generative observation model, based on the re-

cently proposed weighted-data Gaussian mixture [6], that

evaluates the posterior probability of an observed person to

be the active speaker, conditioned by the output of a multi-

person visual tracker, a sound-source localizer, and a voice

activity detector. We also propose a dynamic model that

allows to estimate the active speaker using temporal transi-

tion probabilities modeling speaking activity transition pri-

ors from frame t−1 to frame t. The proposed on-line track-

ing method uses an efficient exact inference algorithm.

The remainder of this paper is organized as follows.

Section 2 formally describes the proposed exact inference

method; section 2.1 describes the audio-visual generative

observation model; section 2.2 describes the proposed tran-

sition probabilities model. Section 3 describes implementa-

tion details and experiments. Finally, section 4 draws some

conclusions. Videos, Matlab code and additional examples

are available online.1

2. Tracking the Active Speaker

We start by introducing some notations and definitions.

Upper-case letters denote random variables while lower-

case letters denote their realizations. We consider an im-

age sequence that is synchronized with an audio sequence

and let t denote the frame index of both visual and au-

dio modalities (without loss of generality, one can as-

sume that audio and visual frames have the same tem-

poral length). Let N be the maximum number of vi-

sual observations at any time. Hence at frame t we have

Xt = (Xt1, . . . ,Xtn, . . . ,XtN ) ∈ R
2×N , where the

random variable Xtn corresponds to the location of per-

son n at t. We also introduce the binary variables V t =
(Vt1, . . . , VtN ) such that Vtn = 1 if person n is detected

visible in frame t and Vtn = 0 if the person is not detected.

The time series X1:t = {X1, . . . ,Xt} and associated visual

presence masks V1:t = {V1, . . . , Vt} can be estimated using

a multi-person tracker. We perform multi-person tracking

using [3] (see section 3 below). Let Nt =
∑

n Vtn denote

the number of persons that are visible at t.

We also consider auditory information. Audio activity

is described by the binary variable At ∈ {0, 1} that is es-

timated using voice activity detection (VAD) and which is

equal to 1 if audio activity is detected at t and 0 otherwise.

Whenever a frame has audio activity, a binaural (two mi-

crophones) sound-source localization (SSL) algorithm pro-

vides spatial audio information: a sound-source direction

(azimuth and elevation) is mapped onto the image plane,

1https://team.inria.fr/perception/

avdiarization/
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e.g., [4], Fig. 1, and section 3 below. Let K be the num-

ber of sound-source directions estimated at frame t when

At = 1. Let Yt = (Y t1, . . . ,Y tk, . . . ,Y tK) ∈ R
2×K

denote the K sound-source directions at t. Hence, VAD

combined with SSL estimate a time series of sound loca-

tions Y1:t = {Y 1, . . . ,Y t} and associated audio-activity

binary masks A1:t = {A1, . . . , At}.

The objective is to track the active speaker which

amounts to associate over time the audio activity (if any)

with one of the tracked persons. This is also referred to

as audio-visual speaker diarization, e.g., [14] which is ad-

dressed below in the framework of temporal graphical mod-

els; A time-series of discrete latent variables is introduced,

S1:t = {S1, . . . , St} such that St = n, n ∈ {1, . . . , N} if

person n is both observed and speaks at t, and St = 0 if

none of the visible persons speaks at t. Notice that St = 0
encompasses two cases, namely (i) there is audio activity at

t (At = 1) but sound-source locations cannot be associated

with one of the visible persons, and (ii) there is no audio

activity at t (At = 0). The active-speaker tracking can be

formulated as a maximum a posteriori (MAP) estimation

problem:

ŝt = argmax
st

P (St = st|x1:t,v1:t,y1:t,a1:t). (1)

The posterior probability (1) can be written as:

P (St =st|u1:t) =

P (ut|St = st,u1:t−1)P (St = st|u1:t−1)

P (ut|u1:t−1)
, (2)

where we used the notation ut = (xt,vt,yt, at). The nu-

merator of (2) expands as:

P (ut|St = st)

N
∑

i=0

P (St = st|St−1 = i)P (St−1 = i|u1:t−1).

The denominator of (2) expands as:

N
∑

j=0

(

P (ut|St = j)
(

N
∑

i=0

P (St = j|St−1 = i)

×P (St−1 = i|u1:t−1)
))

.

The evaluation of this recursive relationship requires (i) the

joint audio-visual likelihood P (ut|St = st), (ii) the transi-

tion probabilities P (St = j|St−1 = i), and (iii) the initial

posteriors P (S1 = s1|u1), s1 ∈ {0, 1, . . . , n, . . . , N}. The

exact evaluation of (1) is tractable and hence solving the

MAP problem (2) is straightforward.

2.1. Audio­Visual Association

In this section we derive an expression for the joint

audio-visual likelihood. One crucial feature of the proposed

model is its ability to robustly associate the acoustic activ-

ity at frame t with a person. The generative model that

is proposed below assigns the audio activity, if any, to a

person, or to nobody. In this context, let Ztk be the (au-

dio) observation-to-person assignment variable in our mix-

ture model. The case At = 1 is first considered, namely

there is audio activity at t. The source location observed

variables Y tk are assumed to be drawn from the following

WD-GMM (weighted-data Gaussian mixture model) [6]:

P (ytk|xt,vt, At = 1;θt,φtk)

=

N
∑

n=1

πtnvtnN (ytk|xtn,
1

wtk
Σtn), (3)

where the parameters of the posterior gamma distribution

are estimated with θt = ({πtn}
N
n=1, {Σtn}

N
n=1) denotes

the GMM free parameters, namely the priors πtn = P (St =

n),
∑N

n=1 vtnπtn = 1 and the 2 × 2 covariance matri-

ces Σtn. In the proposed formulation, the mixture mean

vectors, {xtn}
N
n=1 are observed and they correspond to

image locations of people heads, while the visibility vari-

ables {vtn}
N
n=1 allow to consider only those that are visi-

ble at t. For convenience we only address the case Nt ≥
1. Notice that this model comprises a weight variable

wtk > 0 drawn from a gamma distribution G(w;α, β) =
Γ−1(α)βαwα−1e−βw with parameters φ = (α, β). There

is a weight associated with each audio observation ytk and

one may notice that the weight acts as a precision, higher

the weight more relevant the observation, and that the ob-

served data are independent but not identically distributed.

The posterior probability of a sound-source direction to

be associated with the n-th visible person writes [6]:

ηtkn = P (Ztk = n|ytk,xt,vt, At = 1;θt,φtk) ∝

πtnvtnP(ytk|xtn,Σtn, αtk, βtk),
(4)

where P denotes the Pearson type VII probability distribu-

tion function (the reader is referred to [18] for a recent dis-

cussion regarding this distribution, also called the Arellano-

Valle and Bolfarine generalized t-distribution [11]):

P(y;x,Σ, α, β) =

Γ(α+ d/2)

|Σ|1/2 Γ(α) (2πβ)d/2

(

1 +
‖y − x‖2

Σ

2β

)−(α+ d

2
)

.

(5)

The WD-GMM formulation allows one to write the pos-

terior distribution of wtk, which is a gamma distribution be-

cause it is the conjugate prior of the precision of the Gaus-

sian distribution:

P (wtk|Ztk = n,ytk,xtn;θt, γtk, δtkn) ∝ G(wtk; γtk, δtkn),
(6)
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where γtk = αtk + d/2 and δtkn = βtk +

1/2 ‖ytk − xtn‖
2
Σtn

. This allows to evaluate the posterior

mean of wtk, namely:

wtk =

N
∑

n=1

vtnηtknwtkn, (7)

where wtkn = γtk/δtkn is the conditional mean, which

is needed to update the mixture parameters (proportions

and covariances in our case) during the maximization step

(please consult Section 5 in [6] for more details). By inspec-

tion of the above equations it is easily seen that the value of

wtk is small if the distances between an audio observation

ytk and the cluster centers xtn are large. In other words,

the weight associated with an observed sound location that

is far away from the observed persons is small compared

with the weight of an observed sound location that coin-

cides with a person location. Hence, the estimated value of

wtk, namely wtk, reduces the influence of outliers. Notice

that the weights wtk play a different role than the respon-

sibilities ηtkn. Indeed, the responsibilities are normalized,
∑N

n=1 ηtkn = 1, hence they can only account for a relative

measure of the data relevance. Therefore, we use the esti-

mated weights {wtk}
K
k=1 and an inlier/outlier threshold ws

to classify the audio observations into an inlier set Yin and

an outlier set Yout.

Altogether, this formulation allows one to characterize

the audio activity of each observed person. Assuming that

the audio observations are independent, one obtains the

likelihood of person n to be the active speaker:

P (yt,xt,vt, At = 1|St = n) ∝







∑

k∈Yin

ηtkn, 1 ≤ n ≤ N
∑

k∈Yout

ηtkn, n = 0

(8)

If there is no audio activity at time t, At = 0, then St = 0
(there is no active speaker) and the likelihood of an active

speaker is a uniform distribution:

P (yt,xt,vt, At = 0|St = n) ∝

P (St = n|yt,xt,vt, At = 0) =

{

r n = 0
1−r
Nt

1 ≤ n ≤ N

(9)

where r ∈ [0, 1] describes the probability that there is no

audio activity t, i.e., either there is no visible person or none

of the visible persons speaks.

2.2. State Transition Model

The state transition probabilities, p(St = j|St−1 = i),
provide a temporal model for tracking speech turns. Several

cases need to be considered based on the presence/absence

of persons and on their speaking status (for convenience and

without loss of generality we set vt0 = 1):

p(St = j|St−1 = i)

=























ps if i = j and vt−1i = vti = 1
(1− ps)/Nt if i 6= j and vt−1i = vtj = 1
0 if vt−1i = vt−1j = 1 and vtj = 0
1/Nt if vt−1i = 1, vti = 0 and vtj = 1
1/N if vt−1i = 0 and vtj = 0.

(10)

The first case of (10) defines the self-transition probability,

ps, e.g., ps = 0.8, of person i present at both t − 1 and

t. The second case defines the transition probability from

person i present at t−1 to another person j present at t. The

third case simply forbids transitions from person i present

at t− 1 to person j present at t− 1 but not present at t. The

fourth case defines the transition probability from person i
present at t − 1 but not present at t, to a person j present

at t. The fifth case defines the transition probability from

person i not present at t − 1 to person j that is not present

at t. These latter transition probabilities are only defined for

completeness as transition between non-visible persons are

forbidden by the observation model. These five cases can

be grouped in a compact way to yield the state transition

probability matrix (δij = 1 if i = j and 0 otherwise):

p(St = j|St−1 = i) =
1− vti
Nt

+ vt−1ivtj

×

(

psδij +
(1− ps)(1− δij)

Nt
+

1− vti
Nt

)

(11)

One may easily verify that
N
∑

j=1

p(St = j|St−1 = i) = 1.

3. Implementation and Experiments

As already outlined, the proposed active-speaker tracker

may well be viewed as a diarization process summarized

as follows: track multiple persons based on visual informa-

tion, estimate the auditory activity, and associate this activ-

ity to one of the tracked persons. Unlike existing audio-

visual diarization approaches, which assume that the partic-

ipants are always facing the cameras, the proposed model

can deal with participants that are temporarily occluded, or

who come in and out of the field of view of the camera.

Unfortunately there are no publicly available datasets that

include participants that take speech turns while they wan-

der around, occlude each other and move in and out of the

camera field of view.

Therefore we recorded our own data,2 gathered with two

microphones and one camera e.g., Fig. 1. The audio data

2https://team.inria.fr/perception/avtrack1/
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are delivered by two microphones plugged into the ears of

an acoustic dummy head; the visual data are delivered by

a video camera. The two modalities are synchronized such

that the video frames are temporally aligned with the audio

samples. The videos are recorded at 25 FPS while the au-

dio signals are sampled at 48000 Hz. With this setup, we

gathered two scenarios, the counting scenario, Fig. 2 and

the chat scenario, Fig. 3. The counting sequence has 500

video frames (20 seconds) while the chat sequence has 850

video frames (34 seconds).

We briefly describe the multi-person tracking and sound-

source localization techniques used to obtain estimates

of our observed auditory and visual variables (Sec. 2.1).

Among the visual tracking methods that are currently avail-

able, we chose the multi-person tracker of [3]. This method

has several advantages, namely (i) it robustly handles frag-

mented tracks, which are due to occlusions or to unreliable

detections, and (ii) it performs online discriminative learn-

ing to handle similar appearances of different persons. The

multi-person tracker provides realizations of the visual ob-

servation variables X1:t and associated visual-presence bi-

nary masks V1:t, as explained in detail in Sec. 2.

We adopted the sound-source localization method of [4]

to estimate sound directions with two degrees of freedom

(azimuth and elevation). A prominent advantage of this

method, in the context of audio-visual analysis, is that it

provides a built-in mechanism for mapping sound directions

onto image locations. Hence sound-source directions are

eventually expressed in pixel coordinates. In practice, the

signals delivered by the two microphones are transformed

in the Fourier domain in the following way: the short-time

Fourier transform (STFT) is applied to a 0.064 s window of

the two signals and this window is shifted along the time

axis with 0.008 s hops (or 0.056 s overlap between succes-

sive windows). With this Fourier domain sampling, there

are 5 feature vectors associated with each video frame. In

order to increase the number of audio observations that are

associated with a video frame, we consider a longer audio

frame while we allow a large overlap between audio frames:

this yields 30 feature vectors for each video frame.

A complex-valued feature vector is thus built from each

window, whose module and argument describing the ILD

(interaural level difference) and IPD (interaural phase dif-

ference) respectively. It is well known that these binau-

ral cues contain sound direction information. Each fea-

ture vector is then mapped onto the image plane using the

piecewise-affine high-dimensional to low-dimensional re-

gression method of [4]. In combination with voice activity

detection (VAD), this process provides a time series of re-

alizations of both the sound direction variables Y1:t and the

associated speech-activity binary masks A1:t, as detailed in

section 2.

In addition to our own data, we also tested our method

on the dataset used in [12]. These recordings contain one to

three static persons facing the camera and the microphones,

i.e., a Kinect. It is important to note that this dataset often

contains persons that speak simultaneously and that speaker

diarization is quite challenging in this case. Within this

dataset, the Two10 sequence is a representative example and

hence we applied our method to this sequence. The audio

recordings in this dataset used a microphone configuration

quite different than ours, namely a linear microphone array

with 8 microphones. For this reason we applied the SRP-

PHAT sound-source localization method to the audio data

available with the Two10 sequence, which only provides

the sound’s azimuth; this direction is then mapped onto an

image column using the microphone-to-camera transforma-

tion parameters of the Kinect, hence there is a large vertical

sound-direction uncertainty.

We compared the proposed method with [7] and with

[12]. The main difference between the current work and [7]

is the audio-visual association model. In [7] a GMM with a

uniform component (GMM+U) is used while here we pro-

pose to use the weighted-data GMM (WD-GMM). More-

over, [7] considers a single audio observation for each video

frame and the parameters of the GMM+U mixture are man-

ually defined. The parameters of the proposed WD-GMM

observation model are learned on-line by gathering audio

observations within a 0.4 s window centered on each video

frame. This robustly clusters audio observations gener-

ated by the same person. The diarization method proposed

in [12] uses a supervised classifier (SVM), trained using

sequences from the same dataset (same acoustic environ-

ment), to discriminate between speaking and non-speaking

persons. This contrasts with our on-line joint audio-visual

observation model which is completely unsupervised.

Table 1 quantitatively compares the methods in terms of

the speaker diarization performance. The proposed model

outperforms the one proposed in [7] for counting sequence,

while it competes the state-of-the-art method of [12], al-

though the latter benefits from training on data from the

same experimental setting.

Figures 2, 3 and 4 display our diarization results on the

counting, chat and Two10 sequences, respectively. The pro-

posed method obtains very good results over the counting

sequence (see Figure 2) even if the sequence exhibits large

portions where the two speakers speak at the same time.

The performance over the challenging case of the chat se-

quence is lower than for the counting sequence. This drop

can be explained by the fact that one speaker is mostly fac-

ing away both the camera and the microphones, thus his

localization from audio data is much more challenging be-

cause of reverberations. Finally, the results on sequence

Two10 (Fig. 4) should be interpreted on the premise that
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Figure 2: The counting sequence involves two moving persons that occasionally occlude each other. Visual tracking results

(first row). Diarization results (second row) illustrated with a color diagram: each color corresponds to the audio activity of

a person. Ground-truth diarization (third row); notice that there is a systematic overlap between the two speech signals. The

raw audio signal delivered by the left microphone (fourth row).

Figure 3: The chat sequence involves two then three moving persons that take speech turns and that occasionally occlude

each other.

Figure 4: The Two10 sequence from [12] involves two static persons that speak simultaneously and always face the camera

and the microphones.
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our method detects only one speaker at a time.

Table 1: Correct detection rates (CDR) obtained by the pro-

posed method and two other methods. The Chat and Two10

sequences contain overlapping speaking persons. The Chat

sequence contains a varying number of persons that take

speech turns.

Sequence Proposed [7] [12]

Counting (Fig. 2) 84% 75% n/a

Chat (Fig. 3) 55% 64% n/a

Two10 (Fig. 4) 88% n/a 92%

4. Conclusions

The paper addressed the problem of active speaker track-

ing using auditory and visual data gathered with two micro-

phones and one camera. Recent work in audio-visual di-

arization has capitalized on temporal coincidence of the two

modalities, e.g., [2, 14]. In contrast, we propose a speech-

turn detection and tracking method that enforces spatial co-

incidence: it exploits that a sound-source and associated

visual-object should have the same spatial location. Con-

sequently, it is possible to perform speaker localization by

detecting and localizing persons in an image, estimating the

directions of arrival of the active sound sources, mapping

these sound directions onto the image, and associating the

dominant sound source with one of the persons that are vis-

ible in the image. Moreover, this process is plugged into a

dynamic Bayesian framework that robustly tracks the iden-

tity of the speakers and estimates a speech-turn latent vari-

able. We described in detail the proposed method and illus-

trated its effectiveness with challenging scenarios involving

moving people who speak inside a reverberant room and

who may visually occlude each other. In the future, we plan

to extend our method such that it can robustly deal with si-

multaneously speaking people. This could be addressed by

incorporating rich characterization of the acoustic data and

by making use of sound-source separation algorithms.

References

[1] X. Alameda-Pineda and R. Horaud. Vision-guided robot

hearing. The International Journal of Robotics Research,

34(4-5):437–456, Apr. 2015.

[2] X. Anguera Miro, S. Bozonnet, N. Evans, C. Fredouille,

G. Friedland, and O. Vinyals. Speaker diarization: A review

of recent research. IEEE Transactions on Audio, Speech, and

Language Processing, 20(2):356–370, 2012.

[3] S.-H. Bae and K.-J. Yoon. Robust online multi-object track-

ing based on tracklet confidence and online discriminative

appearance learning. In Computer Vision and Pattern Recog-

nition, pages 1218–1225, 2014.

[4] A. Deleforge, R. Horaud, Y. Y. Schechner, and L. Girin.

Co-localization of audio sources in images using binaural

features and locally-linear regression. IEEE Transactions

on Audio, Speech and Language Processing, 23(4):718–731,

2015.

[5] D. Gatica-Perez, G. Lathoud, J.-M. Odobez, and I. Mc-

Cowan. Audiovisual probabilistic tracking of multiple

speakers in meetings. IEEE Transactions on Audio, Speech

and Language Processing, 15(2):601–616, 2007.

[6] I. D. Gebru, X. Alameda-Pineda, F. Forbes, and R. Horaud.

EM algorithms for weighted-data clustering with applica-

tion to audio-visual scene analysis. arXiv:1509.01509, Sept.

2015.

[7] I. D. Gebru, S. Ba, G. Evangelidis, and R. Horaud. Audio-

visual speech-turn detection and tracking. In The Twelfth In-

ternational Conference on Latent Variable Analysis and Sig-

nal Separation, Liberec, Czech Republic, Aug. 2015.

[8] V. Khalidov, F. Forbes, and R. Horaud. Conjugate mixture

models for clustering multimodal data. Neural Computation,

23(2):517–557, Feb. 2011.

[9] E. Kidron, Y. Y. Schechner, and M. Elad. Cross-modal local-

ization via sparsity. IEEE Transactions on Signal Process-

ing, 55(4):1390–1404, 2007.

[10] V. Kilic, M. Barnard, W. Wang, and J. Kittler. Audio assisted

robust visual tracking with adaptive particle filtering. IEEE

Transactions on Multimedia, 17(2):186–200, 2015.

[11] S. Kotz and S. Nadarajah. Multivariate t Distributions and

their Applications. Cambridge University Press, 2004.

[12] V. P. Minotto, C. R. Jung, and B. Lee. Multimodal on-line

speaker diarization using sensor fusion through SVM. IEEE

Transactions on Multimedia, 2015.

[13] S. Naqvi, M. Yu, and J. Chambers. A multimodal approach

to blind source separation of moving sources. IEEE Jour-

nal of Selected Topics in Signal Processing, 4(5):895 –910,

2010.

[14] A. Noulas, G. Englebienne, and B. J. A. Krose. Multimodal

speaker diarization. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 34(1):79–93, 2012.

[15] G. Potamianos, C. Neti, G. Gravier, A. Garg, and A. W. Se-

nior. Recent advances in the automatic recognition of audio-

visual speech. Proceedings of the IEEE, 91(9):1306–1326,

2003.

[16] M. E. Sargin, Y. Yemez, E. Erzin, and M. A. Tekalp. Audio-

visual synchronization and fusion using canonical correla-

tion analysis. IEEE Transactions on Multimedia, 9(7):1396–

1403, 2007.

[17] J. Sohn, N. S. Kim, and W. Sung. A statistical model-based

voice activity detection. IEEE Signal Processing Letters,

6(1):1–3, 1999.

[18] J. Sun, A. Kabán, and J. M. Garibaldi. Robust mixture clus-

tering using Pearson type VII distribution. Pattern Recogni-

tion Letters, 31(16):2447–2454, 2010.

[19] B. D. Van Veen and K. M. Buckley. Beamforming: A ver-

satile approach to spatial filtering. IEEE ASSP Magazine,

5(2):4–24, 1988.

21


