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Abstract

Audio imaging can play a fundamental role in computer

vision, in particular in automated surveillance, boosting the

accuracy of current systems based on standard optical cam-

eras. We present here a new hybrid device for acoustic-

optic imaging, whose characteristics are tailored to auto-

mated surveillance. In particular, the device allows real-

time, high frame rate generation of an acoustic map, over-

laid over a standard optical image using a geometric cal-

ibration of audio and video streams. We demonstrate the

potentialities of the device for target tracking on three chal-

lenging setup showing the advantages of using acoustic im-

ages against baseline algorithms on image tracking. In par-

ticular, the proposed approach is able to overcome, often

dramatically, visual tracking with state-of-art algorithms,

dealing efficiently with occlusions, abrupt variations in vi-

sual appearence and camouflage. These results pave the

way to a widespread use of acoustic imaging in application

scenarios such as in surveillance and security.

1. Introduction

Current systems for computer vision, in particular the

ones devoted to automated surveillance and security, are

based on a network of sensors, typically including cameras

(standard optical, thermal and infra-red) together with other

devices such as ultra-sound barriers or even radars, whose

data streams are typically acquired and processed from a

central unit.

Among these sensors modalities, acoustic imaging has

Figure 1. Example of an acoustic map acquired in an outdoor envi-

ronment overlapped with an optical image. The color-coded map

provides at each pixel the sound intensity of the emitting sources.

Notice that the red peak is localized at the engine of the van where

the emitting source is located.

surprisingly received scarce attention in the surveillance

community, despite the several advantages it bears. These

images, resulting from acoustic beamforming applied to the

signals acquired by a set of microphones, encode at each

pixel the sound intensity coming from each spatial direction

(check Fig. 1 for an example). Acoustic imaging may in-

crease the robustness and reliability toward adverse weather

conditions because sound propagation is not or barely af-

fected by fog, dust and snow. Moreover, it guarantees 24h
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Figure 2. Prototype of the acoustic-optic imaging device. Notice

the aperiodic microphone layout, the on board processor in the

lower right corner and the optical camera at the center of the de-

vice (the camera is placed in the opposite direction for ease of

visualization).

functioning because sound is not affected by variations in

natural or artificial illumination. Acoustic imaging is also

robust to camouflage because a sound source can be local-

ized even if it is hidden behind other objects and it can de-

tect events with little or no visual counterpart, e.g. a gunshot

in a crowded scene. Furthermore, it is a completely passive

technology, differently from active radars, optical and in-

frared cameras which require light emitters. For this reason

a passive acoustic device does not allow identification from

hostile third parties if the sensor is not visible.

Such features make acoustic imaging devices suited to

extend the functionalities of current surveillance systems

in those scenarios where the target of interest is character-

ized also by a sound signature. In particular, the coupling

together with a video camera may enable compelling ap-

plications such as the visual localisation of events that are

difficult to understand only using the video signal (e.g. a

gunshot in a crowd). Moreover event detection, especially

for highly threatening events such as vandalism and riots,

have a much more distinguishable audio signature than can

help discrimination if coupled with video. However these

advantages have to cope with technological limitations of

the devices that generate the acoustic map. Commercially

available acoustic imaging devices, known as acoustic cam-

eras [1, 2], are mainly intended for industrial testing or en-

vironmental noise measurement, performed for small pe-

riods of time with temporary installations and requiring a

human operator on site. They need a PC connection (no

stand-alone functioning) and usually perform off-line pro-

cessing of data. Moreover they come at high costs since

their use is limited to niche markets and as a consequence

they can not gain from economies of scale.

Here instead we present a new acoustic-optic device

that overcomes the above hardware/cost limitations1 and

we show how this sensor can provide remarkable improve-

ments in a standard Computer Vision tasks such as image

tracking2. The proposed device produces a real time and

high frame rate stream of acoustic images geometrically

overlapped, by design, with the optical ones. The opti-

mized microphone layout and processing parameters nec-

essary for beamforming allow to obtain an optimal acous-

tic image quality in terms of spatial resolution, dynamic

range and robustness to diverse environmental conditions,

while keeping limited the amount of hardware and software

resources. Hence all the data processing is performed on

board, by making it a true stand-alone device (check Fig.

2).

Among the several tasks that can be tackled using acous-

tic images, we have chosen visual tracking since improve-

ments are largely noticeable against the methods using vi-

sual data only. Despite notable improvements and evalua-

tions over challenging datasets [20, 15], visual tracking re-

mains in many situations a challenging task, mainly due to

the abrupt changes in appearance of the object of interest

or occlusions. In many cases even State-of-Art approaches

like [11, 13, 21, 3, 9] dramatically fail after few frames. Dif-

ferently, many targets like vehicles, drones, humans speak-

ing have a very stable sound emission that makes audio

tracking much simpler than the visual one. Moreover occlu-

sions do not impair totally the sound propagation, allowing

also tracking of hidden objects. Finally the spectral signa-

ture of targets can be exploited to distinguish them from

other potentially interfering audio sources.

A number of audio tracking methods has been proposed

in recent years, grounded on localization by beamforming

methods and/or Time Difference of Arrival (TDOAs) esti-

mation. Several issues like multi target tracking [7, 14],

robustness to reverberation [17], ground noise and interfer-

ing sources [19], time varying and intermittent sources [12]

have been addressed, making audio tracking a mature re-

search field. However, the great part of systems for audio

tracking is based on a limited number of microphones (typ-

ically < 10), typically spread in the environment. Such

kind of layout limits the accuracy of localization and the

number of sources that can be jointly localized. Finally,

the relation between actual position of the target and mea-

surements from the microphones is characterized by strong

1The hardware manufacturing per item is roughly 1000 $ considering a

production of about 100 items.
2Notice that acoustic images can also be used for other tasks such as

detection, localization, background subtraction.
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non-linearities that forces to use ad hoc tracking algorithms

with complex models of measurement noise [4].

Differently, we propose a compact device, easily de-

ployable, producing an acoustic image geometrically over-

lapped by design with the optical one. This fact has multiple

advantages:

1. Audio and video information can be easily fused to-

gether thanks to the pixel-to-pixel correspondence.

2. Tracking can be performed taking as measurement the

cues of the acoustic image instead of cues of the sin-

gle microphones’ raw signal. This allows a transfer

knowledge from the much more developed field of

video tracking.

3. The relation between measurement and state in track-

ing is straightforward: actually, in absence of noise

they are identical if tracking is performed onto the im-

age plane.

4. The overlap between acoustic and optical image allows

a fair comparison between audio and video trackers.

In particular, we demonstrate here that audio imaging

outperforms visual tracking on three different scenar-

ios.

The paper is organized as follows. Sec. 2 describes the

new device and the solutions adopted for the acoustic-optic

image generation. Sec. 3 presents the audio tracking ap-

proach and the three tracking methods considered for evalu-

ation. Sec. 4 shows the results on audio and video tracking.

Finally Sec. 5 draws conclusions and directions for future

work.

2. Acoustic camera and beamforming

2.1. Beamforming and acoustic image generation

An acoustic map is built up by a spatial-temporal filter-

ing procedure, known as beamforming [16], that takes as

input the signals acquired by an array of microphones. In

detail, consider a planar array of L microphones, placed in

the (x, y) plane with the array center at coordinates (0, 0, 0).
Microphones are omnidirectional and placed at coordinates

x
mic
l = (xmic

l , ymic
l , 0) with l = 1 · · ·L. According to the

well known Filter-and-Sum beamforming [16], an acoustic

map Ma(m,n) can be expressed as follows:

Ma(m,n) =

∫

t∈T

∣

∣

∣

∣

∣

L
∑

l=1

wl(t) ∗ sl(t− τl(m,n))

∣

∣

∣

∣

∣

2

dt, (1)

where sl(t) is the signal received at microphone l, wl(t) is

the finite impulse response of the FIR filter l in cascade to

the l-th microphone, ∗ denotes the convolution operation,

c is the sound velocity in air, T is the current time window

and τl(m,n) is the delay imposed to the signal from the l-th
microphone, related to pixel (m,n) of the acoustic map. In

practice, the set of delays τl(m,n) for l = 1, · · · , L aligns

the signals coming from a given point xm,n in the 3D space

so that they can be summed coherently in the beamforming

procedure and their energy, calculated by integration over

the time window T , be visualized at pixel (m,n). In partic-

ular:

τl(m,n) =
(∥

∥x
mic
l − xm,n

∥

∥− ‖xm,n‖
)

/c. (2)

All the other signals coming from points different from

xm,n will not sum coherently and their contribution at the

(m,n)-th pixel intensity will be, in an ideal case, negligi-

ble. In a real case, due to the finite number of microphones

involved and the finite aperture of the device, the acous-

tic imaging method will have a given Point Spread Func-

tion (PSF), that spreads the contribution of each source over

all the image. The PSF affects the spatial resolution of the

acoustic image, as well as its dynamic range, the latter ac-

counting for the possibility to visualize several sources of

different power in the same time frame. The PSF can be

shaped tuning both the FIR filter impulse responses wl(t)
and the microphone layout. We adopted a data independent

beamforming techniques in which the set of wl(t) is fixed

and not dependent on the data statistics. Such choice al-

lows a more stable performance of the system and a notable

computational saving. In particular, we jointly optimized

filters coefficients and microphone positions following the

method of [6], which guarantees an optimal trade off be-

tween spatial resolution and dynamic range of the acoustic

image while keeping the number of microphones reason-

able. In addition it assures the robustness of the solution to-

wards deviations of the microphone parameters from their

theoretical values. The latter property is of paramount im-

portance when using low cost microphones, as done with

the present device.

Setting appropriately the points xm,n we can fix the projec-

tive relation between points in the 3D space and points in

the acoustic image. If we fix a focusing distance zfoc for

the acoustic image and set the points xm,n as follows:

xm,n = (mzfoc, nzfoc, zfoc), (3)

we obtain a relation that is equivalent to the one of an ideal

projective camera for points having z = zfoc. In fact plac-

ing the camera center in (0, 0, 0) and assuming a focal dis-

tance of the image plane of 1 we have that a generic 3D

point (x, y, z) is projected in (x/z, y/z) in the image plane.

Hence, the 3D point (mzfoc, nzfoc, zfoc) is projected in the

same pixel (m,n) for both the acoustic and optic image, i.e.

acoustic and optic images are mutually calibrated by design,

without the need of further processing. For a source placed

at z 6= zfoc, the point spread function of the acoustic image

will broaden, analogously to an out-of-focus optical image,

8



but its peak will remain centered around the correct pixel

(m,n).
The time implementation of the beamforming procedure in

Eq. 1 is computationally demanding, due both to the con-

volution operation and to the need of an high sampling rate,

far above the Nyquist rate, in order to evaluate the delayed

signals sl(t − τl(m,n)) with a reasonable approximation.

Moreover if we want to change the frequency band over

which the acoustic image is calculated, the whole beam-

forming operation must be replicated, or, in alternative,

each of the (m,n) signals must be filtered before squared

modulus integration in Eq. 1, both the two options being

computationally demanding. For this reason we adopted a

frequency implementation of the filter-and-sum beamform-

ing:

Ma(m,n) =

∫

f∈F

∣

∣

∣

∣

∣

L
∑

l=1

Wl(f)Sl(f)e
−j2πfτl(m,n)

∣

∣

∣

∣

∣

2

df,

(4)

where Sl(f) and Wl(f) are the Discrete Fourier Transform

(DFT) of sl(t) and wl(t) respectively and F is the desired

frequency band. Notice that the delays have been replaced

by complex exponentials, thus avoiding oversampling and

approximation errors. In addition the frequency band can

be easily tuned, simply changing the domain of integration

in Eq. 4.

2.2. The Acoustic­Optic camera

Based on the beaforming implementation and micro-

phone layout optimization described in the previous section,

we designed and assembled a prototype of a stand-alone

acoustic-optic camera.

The developed device is composed of three main mod-

ules: a planar array of 0.45× 0.45 meters composed of 128
MEMS low-cost digital microphones displaced according

to an optimized aperiodic layout, a video camera placed at

the device center and an on-board hybrid embedded proces-

sor as illustrated in Fig. 2. In order to deploy the sensor

in outdoor environments, we have also developed an ad-hoc

housing that allows an easy deployment (e.g. fixing it on a

pole) and robustness against atmospheric agents (Fig. 3).

The optical image provided by the video camera is over-

lapped onto the acoustic image, displayed as a color coded

image, encoding at each pixel the intensity of the sound

coming from a given direction, according to Section 2.1.

An example of acoustic- optic image is shown in Fig. 1.

The device is characterized by a working band of 200 Hz

- 10 kHz with an acoustic frame rate of 12 frames per sec-

ond. The maximum field of view is 90◦ in elevation and

360◦ in azimuth (tunable according to the video camera

field of view). The optimized microphone layout and fil-

tering procedure [6] provides an acoustic image resolution,

measured at -3 dB, of 5◦ at 6400 Hz3. The relative dynamic

range of the acoustic image (i.e. ability to visualize in the

same frame two sources with a different intensity) is equal

to 30 dB. Since the device is a passive sensor the range is

not defined a priori because it depends on the intensity of

the source. To give a concrete example, we were able to de-

tect noise of highway traffic up to 500 meters away from the

planar array. Notice that, if the acoustic sources are partic-

ularly far from the device and an accurate synchronization

of audio and video is necessary, it is advisable to consider

and compensate for the propagation time of the acoustic

wave. Depending on the application, it is necessary to as-

sess whether the overall delay in the resulting acoustic/optic

image display is acceptable.

The computation of the acoustic map and the overlap-

ping with the optical one is performed on board, in real time,

by means of a System on Chip, equipped with a Field Pro-

grammable Gate Array (FPGA) processor. Therefore, the

device can be used stand alone, simply connecting it to a

display, or it can be connected to a security network by a

standard Ethernet connection and remotely controlled.

Another characteristic of the device is the compliance

with different kinds of cameras, including thermal and

infra-red ones, that can easily substitute the optical one ac-

cording to the required application.

Figure 3. CAD model of the developed microphone array proto-

type.

3. Audio-video tracking

We briefly introduce the two acoustic tracking methods

used in our experiments in Section 3.1 and 3.2 and we will

compare them with a recent video tracking method pre-

sented in Section 3.3.

3.1. Kalman filter

The first acoustic tracking method considered is the

Kalman filter [5]. The target state is a 4-dimensional vector:

X = [x̃, ỹ, ˜̇x, ˜̇y], where x̃ and ỹ are the image coordinates

of the target and ˜̇x and ˜̇y are its velocity components, again

on the image. The measurement is a 2-dimensional vector

Z = [x̄, ȳ]. The matrix F describing the dynamic model

of the state and the measurement matrix H have been set as

3The main lobe of the beam pattern decreases at -3 dB with respect to

its maximum at an elevation angle of 5◦.
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follows:

F =









1 0 dt 0
0 1 0 dt
0 0 1 0
0 0 0 1









H =

[

1 0 0 0
0 1 0 0

]

(5)

where dt = 1/5. The dynamical model is quite simple,

assuming constant target velocity, while the measure is set

equal to the coordinates of the target in the image.

The noise covariance matrices on the state Q and on the

measure R are diagonal and set as follows:

Q =









σ2
p 0 0 0
0 σ2

p 0 0
0 0 σ2

s 0
0 0 0 σ2

s









R =

[

σ2
o 0
0 σ2

o

]

(6)

where σ2
p, σ2

s and σ2
o are the position, velocity and measure

variance respectively.

The measurement Z is given by the image coordinates

of the maximum peak in the acoustic image.

3.2. Particle filter

The Kalman filter is optimal under the assumption of

Gaussian additive noise in the measurements. However,

when interfering sources are present or the environment is

highly reverberant this assumption is grossly violated. In

fact, the acoustic image may show more than one peak and

often the highest one do not correspond with the location of

the source of interest. Hence, taking the coordinates of the

maximum of the acoustic image as measurement may lead

to high inaccuracies in the tracking performance. For this

reason we rely on the particle filter in which the posterior

probability density of the state is approximated as a sum of

weighted samples, named particles. The dynamic of each

particle follows the same model adopted for the Kalman fil-

ter, while the weights are updated and particles resampled

according to the likelihood function p(Z|X) extracted from

the acoustic map. More details on the particle filter imple-

mentation can be found in [8]. In a reverberant environ-

ment, characterized by a continuous target, such as voice,

moving around and impulsive interfering sources (e.g. foot-

steps) only the peak location due to the target is temporally

consistent across different frames, while reverberation and

interferers are not [17]. Thus, particles will tend to clus-

ter around the true peak, while other regions will be poorly

sampled. If in a single frame an undesired peak arises, it

will influence only a few particles and the state position es-

timation will not substantially change.

Concerning the likelihood function, we exploited the full

normalized acoustic map, instead of taking just its maxi-

mum, as follows:

p(Z|X) = exp

(

Ma(m̃, ñ)

σ2
N

)

(7)

where m̃ and ñ are the pixel indexes whose correspond-

ing image coordinates are the closest the first two element

of the state X (i.e. (x̃, ỹ)), and σ2
N is the expected noise

variance. In practice each particle weight is updated with

the exponential of the acoustic map evaluated at the par-

ticle coordinates. The exponentiation enhances the likeli-

hood sharpness around its peaks dampens the ground val-

ues around the value 1. Therefore regions far from every

source will assume very uniform low values, while the peak

corresponding will be increased. As a consequence, when

some source is active the significant particle weights will be

concentrated around the true location in the image, whereas

if no source is active the weights will be close to 1 over all

the image. The noise variance σ2
N tunes the sharpness of

the likelihood function.

3.3. TLD video tracking

Several visual tracking methods combine tracking, learn-

ing and detection in a single framework. In [18], an offline

trained detector is used to validate the trajectory output by

a tracker and if the trajectory is not validated, an exhaus-

tive image search is performed to find the target. Other

approaches integrate the detector with a particle filtering

[10] framework. In the recent years, adaptive discriminative

trackers [3], [9], [21] also have the capability to track, learn

and detect. These methods perform tracking by an online

learned detector that discriminates the target from the back-

ground. In other words, a single process represents both

tracking and detection.

Unlike them a very effective algorithm is TLD (a.k.a.

Predator) where tracking and detection are independent pro-

cesses that exchange information using learning [11]. We

tested this visual tracking method in our experiments to

compare it to the previous introduced audio tracking ap-

proaches. We gave as input to the tracker the sequence of

gray-scale frames acquired by the optical camera embedded

in the proposed device.

4. Experiments

We acquired three audio - video sequences4. The first,

and second one, about 2 minutes long, are taken in a mod-

erately reverberant environment i.e. a room with reflective

floor, ceiling and furniture and walls partially covered with

anechoic panels. The third one is taken outdoor from a ter-

race, looking at a road about 50 m far from the device. The

three sequences present increasingly challenging conditions

for the audio tracker. In the first one, the goal is the track-

ing of a drone flying in the room, whose propellers are the

only active audio sources present in the scene (see Fig. 4).

In the second one the goal is the tracking of the face of a

4The dataset is publicy available at: http://www.iit.it/en/

pavis/datasets/DualCam.html
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speaker moving in the room (see Fig. 5). In this case, also

disturbing audio sources, generated by other people moving

in the room (e.g. footsteps, body movements) are present in

the scene. Finally in the outdoor sequence the goal was the

tracking of a motorbike. In this case the target is quite far

from the device and many disturbing sources are present,

including wind flurries causing trees movements, an high-

way at about 500 m from the camera in the upper zone of

the image, air conditioning units and people speaking on the

terrace (see Fig. 6). Since we are interested at single target

tracking we concatenated a set of 9 sub-sequences (each one

about 10 seconds long) where just one motorbike rode the

monitored street.

Figure 4. An example audio/video frame extracted from the drone-

sequence.

Figure 5. An example of audio/video frame extracted from the

voice-sequence. In the acoustic map are visible the target sound

(the voice) and some other sounds generated by the people move-

ment.

For the outdoor sequence, the beamforming is not fo-

cused because the source was in far-field, while for the two

indoor sequences the focalization is set to 2.5 meters since

the sources were in near-field for a considerable range of

the frequencies. Acoustic images taken as input to the audio

tracker were generated on the frequency range 500 − 6400
Hz. Acoustic images were evaluated at 48 × 36 pixels and

Figure 6. An example of audio/video frame extracted from the

outdoor-sequence. In the upper-right part the zoomed image of

the target motorbike is displayed. Disturbing sounds are clearly

visible in the upper left zone corresponding to the highway.

subsequently resized to 640 × 480 pixels. The acoustic

tracking algorithms are initialized at the image center while

the video tracking one, requiring the initial target appear-

ance, is initialized at the target ground truth position in the

first frame of the sequence. This difference accounts for

the fact that, for audio tracking, ground truth initialization

by a human operator may be difficult to obtain, especially

in presence of multiple interfering sources. Tracking per-

formance was calculated as the average Euclidean distance

over frames between ground truth and estimated target po-

sition on the image plane 5.

4.1. Drone­sequence

The average error for the drone sequence is reported in

Fig. 7 for the Kalman filter, function of position and mea-

surement variances σ2
p and σ2

o (see Eq. 6), and in Fig. 8 for

the particle filter, function of noise variance σ2
N (see Eq. 7)

and number of particles. The lowest error for Kalman fil-

ter, i.e. 17.5 pixels, is slightly better than the corresponding

one for particle filter (21 pixels). Moreover Kalman filter

seems to be more robust toward the tuning of its parameters

σ2
p and σ2

o , showing only a slight increase of the error till

19.5 pixels. On the contrary the particle filter appears to be

more sensitive to the number of particles employed and the

range of values of σ2
N . The overall better performance of

Kalman filter is explanable considering the simplicity of the

task from an acoustic point of view: just one audio source,

with a very stable energy given by the drone propellers, is

present in the scene, hence the assumptions under which

Kalman filter is optimal are easily fulfilled. Notice that the

value of 17.5 pixel is only slightly above the expected er-

ror in manual ground truth annotation. The performance

changes dramatically when relying on the TLD tracker ap-

5The TLD tracker may yield no output in frames where the target is not

detected: in these cases we set the estimated position of the target equal to

the last valid output.
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plied on the optical image. Due to the abrupt changes in

appearance of the drone, TLD loses the target just after one

or two frames and is not able to recover. This result does

not change tuning the TLD parameters, such as the size of

the target bounding box, making quantitative results mean-

ingless for this sequence.

Figure 7. Average error in pixels versus σ
2

p and σ
2

o for the drone

sequence and Kalman filter.

Figure 8. Average error in pixels versus σ2

N and number of parti-

cles for the drone sequence and particle filter.

4.2. Voice­sequence

As mentioned before, the speaker tracking is a more

challenging task with respect to the drone one from an au-

dio perspective, due to both the intrinsic variability in the

voice energy and the presence of impulsive noises such as

the footsteps of the people in the room. This explains the

comparatively worse results for audio tracking with both

Kalman and particle filter, reported in Fig. 9 and Fig. 10,

respectively. Differently from the drone sequence, the best

result is achieved by the particle filter with a minimum error

of 45 pixels, while the best result of Kalman almost doubles

such error. The better result of particle filter is coherent

with the non-gaussianity of measurement noise caused by

spurious peaks, due to disturbances appearing in the acous-

tic image far away from the target position. While Kalman

filter takes the maximum of the acoustic map as measure-

ment, therefore shifting quite suddenly toward the wrong

peak, particle filter may almost ignore peaks appearing in

isolated frames. In fact the whole acoustic map is taken

as input and non- uniformly sampled by the particles that

are clustered around the true target position; consequently

in the next prediction step just a few particles will be influ-

enced by the spurious peaks with a negligible effect on the

overall state estimation.

Figure 9. Average error in pixels versus σ
2

p and σ
2

o for the voice

sequence and Kalman filter.

Figure 10. Average error in pixels versus σ2

N and number of parti-

cles for the voice sequence and particle filter.

Concerning the TLD tracker on the optical image, aver-

age error versus the bounding box size of the target is re-

ported in Fig. 11. The lowest error is of about 63 pixels, for

a bounding box size of 45 × 45 pixels and the error is kept

12



below 80 pixels in the bounding box range 15×15 - 55×55.

This reasonable result, better than the one obtained with

Kalman filter on the audio image, is due to the slowly vary-

ing appearance of the speaker face and the limited amount

of occlusion. However the result is significantly overcome

by audio tracking based on particle filtering, demonstrating

also in this case the usefulness of audio imaging, even in

presence of disturbing audio sources.

Figure 11. Average error in pixels versus the size of the target

bounding box for the TLD tracker on the optical image.

4.3. Outdoor­sequence

Figure 12. Average error in pixels versus σ2

N and number of parti-

cles for the motorbike sequence and particle filter.

The average error for the motorbike sequence, obtained

with the particle filter, is displayed in Figure 12. The best

performance (76 pixel of error) is obtained with the high-

est number of particles and a noise variance σ2
N = 0.05.

Even if the result is worse than in the previous setups,

mainly due to the large amount of disturbing audio sources

present in the scene, still the tracking performance is quali-

tatively acceptable, with the estimated target position being

in the neighbourhood of the ground truth in the great part

of frames and just occasional drifting toward the highway

noise. Results for the Kalman filter are in this case clearly

worse, achieving in the best case an error of 95 pixels. This

fact is easily explainable considering that the highest peak

does not correspond to the target position in most of the

frames.

Similarly to the drone sequence, the TLD tracker on the

optical image is not able to follow the target at all, losing

it after just the first frame. The cause of this behaviour lies

both in the low resolution of the motorbike target image,

due to its considerable distance from the camera, and the

huge amount of occlusion, due to trees and walls completely

hiding the motorbike in many frames. Differently, audio

imaging is little affected by occlusions, due to the nature of

sound waves propagation, thus explaining the dramatically

superior results achieved in this sequence. The comparative

results on the three sequences are resumed in Table 1. In

two sequences the visual tracker completely fails, despite

using a very recent and performing algorithm. Moreover, in

all the sequences acoustic tracking outperforms the visual

one, either employing Kalman or particle filters.

Kalman filter Particle filter TLD tracker

Drone 17.5 21 *

Voice 80 45 63

Outdoor 95 76 *

Table 1. Lowest average tracking error in pixels for the three setups

and the three tracking algorithms.

5. Conclusions and future works

We proposed a new, low cost, acoustic-optic imaging de-

vice specifically taylored for automated surveillance. We

demonstrated the device capabilities for tracking purposes

on three different setups. Results show that audio imaging

can solve tracking problems that cannot be handled by vi-

sual tracking, even with state-of-art algorithms. The current

research will be developed along different directions. First

of all, audio and video imaging can be fused together in a

hybrid tracking algorithm, taking advantage of the comple-

mentary information brought by the two modalities. More-

over, in order to discriminate between target of interest and

disturbing sources the spectral signature of audio signals as-

sociated to each pixel of the acoustic image can be extracted

and fed to machine learning algorithms. Finally, we will in-

vestigate the possibility to couple our device with a Pan, Tilt

and Zoom (PTZ) camera in a master-slave modality: once

an anomalous audio event is detected and localized, the PTZ

camera can be automatically steered and zoomed toward the

area of interest acquiring high resolution visual information.

Having such high-resolution data is of extreme importance

in order to make Computer Vision algorithms feasible for

real-world applications.
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