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Abstract

In this paper, a deep convolutional neural network based

approach to the problem of automatically recognizing jer-

sey numbers from soccer videos is presented. It is meant

as a tool for subsequent automatic player identification ap-

proaches that utilize jersey numbers together with knowl-

edge about teams and the jersey numbers of their players.

Two different jersey number vector encoding schemes are

presented and compared to each other. The first treats ev-

ery number as a separate class, while the second one treats

each digit as a class. Additionally, the semi-automatic pro-

cess for the annotation of a jersey number dataset consist-

ing of 8281 jersey numbers is described. The best recog-

nition rate of 0.83 was achieved by the proposed approach

with data augmentation and without using dropout, com-

pared to 0.4 for a more traditional histogram of oriented

gradients (HOG) and support vector machine (SVM) based

approach.

1. Introduction

Soccer is one of the most popular sports in the world.

In recent years, interest in automatic soccer analysis tools

grew significantly. Soccer analysis results can be used for

new ways of storytelling on TV, for match preparations or

for the generation of statistics. One of the fundamental anal-

ysis is the identification of players to associate actions and

statistics to actual players. However, identifying players in

broadcast soccer videos automatically (and even manually)

is challenging. Especially for the overview camera it is dif-

ficult due to the low resolution per player, which makes face

recognition impossible and jersey numbers are often hard to

read, especially with standard definition resolutions. Only

with the rise of widely available HD content in recent years,

Figure 1. Examples of the player detector output that is used to

create the dataset presented here. The upper half of the actual

player bounding box is shown.

jersey number recognition became feasible.

2. Related Work

Existing approaches for automatic player identification

in broadcast soccer videos can be categorized in two groups:

One performing face recognition on closeup shots (not

overview shots) in variuos types of sports videos, while

other approaches rely on jersey number recognition. For

the latter group, no approach is known to operate on soccer

overview shots. They either operate on other sports where
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the resolution per player is higher (e.g. in basketball [5, 9]),

or they perform on closeup shots, where jersey numbers are

better readable [1] and face recognition is feasible [2].

In [9] basketball players are detected using a deformable

parts model (DPM), after which an exact localization of the

jersey number is performed. Then, normalization, followed

by thresholding and calculating the correlation between the

digits and digit templates is applied. In [2], player identi-

fication is performed in overview shots by employing SIFT

features for face recognition.

All approaches have a quite sophisticated, hand-

engineered image processing pipeline in common. They

often perform explicit localization of jersey numbers, fol-

lowed by digit segmentation. In contrast to these ap-

proaches, a deep learning approach is proposed here. It

does not rely on explicit localization of jersey number re-

gions and no explicit segmentation is performed. Rather, a

deep convolutional neural network is trained which handles

the complete pixel-to-jersey number recognition process.

3. Dataset Generation

Although there have been a few existing approaches for

jersey number recognition, these approaches usually rely on

video content where the image area of a single jersey num-

ber is relatively large, as they either originate from medium

and close-up shots in soccer video broadcasts or from sports

where the main camera has a narrower camera angle, e.g.

in basketball broadcasts. Therefore, a ground truth dataset

consisting of 10,000 cropped images (from 65 different soc-

cer videos) containing soccer players and labelled by their

jersey number (if visible) was created using manual and au-

tomatic labelling cooperatively. The workflow of the anno-

tation process is depicted in figure 2.

3.1. Semiautomatic Labelling

First, an automatic player detection based on histogram

of oriented gradients (HOG) [4] together with a linear sup-

port vector machine (SVM) was performed on 65 different

soccer videos, similar to what is described in [6]. For each

video, 100 random overview frames were selected and the

player detector was applied in a high-precision setting in

order to increase the probability for a true positive. This

resulted in approx. 70,000 cropped images of players.

Then, a small subset of 2300 of these cropped player im-

ages was labelled if their jersey number is visible or not.

By presenting this binary classification to the human anno-

tators, this classification task is actually simpler and there-

fore faster than annotating whole numbers. A linear SVM

classifier on HOG features was trained on this classification

task. This should increase the number of cropped players

presented to human annotators where a number is visible

and readable. This classifier was applied to 70,000 cropped

player images, of which the highest ranked 10,000 images

were used for manual jersey number labelling. This step

is crucial, as in most of the 70,000 images a number is not

even visible, which would yield a very sparsely annotated

dataset.

These 10,000 images are then manually labelled. Volun-

teers were asked to either assign the visible number (basi-

cally from 1 to 44, excluding a few numbers that are not

present within the whole dataset), or they could indicate

why it was not possible to assign a number. This could be

one of not visible, not readable, multiple players and box er-

ror. not visible is supposed to be assigned to images where

the number is not visible at all, while not readable is sup-

posed to be assigned to images where the number is either

only partly visible due to the player’s pose or not readable,

e.g. due to motion blur or illumination. Multiple players

refers to images that contain more than one player and it

is not obvious which player the annotation refers to. Box

error is supposed to be assigned to images where a player

is not correctly detected, being too small or too big. While

the relatively fine-grained annotation of error cases might

be usefull for future research, the error classes are currently

not used.

After annotating each of the 10,000 images, a validation

step was performed to reduce the number of false annota-

tions. Therefore, all images of a jersey number are shown.

False annotations are then easily visible and are corrected.

When analyzing the ratio of images that contain visible

players both in the small initial subset of 2300 images and

in set of 10,000 images that was selected by the aforemen-

tioned ranking, the ratio of images with visible numbers

could be increased significantly. From the small subset,

1010 out of 2300 images have visible numbers (ratio 0.43),

while about 8,000 out of 10,000 images (ratio 0.8) have vis-

ible (and readable) numbers on the pre-ranked dataset. That

means by using this pre-processing step, the effort for ob-

taining 8,000 labelled samples was reduced by almost 50%.

For experimenting with automatic jersey number classi-

fiers, the dataset described above is split into a training and

a test corpus. It is split by video, i.e. all images from a video

are either in the training or in the test set, in order to avoid

unrealistic scenarios where classification relies on training

samples from the same video. After splitting, the training

corpus consists of 5759 images and the test corpus consists

of 2520 images.

3.2. Dataset Properties

The number distribution is shown in figure 3. It shows

that numbers are not equally distributed, but rather imbal-

anced. While there are e.g. 600 samples for number 10 (the

most frequent number), there are only 7 samples for number

41. This could actually make training a classifier a challeng-

ing task. In comparison to a similar datasets, the Street View

House Number dataset (SVHN)[10], where digits between
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Figure 2. Workflow of the semi-automatic jersey number dataset annotation process. Blue arrows denote manual annotation steps.
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Figure 3. Jersey number distribution within the complete (training

+ test) dataset.
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Figure 4. Distribution of first digit of jersey numbers within the

complete (training + test) dataset.

0 and 9 are annotated, the ratio between the most frequent

and the most rare label is much larger: It is 86 for the dataset

presented here and 3 for the SVHN dataset.

3.3. Comparison to other datasets

Table 1 gives an overview of key dataset characteris-

tics of the presented dataset in comparison to similar com-
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Figure 5. Distribution of second digit of jersey numbers within the

complete (training + test) dataset.

puter vision datasets. It consists of the soccer jersey num-

ber dataset presented here (SJN), the MNIST database of

handwritten digits dataset [8], the Street View house num-

ber dataset (SVHN) [10] and the traffic sign recognition

dataset (TS) [12]. As can be seen, the dataset presented

here consists of more classes than the MNIST or SVHN

dataset, as jersey numbers are classified as whole numbers,

not a sequence of digits. This means there are fewer positive

samples per class than for these datasets, even if the dataset

would be perfectly balanced. However, in section 4 we

present an alternative coding scheme that separately models

digits and yields a more even distribution of classes. Addi-

tionally, the resolution for other datasets is usually smaller,

but the 64× 128 resolution is the actual bounding box size

of the whole player. For jersey number recognition, it is suf-

ficient to only consider the upper half of the bounding box.

Within the upper half of the bounding box, the precise loca-

tion of the jersey number is not annotated. That makes this

task harder than other datasets, where the number (or traffic

sign) locations are annotated manually and therefore more

precise. Similar to the SVHN and TS dataset, the dataset

consists of RGB color images, whereas the MNIST dataset

is a grey-scale dataset. However, the most significant dif-

ference is the actual size of the dataset. The presented SJN

dataset is by far the smallest among those four, which could
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Dataset Classes Resolution Training Test

MNIST [8] 10 28× 28× 1 60,000 10,000

SVHN [10] 10 32× 32× 3 73,257 26,032

TS [12] 43 32× 32× 3 39,209 12,630

SJN 36 64× 128× 3 5,760 2,521
Table 1. Comparison with other similar datasets. The image reso-

lution and the number of channels, as well as training and test set

sizes are given.

make approaches that rely on large datasets less promising.

Also, given the smaller dataset size and larger problem size

(number of classes), results on this presented datasets (in

terms of accuracy) are expected to be not as good as re-

ported results on the other datasets mentioned here.

4. Classification Problem

In this work, two different methods for (jersey) number

recognition as a classification problem are evaluated. The

first approach is to model all occuring jersey numbers as

a separate class. In our case, this would mean a 40-class

classification problem, as not all one- or two-digit numbers

appear in the dataset. That means, that the classifier c(x)
assigns exactly one class (number) y to each input sample

image x:

c(x) = y, y ∈ {1, 2, 3, ..., 40} (1)

Alternatively, one could treat the problem as a two-label

classification problem, with one label for each digit. One

for the most significant digit of a one- or two-digit number,

and one for the least signicant digit:

c(x) = (y1, y2), y1 ∈ {10, 11, 12, 13, 14}, y2 ∈ {0, .., 9}
(2)

where the continuous labels 10-14 stand for the first digit,

i.e. 10 represents single digit numbers, 11 represents num-

bers whose first (most significant) digit is 1, etc. For a neu-

ral network, categorical labels are usually encoded by bi-

nary vectors whose dimensionality is equal to the number

of different labels. That means that for the classification

problem as described in equation 1, labels are converted to

a 40-dimensional vector with exactly one dimension (that

of the groundtruth label) set to one, all others element set to

0:

ybin = [00, . . . , 0y−1, 1y, 0y+1 . . . , 0n]
T

(3)

The output of the neural network classifier then needs to be

converted back to a class label ypredicted by choosing the

maximum element of the resulting vector y′ (that contains

real-valued entries):

ypredicted = argmax
i∈{1,2,...40}

y
′
i (4)

Figure 6. Training samples obtained by applying random scaling

and cropping of the original sample.

For the second case, the binary vector consists of two

non-zero elements for groundtruth labels. One for each

digit, with numbers smaller than ten having an imaginary

0 as their first digit.

ybin = [00, . . . , 0y2−1, 1y2
, 0y2+1 . . . , 0, 1y1

, 0, . . . , 0n]
T

(5)

Converting network predictions back to numbers is then a

combination of the maximum element of the first 10 ele-

ments of y′ and the maximum of the subsequent 5 elements:

ypredicted = ( argmax
i∈{0,1,2,...9}

y
′
i, argmax

j∈{10,11,...,14}

y
′
j) (6)

Both approaches have their advantages and disadvan-

tages: As can be seen in figure 3, treating all numbers as

separate classes imposes a very imbalanced dataset. Given

the dataset it is even conceptually impossible to recog-

nize two-digit numbers that do not occur, i.e. all numbers

> 45. When applying two separate classification problems,

it would be possible to model jersey numbers that have not

been seen until 49, i.e. where for each number, each digit

has been seen in all places (first and second digit of the num-

ber) in the training set. However, it might be difficult for

an algorithm to separate the first and second digit of the

number when no explicit localization or segmentation has

been performed. Additional factors such as slight perspec-

tive changes might make separating the digits even more

difficult. Therefore, it might be more appropriate to model

numbers holistically.

5. Data augmentation

As the soccer jersey number dataset is quite small, data

augmentation is expected to play a key role for good recog-

nition results. Here, we apply data augmentation to increase

the number of training samples from 5,760 samples to ap-

prox. 56,000 training samples. As the jersey numbers are
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Figure 7. Output of the first convolutional layer for a sample im-

age.

not centered within in a certain region of the image, a clas-

sifier is supposed to be tranlation invariant. In order to im-

prove this invariance, multiple variants of an existing train-

ing sample are generated, each cropping a different 40× 40
patch from the upper half of a bounding box (64 × 128)

shifted within a certain range. Additionally, as the size of

the actual region of the jersey number within the player’s

bounding box is not known, differently scaled samples (the

scale factor is randomly choosen between 0.9 and 1.1) are

generated for augmentation, as shown in the example in fig-

ure 6.

As described later, runs that operate on color and

grayscale images are tested. For the grayscale runs, ad-

ditional data augmentation by inverting all training sam-

ples was performed, yielding a training dataset of approx.

108,000 samples.

6. Deep Convolutional Neural Network

As a baseline, a HOG based radial basis function (RBF)

kernel SVM classifier was used, similar to [10]. However in

[10], a linear SVM was used. HOG features are calculated

only for the upper half of player bounding boxes to reduce

the influence of irrelevant image parts. On these features,

an RBF kernel based SVM is trained. Using this baseline,

an accuracy of 0.404 was obtained.

Additionally, a convolutional neural network was trained

to recognize numbers. The Keras [3] Python library for

deep neural networks was used throughout the following ex-

periments. Its architecture is inspired by models for generic

image classification (similar to a model for the CIFAR-

10 [7] dataset) and recognizing house numbers in street

view images (using the street view house number dataset).

The base architecture consists of three convolutional lay-

ers, each followed by a max-pooling layer and a rectified

linear unit (ReLU). Then, there are three fully connected

hidden layers with optional dropout [11] layers and finally

a softmax loss layer follows. The network architecture con-

Figure 8. Output of the first convolutional layer for a sample im-

age.

sists of three convolutional layers and three subsequent fully

connected layers. It has been trained and tested and is de-

scribed in detail in section 7. Without any further data aug-

mentation and parameter tuning, the accuracy obtained was

approx. 0.60, which is already better than the more classical

HOG+SVM based approach.

The detailed network architecture is as follows: Three

convolutional layers (with 16×5×5 / 30×7×7 / 50×3×3
parameters), each with rectified linear units (ReLU) as their

activation function, followed by a max-pooling layer. Then,

three fully connected layers with ReLU activation follow.

Table 2 gives the details of the network architecture which

holds for all runs. Only data augmentation, dropout pa-

rameters and color space vary between runs. The convo-

lutional stride is always set to one pixel, while pooling size

and stride is two pixels for the first convolutional layer and

three pixels for the remaining convolutional layers. In com-

parison to the network architecture in [11] for the SVHN

dataset, they used more filter channels ((96, 128, 256) in-

stead of (16, 30, 50) used here) for the convolutional layers.

The two fully connected layers in their work each have 2048

units, while in this work, only 34 units are used. The rea-

son for reducing the number of units is mainly the lack of a

large dataset. The SVHN dataset is two orders of magnitude

larger (as an extended training corpus of the SVHN dataset

was used) than the jersey number dataset used here.

Figure 9 shows sample classification results using the

best-performing recognizer (ConvNet grey aug inv.) for dif-

ferent categories, namely 2, 3, 4, 6, 8, 10, 13, 15, 16, 21, 20

and 25. Figure 7 depicts the 16 learned convolution filters

in the first layer. It shows that mainly edge filters have been

learned, with some filters . Figure 8 shows the 16 responses
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Stage 1 2 3 4 5 6

Layer type conv + max conv + max conv + max full full full (output)

# channels 16 30 50 34 34 45/15

Filter size 5× 5 7× 7 3× 3 - - -

Conv. Strides 1× 1 1× 1 1× 1 - - -

Pooling Size 2× 2 3× 3 3× 3 - - -

Pooling Str. 2× 2 3× 3 3× 3 - - -

Spatial input Size 40× 40 20× 20 6× 6 2× 2 - -
Table 2. Deep convolutional network architecture.

Figure 9. Sample classification results using the best configuration. Each column shows random results for the classes 2, 3, 4, 6, 8, 10, 13,

15, 16, 21, 20 and 25.

Run Accuracy

HOG 0.40

ConvNet 0.61

ConvNet Dropout 0.71

ConvNet grey Dropout 0.72

ConvNet inv Dropout 0.76

ConvNet inv grey Dropout 0.72

ConvNet augmented grey digit-wise 0.62

ConvNet augmented 0.68

ConvNet augmented Dropout 0.71

ConvNet augmented grey 0.73

ConvNet augmented grey inv. 0.82

ConvNet augmented grey inv. Dropout 0.83
Table 3. Results for different approaches and settings for jersey

number recognition.

for the sample image for these filters.

7. Experimental Results

In table 3, all results in terms of accuracy are given.

There, ConvNet denotes the baseline neural network run,

while HOG denotes the run consisting of HOG features to-

gether with a support vector machine (SVM). If the run de-

scriptions contain the grey keyword, training and testing is

performed on greyscale images rather than RGB color im-

ages in the standard case. augmented stands for spatial data

augmentation as described earlier in section 5. Inv. stands

for data augmentation by inverting images and Dropout for

those networks with dropout layers after each fully con-

nected layer.

During this optimization, dropout parameters were cho-

sen carefully. When adding higher (around 0.5) dropout

ratios to all fully connected layers, the obtained accuracy

was below the case when moderately dropout ratios (around

0.2) were used. Also adding dropout to the first fully con-

nected layer gave better results than adding dropout to all

layers. It is assumed that the loss of information by drop-

ping many activations in the network leads to sub-optimal

results. However, overfitting was reduced and the train and

test loss did not diverge, which they did when not using

dropout at all.

Data augmentation by applying spatial transformations

(scaling and translation) as well as applying color (or

greyscale) inversion result in an increased accuracy of up

to 0.83. More experiments are necessary to check if ad-

ditional data augmentation is necessary to further improve

performance.
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Figure 10. Confusion matrix of the best configuration. Misclassifi-

cations mostly appear where the predicted shares at least one digit

with the groundtruth label.

While for some configurations, utilizing full RGB color

information seem to yield slightly better results than a sim-

ilar network operating on greyscale images, we think that

using greyscale has some advantages in terms of expected

generalizability. Whenever using color information would

yield better results, this might be due to some correlation

between jersey colors and jersey numbers. For example,

some rarely occuring jersey number might appear only in a

single team. While this would help if all teams are known

at training time, this correlation does not help when apply-

ing jersey number recognition to new unknown data. Us-

ing dropout for regularization did not always improve re-

sults, when the other network parameters remain constant.

It was not tested if increasing the networks capacity by

adding more layers or adding connections would benefit

from dropout.

Modelling jersey number recognition as two separate

classification problems (the digit-wise run) for the first and

second digit did not work as good as the holistic approach.

The best approach on augmented grayscale images per-

formed worse (accuracy of 0.62) than most holistic ap-

proaches.

Interestingly, although the dataset is quite small, the ac-

curacy reached by using deep convolutional networks out-

performs that of the more traditional HOG+SVM approach

by a large margin (0.83 vs 0.40). This at first sight seems

to be counter-intuitive, as the promise of deep learning ap-

proaches is actually to make use of larger datasets.

For a closer analysis, confusion matrices are used, which

contain correctly classified entries at the main diagonal,

while wrongly classified entries occur at other positions.

When looking at the confusion matrices for both the best
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Figure 11. Confusion matrix of digit-wise classifier. Did not im-

prove misclassifications from wrong digit order in comparison to

the one class per jersey number configuration.

holistic and the best digit-wise networks in figure 10 and

11, it is apparent that mainly classes that share one digit are

confused. These are all confusions that are in the diagonal

decimal blocks (adjacent to the true positive diagonal, i.e.

where the first digit is recognized correctly, but the second

one is misclassififed. The lines parallel to the diagonal –

shifted by ten classes - represent misclassifications where

the last digit was correctly identified but the first one was

not.

In contrast to the previous assumption, modelling the

two digits separately did not circumvent these misclassifi-

cations. Rather, the classification results as a whole became

worse and the same misclassification errors were notice-

able, apparently even more noticeable than in the holistic

case.

8. Conclusion

In this paper, a dataset consisting of 8521 annotated soc-

cer player images is presented, together with convolutional

neural network based approach for jersey number recogni-

tion. The problem of jersey number recognition, which con-

sists of one- or two-digit numbers for all known team sports,

was posed as two different classification problems. One

holistic approach of one class per number and one digit-

wise approach that models each digit at each position within

a number separately. By conducting experimental evalua-

tions, it was shown that the holistic approach performed bet-

ter throughout the experiments. Another interesting finding

was that deep learning approaches yield quite good results

even with smaller datasets like the one presented here. By

utilizing data augmentation, the training set size can be in-
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creased significantly. Applying dropout for regularization

improved results especially for those runs where no data

augmentation was performed.

In the future, it would be interesting to analyze more

network architectures, especially if applying dropout would

allow for deeper network architectures. Another promising

direction could be the use of spatial transformer networks as

well as more data augmentation techniques. For example,

additional rotation or perspective distortion could improve

invariance to slightly different player poses.
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