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Abstract

Tennis player silhouette extraction is a preliminary step

fundamental for any behavior analysis processing. Auto-

matic systems for the evaluation of player tactics, in terms

of position in the court, postures during the game and types

of strokes, are highly desired for coaches and training pur-

poses. These systems require accurate segmentation of

players in order to apply posture analysis and high level se-

mantic analysis. Background subtraction algorithms have

been largely used in sportive context when fixed cameras

are used. In this paper an innovative background subtrac-

tion algorithm is presented, which has been adapted to the

tennis context and allows high precision in player segmen-

tation both for the completeness of the extracted silhou-

ettes. The algorithm is able to achieve interactive frame

rates with up to 30 frames per second, and is suitable for

smart cameras embedding. Real experiments demonstrate

that the proposed approach is suitable in tennis contexts.

1. Introduction

In recent years, there has been an increasing interest by

the scientific community to develop technology platforms

which provide coaches with solutions that allow them to

more effectively train the next generation of athletes [11].

Automatic and objective analysis of athletes performance

during competitions is very important for coaches and train-

ing strategies. In particular in the tennis context, the posi-

tions of players during the game, the reactions to different

events and the sequences of strokes are very important to

evaluate performance and match results. In all these sit-

uations, visual systems for the automatic player behavior

analysis require an accurate segmentation of the silhouette

in order to allow more complex semantic processing.

In the tennis context some commercial systems are avail-

able for real time ball detection [3] and manual annotation

of video sequences [1, 2, 5] either off-line or in real-time.

A system for player segmentation in broadcast images has

been published in [10] which uses useful information of the

context like the uniform court color and white court lines for

semantic analysis such as instant speed and speed change of

the player, as well as the positions of the player in the court.

In [8] a platform for extracting semantic information from

multi-camera tennis data is presented. The player tracking

process is evaluated only in terms of blob positions that are

compared with a UbiSense tag-tracking system. The system

presented in [15] archives action summaries in the form of

3D motion trajectories of the essential elements of the game

(players, ball). The tennis player tracking system presented

in [13] uses an improved CamShift algorithm which is ini-

tialized by an interframe difference method. The main con-
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straint of the approach is the use of the strong difference of

colors between players and the court to extract the player.

In [6] motion and color information are used to extract ar-

eas of activity by accumulating motion information over all

frame pixels and over several frames, and by color informa-

tion of the background to select pixels belonging to moving

objects. The resulting information can be used to extract

semantic data such as the kind of shot in a tennis context.

A common consideration in many algorithms is that the

color of the court is uniform, as well as the surrounding

area [21]. These features allow to separately build back-

ground models for the field inside the court and the sur-

rounding area, instead of creating a complete background

for the whole image [14]. In order to overcome the prob-

lems related to poor segmentation, wearable sensors such

as lightweight inertial sensors, have been chosen for stroke

recognition and skill assessment. Detecting spikes in the ac-

celerometer data provides information on the impact of the

ball on the tennis racket and the temporal location of tennis

strokes [9]. Anyway this kind of sensors are not allowed

during official matches, and also athletes are quite hostile to

wear invasive sensors.

In this paper we approached the challenge of tennis

player segmentation with vision cameras by considering

two main aspects: on one hand the development of a ro-

bust algorithm for the detection of the player silhouette in

its most complete shape as possible to allow more complex

semantic analysis; on the other hand privileging the design

of an efficient algorithm in terms of computational load for

supporting real time applications.

In the tennis context some specific issues limit the ap-

plication of standard approaches and require ad hoc solu-

tions. First of all, the segmentation of players in clay-court

or synthetic court: the color of the player skin or player uni-

form can be confused with the color of the court and the

segmentation fails in the detection of the whole silhouette.

Moreover, indoor tennis courts are generally characterized

by lighting conditions that combine the complexities found

in both outdoor and indoor contexts: during daylight, the il-

lumination depends on sunny or cloudy conditions (the ten-

sile structures are actually semi transparent); when artificial

light is on, the light flickering affects camera acquisitions.

Last but not least, the usage of high frame rate cameras,

necessary for reliable ball tracking, discourages the usage

of complex algorithms for the extraction of players silhou-

ettes, if real time performance need to be achieved.

In this paper we propose a background subtraction ap-

proach to address these specific challenges with respect to

the tennis context. Starting from the analysis and the results

obtained by standard and well assessed approaches such as

the Adaptive Mixture of Gaussians (MoG) [20] [23], non-

parametric models as the GMG [12], adaptive light-weight

algorithms [7] [22] and the adaptive background estimation

and foreground detection using kalman-filtering [18], an

adaptive BG model able to deal with high frame rate videos

and dynamic scenes has been developed. The analysis of

the variance of each grey level has been done to model the

sensor response to different light intensities. A blob anal-

ysis has been applied to both the difference between the

background model and the current frame, and the tempo-

ral difference between consecutive frames. These steps are

useful to extract robust foreground areas (moving players

and ball) while maintaining a low computational load. Ex-

perimental results demonstrate the effectiveness of the pro-

posed approach when compared with standard methods.

The rest of the work is organized as follows: in the sec-

ond section the proposed algorithm is detailed, the third sec-

tion contains experiments and results and the last one dis-

cusses the conclusions and future works.

2. Methodology

2.1. System Overview

The proposed algorithm, internally referred as GIVE-

BACK (Globally Intrinsic VariancE for BACKground), is

the preliminary step of a system aimed to address coach-

ing needs. For this reason, it is designed to operate in

indoor environments, although it can operate outdoor as

well. The proposed architecture consists of four cameras

that are placed at the corners of the court to cover all the

game areas with at least two views. Cameras position and

corresponding images are shown in Figures 1 and 2. It is

worth noting that overlapping views are exploited to pro-

duce a synchronized broadcast video while no information

are passed through different cameras. Therefore, the pro-

posed approach is not dependant on multiple views (gains

Figure 1. The figure depicts the position of the acquisition hard-

ware on the tennis court, highlighted with red marks. Cameras (X)

are put at the corners of the external rectangle, so that each pair

can acquire the opposite part of the court.
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Figure 2. Example of synchronized acquisition. Four frames are

captured exactly at the same time to make the system capable of

observing the whole court from at least two different points of

view.

scalability) and can run both on single or multi camera sys-

tems.

2.2. Algorithm Description

GIVEBACK pipeline can be divided in three main build-

ing blocks, as shown in Listing 1: initialization, processing

and update. The first step is executed only once and ini-

tializes the BG image setting each pixel to half intensity.

Therefore, the produced image is gray and reflects the ab-

sence of any a priori knowledge about the scene. The pro-

cessing phase is composed of: variance, one step frame dif-

ferencing, fine tuning and energy. The ones marked with an

asterisk in Listing 1 are the same presented in [16], while

the others are detailed singularly in the following sub sec-

tions. The BG image is updated according to PIIB logic

[16] enriched by a binary update mask Mupd. Hence, each

BG pixel value is increased or decreased by κ if the corre-

sponding Mupd value is set to true (in our implementation

κ = 1). Finally, the fine tuning phase exploits the output of

two blob analyses — one on the foreground mask and the

other on the one step frame differencing one — with the aim

of giving robustness to the BG model, as it will be described

later.

Listing 1. Algorithm pseudocode

Background I n i t i a l i z a t i o n ∗

f o r each f rame

V a r i a n c e p r o c e s s

One s t e p f rame d i f f e r e n c i n g

i f ( Background i s l e a r n e d )

Foreg round e x t r a c t i o n

F ine t u n i n g p r o c e s s

Background Update∗

Energy P r o c e s s ∗

2.3. Variance Process

The variance model exploited in this work is useful to

describe different sensor responses to different light inten-

sities, so that its value is not related to the observations of

a single pixel over time, but is a function of a specific gray

level in a byte range [17]. Therefore, for each frame, the

location of the occurrences of each generic gray value γ is

first stored in a set

Obs(γ) = {k = (u, v)|BGt−1(u, v) = γ} (1)

Then, the variance V at the time t, associated to the γ-th

gray level is iteratively updated with the following formula:

Vt(γ) =
Vt−1(γ) ·Nt−1(γ) +

∑

k |It(k)−BGt−1(k)|
2

Nt(γ)
(2)

where k ∈ Obs(γ), N(γ) is the number of times the γ-th

gray level occurred over time and BG is the background.

In the equations BG is substituted with the latest available

frame (It−1) while the BG is being learned, namely until

the energy gradient descent reaches its minimum value.

2.4. One step frame differencing

This task is executed at each iteration and produces a

binary mask obtained by thresholding the absolute differ-

ence of the last captured frame and the one being processed.

First, the absolute difference image is calculated with the

formula:

AD = |It − It−1| (3)

Then, for each pixel (u, v) the binary mask Mos is calcu-

lated in the following way:

Mos =

{

0 if AD(u, v) ≤ τ (It−1(u, v))

255 if AD(u, v) > τ (It−1(u, v))
(4)

Each pixel is considered as a normal random variable: the

mean value is represented by its corresponding value in the

last captured frame, while the variance depends on its gray

level, since different intensity values might have different

variances. The threshold τ(·) used to classify each pixel as

background or foreground is a function of a specific gray

value and in our implementation it is set to τ(γ) = 3.5σγ ,

where σγ =
√

V (γ). Hence, each backgound pixel (in

black) lies in an interval [γ − 3.5σγ , γ + 3.5σγ ] while the

foreground ones (in white) represent the tails of the corre-

sponding normal distribution. The binary mask obtained at

this stage is useful to achieve robustness during the subse-

quent phases, for example avoiding the BG model update in

correspondence of a moving player.

2.5. Foreground extraction

The foreground extraction phase is similar to the one step

frame differencing one, except from the fact that the back-

ground image is exploited instead of the last captured frame.
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The output of this module is a binary mask Mfg obtained

with the same thresholding process presented in Eq. 4, in

which the absolute difference image is AD = |It−BGt−1|.
Mfg is the mask used to compare the model with other ap-

proaches in the next section.

2.6. Fine Tuning Process

After the BG model has been learned by the system, the

fine tuning process module is switched on to calculate the

binary update mask Mupd. This task is achieved by means

of a blob analysis done on both Mos and Mfg to obtain two

sets of connected regions — namely Bos = {b1, b2, . . . , bn}
and Bfg = {b1, b2, . . . , bm} — that are processed accord-

ing to the following rule:

Mupd = {p(bi, bj)q|bi ∈ Bos, bj ∈ Bfg, bi ∩ bj 6= ∅} (5)

where p(bi, bj)q is the minimum circumscribed rectangle

that embeds both bi and bj . Each region extracted from

the foreground mask is compared to each region extracted

by the one step frame differencing process in order to find

overlapping blobs that do not produce an empty set when

intersected. As a consequence, the update mask keeps trace

of robust foreground areas in which the BG update does not

take place, allowing the algorithm to easily filter ghosts or

static subjects that stand still on the scene.

3. Experiments and Results

Two variants of the methodology described in the pre-

vious section, under the name of GIVEBACK and GIVE-

BACK fine tuned, have been tested and compared with

other statistical based background models available in the

BGS library [19] (GMG and MOGv2) and the adaptive

background estimator based on kalman filtering [18] im-

plemented in MVTec Halcon suite [4]. The first variant of

the proposed algorithm models the background skipping the

fine tuning process, while the complete method — with the

fine tuning process in place — is tested separately as well.

Both qualitative and quantitative tests have been done

on recorded sequences that represent a tennis training ses-

sion. Four raw videos have been taken with AVT Prosilica

GT1920C cameras capable of acquiring 1936×1456 frames

at 40Hz and configured to capture 1920 × 1024 frames at

50Hz in order to avoid flickering issues exploiting the hard-

ware setup. Moreover, cameras are equipped with auto iris

lenses which enable to ensure a constant brightness level in

the whole recordings. As a consequence, results obtained

on a single camera are reproducible on the other ones when

recording the same event from different points of view as

represented in Figure 4.

Table 1 shows the performance of each step of GIVE-

BACK. This implementation is capable of running at 30 fps,

Table 1. GIVEBACK performance evaluated for each step of the

algorithm

Task Elapsed time

[ms] [%]

Variance process 12 29

Foreground extraction 1 3

Fine tuning process 27 64

Background update 1 2

Energy process 1 3

since variance process can be stopped after about 256 iter-

ations. This is valid when considering the computationally

expensive process that is used in the fine tuned version of

GIVEBACK, while better frame rates can be achieved by

the plain version of the proposed algorithm. These results

have been obtained on an Intel Xeon E5-2603 @ 1.60 GHz,

32GB RAM, Windows 7 64bit OS.

Experiments have been conducted in the following

way: starting from a reference frame f0, ten images sam-

pled every 500 frames have been manually annotated and

then quantitatively analysed exploiting the corresponding

ground truth masks. Only moving players and balls have

been segmented on the ground truth image, while inac-

tive balls (always present in tennis courts, especially dur-

ing training sessions) have not been annotated as foreground

objects.

Qualitative results in terms of player silhouette segmen-

tation can be inferred from the visual inspection of the fore-

ground objects resulting from different algorithms, as re-

ported in Figure 3. Here, GMG algorithm handles effort-

lessly shadows near the players feet and shows a tendency

to consider background some parts of the legs, perform-

ing poorly on the lower parts of the player body because

of color similarity between the court and the player skin.

Kalman fitering based backgound estimator is sensitive to

ghosting issues that appear when the player moves after

having stationed elsewhere. The proposed approach is able

to produce a well-cut player silhouette, especially in the fine

tuned variant where the ghost is being reduced while pre-

serving the whole shape of the player.

Figure 5 summarizes the algorithms performance in

terms of Precision P and Recall R for each annotated frame.

Here, each point in the P −R plane refers to a run of a spe-

cific background subtraction method where different algo-

rithms are shown with different marker shapes and colors,

while variants are presented as color-filled or white-filled.

According to this representation the ground truth has coor-

dinates (1, 1), therefore points that lie in the upper right part

of the figure correspond to the best results.

A brief overview of the chosen metrics is given here: let

TP be the number of true positives pixels, FP be the num-

ber of false positives pixels, TN be the number of true nega-
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Figure 3. Example of silhouettes processed with different background algorithms. A player is shown from two different point of views.

Each row, from left to right, shows the starting image, the manually annotated mask, and the masks obtained with the GMG, MOGv2

and Kalman based background algorithms. The results from the two variants of the GIVEBACK approach are shown in the last columns.

Where salt and pepper noise is visible, a “filtered” variant is tested as well. The GIVEBACK fine tuned is the algorithm that better preserves

the entire player silhouette with a low computational load. The amount of false positive or negative pixels in the proposed approach is

reduced when compared to the other statistical methods considered.

tives pixels and FN be the number of false negatives pixels

on the foreground mask. Accordingly, P , R and F-Measure

F are defined as:

P =
TP

TP + FP
, R =

TP

TP + FN
, F = 2 ·

P ·R

P +R
(6)

In the comparison, both MOGv2 and the Kalman fil-

ter based background FG masks have been post processed

with a morphological opening operation employing a circu-

lar structuring element of 2 pixels radius. The GMG algo-

rithm did not require any additional filtering operation since

the method already produces salt-and-pepper noise filtered

foreground masks.

Figure 5 shows that both the variants proposed in this

paper have noticeable performance. The variant related to

Figure 4. Example of player silhouettes extracted from four syn-

cronized views. CAM0 and CAM1 refer to Player 1, while CAM2

and CAM3 to Player 2. The performance of the proposed approach

is similar across all views, showing the robustness of the method.

the fine tuned algorithm shows the best overall results, with

higher average scores on both axes (better precision and re-

call performance at the same time). MOGv2 is particularly

sensitive to salt-and-pepper noise and has a global tendency

to show low recall values. This implies a high number of

false negatives pixels in the FG masks, as it can be seen

analysing the silhouettes in Figure 3. The Kalman filtering

based background results (highlighted by blue diamonds)

in terms of precision are not constant during the acquisi-

tion. This means that the approach is affected by the pro-

duction of false positive pixels in the form of player ghosts,

as shown in Figure 3. Finally, GMG algorithm shows a

precision comparable with the reference performance of the

Kalman based one, trading some precision for better recall

scores.

In some respects, the GMG algorithm and the “com-

plete” variant of the GIVEBACK algorithm described in

this paper perform similarly well, with the GMG algorithm

being better in the precision score and the ones proposed

here showing better recall. However, as will be shown

shortly, the adaptive BG model presented here seems more

reliable, with a uniform behavior while working on differ-

ent frames, while scores obtained by the GMG algorithm

are more scattered.

Figure 6 shows a boxplot of the F-Measure calculated

during the experiment. There are seven boxes, one for each

algorithm. Inside each box, the median value is highlighted

with a red line, while the edges of the box are the 25th and

75th percentiles. The whiskers extend to the most extreme

data points not considered outliers, and outliers are marked
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Figure 5. Quantitative results on the dataset in terms of Precision and Recall. Each point corresponds to a comparison between a foreground

mask obtained with a specific algorithm and the corresponding ground truth. The upper right corner represents a FG mask that that is exactly

the same as the ground truth (both P and R values equal 100%). Points that tend to (1, 1) are the best among the considered ones.

individually with a red cross. Hence, small boxes refer to

algorithms whose results are repeatable over time, while big

boxes show that the range of F is wide (reflecting high vari-

ance in the results). The only algorithm that produces out-

liers is the Kalman filter-based one, due to not constant pre-

cision values among the executions as highlighted before-

hand. However, it is the one with the smaller box.

In summary, the best algorithm among the ones tested is

the proposed method enriched by the fine tuning module, as

its median F value is 80%, the associated box is the second

smallest and there are no outliers in the statistic.

4. Conclusion and future works

In this paper, an efficient method to segment active enti-

ties — players and balls — in tennis context is presented.

The proposed approach is based on simple but effective

operations (from a computational load point of view) that

allow its employment on real time systems. Moreover, it

operates directly on raw videos thus encouraging its im-

plementation directly on smart cameras. Experiments on

tennis training video sequences demonstrate its effective-

ness in tennis players silhouettes processing, even if usu-

ally there is a strong similarity between players skin and

the tennis court. The fine tuned version of the algorithm

shows good scores in terms of Precision and Recall and F-

Measure. Its performance on different frames are very simi-

lar on each ground truth annotated test image. These results

confirm the robustness of the proposed method when com-

pared to other statistical approaches evaluated in the bench-

mark. Moreover, foreground masks extracted by the GIVE-

BACK algorithm better preserves players silhouettes thus

enabling high level analysis such as posture recognition.

Future works will be directed forward to semantic analy-

sis based on player silhouettes, to embedding the algorithm

on smart devices along with further optimizations.
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