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Abstract

Tracking players in sports videos presents numerous

challenges due to weak distinguishing features and un-

predictable motion. Considerable work has been done

to track players in such videos using a combination of

appearance and motion modeling, mostly in continu-

ous streams of video. However, in a broadcast sports

video, having advertisements, replays and intermittent

change of camera view, it becomes a challenging task

to keep track of players over an entire game. In this

work, we solve a novel problem of tracking over a se-

quence of temporally disjoint soccer videos without the

use of appearance cue, using a Graph based optimiza-

tion approach. Each team is represented by a graph, in

which the nodes correspond to player positions and the

edge weights depend on spatial inter-player distance.

We use team formation to associate tracks between clips

and provide an end-to-end system that is able to perform

statistical and tactical analysis of the game. We also in-

troduce a new challenging dataset of an international

soccer game.

1. Introduction

In this paper we seek to use archived footage of past

sporting events shown on television; and provide an end-

to-end framework that is able to perform statistical and

tactical analysis. In order to do that we need to be able

to detect and track each individual over the course of

the game. This however leads to a lot of challenges that

arise due to the nature of broadcast soccer videos. As

we can see in Fig. 1, the camera keeps shifting its focus

from the soccer field to other things such as: the audi-

ence, zooming-in of players, goalpost view, etc. This

makes it impossible to be able to have a consistent view

of the players and track them individually. Hence, we

are left with fragmented sequences of videos that give

us a panoramic view of the field as shown in Fig. 1 (out-

lined in yellow). Since temporal video segmentation is

beyond the scope of this work and has been extensively

dealt with in computer vision literature, we assume seg-

mention has been performed to exclude replays, adver-

tisements or frames from camera positions close to the

ground plane. The number of missing frames between

useful continuous clips therefore could be large, hence

the problem poses significant challenges in player track-

ing across clips, estimating player activity when outside

field of view and in analyzing the combined strategy and

actions of the entire group.

The problem of tracking across temporally disjoint

clips is similar to that of person re-identification, where

in order to maintain the track of an individual we need

to be able to associate tracks in different clips. We make

use of the fact that players in almost all team sports tend

to arrange themselves in distinct formations and try to

maintain these formations during short intervals or even

for the entire length of the game. We model this group

structure in a graph based framework and use it to esti-

mate a best fit solution for global player identity assign-

ment on a frame-by-frame basis, and use this informa-

tion to assign identities to long-term agent activities.

Our novel contributions include: 1) introduction of a

new problem of player role identification in temporally

disjoint sports broadcast videos, 2) the use of team for-

mation to perform player role identification, and 3) in-

troduction of a new and challenging dataset for tracking

and player role identification problems. Instead of using

a single player motion model or extrapolation of tracks

based on scene model, both of which do not work in the

case of sports, we use a graph based model for tacti-

cal analysis, which has not been done before to the best

of our knowledge. We seek to use singular and global

motion information. Fig. 2. shows the track positions

visible at the end of one clip and those visible at the

beginning of the adjacent clip. This visually illustrates

the difficulty and complexity of the problem, that with

the presence of temporal gap between clips, the spatial

location and arrangement of players varies to a huge ex-
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Figure 1. The figure shows a number of camera angles present in the broadcast video that we have used for our dataset. As we can

see, tracking cannot be performed in most of the camera views except the one outlined in yellow.

tent. As is observed without contextual knowledge of

the visible players in the entire formation it is not very

easy for humans to judge player roles. In the next section

we summarize the existing literature in sports and group

video analysis and tracking. We then describe our track-

ing system in detail followed by graph based modeling

and analysis, and finally we present the results. The final

output is a tracking based tactical analysis of the entire

game involving all players, that takes into account miss-

ing frames and unreliable tracking in the difficult sce-

nario of team sports. We have collected our own dataset

from a publicly available soccer game. The dataset con-

sists of manually segmented clips for which ground truth

tracks are available. Warping homographies from broad-

cast camera view to an orthogonal view of our soccer

field model are also available. We plan to publicly re-

lease the dataset.

2. Related Work

Sports video analysis typically focuses on extracting

highlights from sports videos. These systems often use

additional cues for this task such as text and audio meta-

data [26, 22, 14], replays [23, 28], graphic overlays [34]

and social media content [27].

The information that is most useful to soccer coaches

and players is on team strategy and player performance.

Recent years have seen a lot of work in this direction.

Lucey et al. [19] analyze offensive and defensive for-

mations of teams in basketball videos and the spatio-

temporal changes in a team’s formation. Tracking data

from a large number of games has been used [21, 17]

to build models for team behaviors during home/away

games. The authors in [33, 30] build predictive mod-

els for near-future events or plays in a game. Lucey et

al. [20] look at predicting scoring chances using short

time intervals. Bialkowski et al. [7] use game stats,

occupancy maps and formation estimates to get team

identities. Wei et al. [31] estimate formations using

spatio-temporal formation analysis, whereas Bialkowski

et al. [6] estimate team activities using occupancy maps.

Gyarmati and Anguera [11] extract knowledge about

ball passing. Beetz and Gedikli [4] use classification tree

to classify ball actions. Lucey et al. [18] perform a very

similar task to ours, in that they estimate a player’s role

within a team in each frame. However in their setting,

video input is from a set of eight cameras covering the

entire playing area. Hence all players are visible at all

times and cross clip track association is not needed.

While a lot of work has been done on tracking in gen-

eral, we cover tracking in sports settings only. Tracking

in sports presents unique challenges due to camera mo-

tion, person-person occlusion and complicated motion

models. The authors in [16, 8] perform tracking using

respectively a random forest of motion models for sports

and a reversible jump MCMC framework. Xu et al. [32]

present a framework for tracking specifically in multi-

camera setting, while Khatoonabadi and Rahmati [15]

use field lines to assist in video stabilization and track-

ing.

Person re-identification has been frequently re-

searched in recent computer vision literature. Learning

of discriminative appearance models in a single camera

[25, 3, 9, 2] or multi-camera settings [13, 12] has been

widely studied. Javed and Shah [12] have also looked

at conformity to known paths or patterns to associate

people. To the best of our knowledge, there is no work

that performs re-identification in a moving camera video

(such as for sports or high altitude surveillance) with

large temporal gaps between clips and no guarantee of

spatial overlap.

26



Figure 2. A figure illustrating the nature of the tracking problem we tackle in this paper. Appearance is not useful and motion cues

are not reliable. We must use team strategy information to track in temporally disjoint clips.

3. Player Tracking and Role Identification

3.1. Problem description

Given a soccer broadcast game M, we temporally

segment it to obtain video clips with a panoramic view

of the field. Let the index of broadcast video clips be

v = 1, . . . , V . The proposed approach begins by detect-

ing players in each frame f = 1, . . . ,Fv of a video clip

v. These detections are then associated across frames

using a Greedy Bipartite (GB) [24] matching algorithm

to obtain tracklets tv = {ntv}n∈(1,...,Tv). Since, it is

challenging to track players in broadcast sports videos,

due to moving camera, similar appearance and heavy

occlusions, tracking produces several fragmented track-

lets. These tracklets are merged together by a second

application of GB algorithm to obtain merged tracklets

pv = {mpv}m∈(1,...,τv), where τv ≤ Tv .

As tracking is performed by associating player detec-

tions in consecutive frames in a panoramic-view video,

it becomes impractical to associate tracks frame-wise

when the camera looks away. Therefore, our contribu-

tion lies in maintaining player identity throughout the

course of the broadcast game, despite temporal discon-

tinuities in the panoramic-view of the game. Our pro-

posed approach for player role identification uses team

formation Φ ∈ π, where π is a finite set of team forma-

tions, to associate player positions from each frame of

the video.

In the following sub-sections we describe how play-

ers are detected and tracked in each video clip. Then

we propose our approach for player role identification

in temporally disjoint videos.

3.2. MultiPlayer Detection and Tracking

3.2.1 Player Detection

Detecting players in soccer broadcast videos using stan-

dard human detectors [10] doesn’t work very well due

to high articulation of human body with varying poses

and low player resolution. Players are detected in each

frame by modeling the background using Gaussian Mix-

ture Model (GMM). Firstly, the area within the frame

corresponding to the playing field is identified to ex-

clude image regions that correspond to crowd or stadia.

Training samples of the field are used to determine the

mean and variance for each color channel of the field.

Using the background model, player blobs are detected

as foreground. Each team’s players are modeled using a

color histogram. This histogram is used to classify blobs

into one of the two participating team’s players, so that

each team’s players can be tracked separately. The back-

ground subtraction method is noisy and does give blobs

of various sizes and false detections, which are filtered

based on size.

3.2.2 Player Tracking

In multi-target tracking players are associated between

frames of a video using appearance, motion and player

positions. Appearance plays an important role in dis-

tinguising a player from the rest. However, in broad-

cast sports, appearance doesn’t help in differentiating

members of the same team. Therefore, we classify

the set of detections in each frame into two groups:

1) Team 1 (e.g. Spain) and 2) Team 2 (e.g. Germany),

based on their appearance features. Tracking is per-

formed individually for each group, where players be-

longing to the same group are associated across frames.

This helps avoid any inter-team occlusions and identity

(ID) switches.
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Greedy Bipartite (GB) matching algorithm is applied

in a two-step approach, where initially it is used to as-

sociate detections (within a group) across consecutive

frames to form short tracklets. These tracklets are then

merged using GB (see Section 3.2.3) matching to get

tracks for every player within a video clip.

GB algorithm uses distance matrix, computed us-

ing euclidean distance between player positions in each

frame, to find tracklet associations. Before associating

detections in each frame, we compensate for camera mo-

tion using COCOA [1]. The detections in current frame,

which aren’t associated with any tracklet are used to ini-

tialize a new tracklet; for those detections which get as-

sociated with current tracks, their state is updated ac-

cordingly. In case of a missing detection, a linear mo-

tion model is used to project the track in next frames.

This generates a set of tracklets tv = {ntv}n∈(1,...,Tv),

where ntv = [nt
b
v, . . . , nt

e
v], b,e ∈ Fv is a set of player

locations nt
f
v = (nx

f
v , ny

f
v ) in each frame f of a video v;

b and e represent beginning frame and ending frame of

nth tracklet ntv , respectively.

3.2.3 Tracklet Merging

In a video sequence with irregular and non-linear player

movements, fast camera motion, frequent occlusions

and indistinct appearances, it becomes difficult to keep

track of players and often gives us fragmented tracks.

This problem can be solved by merging these tracklets to

get one whole trajectory for each player over the course

of an entire clip. In our case we have used GB matching

algorithm to merge these tracklets.

To start with, we classify each tracklet ntv as belong-

ing to one of three possible cases: 1) SS (Starting Track-

let); tracklet either started in the first frame of a video v
or just entered the field of view, hence starting location

of this tracklet would appear close to the frame edge, 2)

SI (Intermediate Tracklet); tracklet’s starting and ending

location isn’t close to the frame edge, and 3) ST (Ter-

minating Tracklet); tracklet ended at the last frame Fv

of a video clip v or is about to leave the field of view.

To merge tracklets we start from a terminating track-

let and join it with either an intermediary or a starting

tracklet, which satisfies spatio-temporal proximity con-

straints. We keep recurring this procedure till all tracks

in ST are merged with tracks in either SS or SI, hence

making them complete. This generates merged tracklets

pv = {mpv}m∈(1,...,τv), where mpv = [mpbv, . . . ,mpev],

b,e ∈ Fv is a set of player locations mpfv = (mxf
v ,myfv ).

The following section explains how player role is re-

identified, after a temporal discontinuity in play. The

tracks obtained from each individual clip v are con-

nected across clips by associating track positions to

player formation identities.

3.3. Player Role Identification in Temporally Dis
joint Videos

Once we obtain the set of tracks pv in each of the

clips v used in our dataset, our next goal is to identify

player role in each of the sets pv , v ∈ {1, 2, .., V } to

form a set of player tracks rM that spans over the en-

tire game M and contains total number of tracks equal-

ing twice the number of players in each team, |Φ|
(11 in the case of soccer). Fig. 2 visually illustrates the

difficulty and complexity of the problem. As is observed

without contextual knowledge of the visible players in

the entire formation it is not very easy for humans to

judge player roles.

In any given clip v, the set of visible tracks pv only

represents a subset of formation Φ. To assign every

player in pv a role from formation Φ, there can ex-

ist a number of possibilities. Similarly, when match-

ing player identity from one clip to another, the num-

ber of combinations increases even further. Given the

number of players | pv| in clip v, and | pw| in clip w,

where v, w ∈ V , the possible number of solutions is
|Φ|C| pv|

× |Φ|C| pw|.

A naive solution to player role identification problem

can be to take the average location of each track within

a clip and find a bipartite solution over a matrix of dis-

tances between the average track positions and model

formation locations. This solution is ineffective because

of two major reasons: 1) It is very difficult to get com-

plete tracks within a clip due to large camera motion;

and 2) players show large variation in their positions

on the field based on the conditions of the game (See

Fig. 4).

The problem is further complicated by the fact that

not all players visible in a clip may be visible in a given

frame of the clip. Therefore, we must analyze each

frame separately. We propose a graph matching based

voting method to determine player identity within one

clip with respect to the model formation. The approach

accumulates votes over frames using an optimization

procedure explained in Section 3.3.3. This optimization

is performed for each individual clip to find player role

in a formation. This helps us in establishing consistent

player roles across clips, under the assumption that the

players retains same role in the formation over multiple

video clips.

In the following sub-sections we will explain how we

model team formation and estimate camera parameters

28



Figure 3. A figure showing three sample formations: from left

to right: {4-2-3-1},{4-4-2},{4-3-3}

to project track positions onto the field model. Finally,

we will provide the details of the graph matching based

player role identification method.

3.3.1 Team Formation

Each team in a soccer game consists of 10 outfield play-

ers plus a goalkeeper. The manner in which players from

one team, except the goalkeeper, arrange themselves rel-

ative to one another during a game is known as their

formation, Φ = {Φk}k∈(1,...,11). Players arrange them-

selves in lines of defense, midfield and attack. There-

fore, formations are defined by a string of numbers rep-

resenting the number of players in subsequent lines from

defensive to attacking players. Fig. 3 shows a visual-

ization of three sample formations on a field model. A

formation of {4-2-3-1} was used by both teams in our

dataset. The formation of a team is available in pre-

match team announcements.

3.3.2 Camera Parameter Estimation

To match track player positions in a frame to a model

formation, we first need to project these positions to

a field model by estimating camera paramters. Fig. 4

shows tracks in original frames being projected onto the

field model. The extrinsic camera parameters for all

camera frames were estimated using a wire frame track-

ing framework for field lines. To extract field lines,

first field region is detected using GMM, where field

color was used to remove the background, we then ob-

tain edges within the field area and remove player de-

tections using color information as well. Finally, we

remove noisy edges using simple morphological opera-

tions. The resulting field lines are shown in Fig. 5. Each

of these extracted field lines are then used to estimate

camera parameters for the particular frame by searching

over a range of possible parameters to get the best match

over a field model. The field model was constructed ac-

cording to FIFA (International Federation of Associa-

tion Football) regulations, with a width to height ratio of

Figure 4. The figure shows the tracks from one player visible

over multiple clips. Tracks in each clip are shown in a single

color. We can observe large variation in position and large

distances between track endpoints.

1.62. Fitness criteria was used as defined by Watanabe

et al. [29].

3.3.3 Single Team Player Role Identification

To establish player roles within a clip, we observe that

although players tend to remain in relatively similar po-

sitions over the length of play, they may temporarily in-

terchange or leave their positions depending on the state

of play. Also, the actual positions are not fixed and the

entire formation may move forwards or backwards on

the pitch. Obviously determining the identity of one

(b) (d) 

(a) (c) 

Figure 5. Steps involved in the estimation of camera param-

eters: (a) Original frame (b) Extracted field lines (c) Visible

field region in original frame (d) Field model using camera pa-

rameters.
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Figure 6. An outline of the track association across clips using

formation cue. Graph 1 corresponds to the players visible in

the first clip which are enclosed within the dotted line in the

figure in the top-centre. Graph 2 and the figure in the bottom

centre show the same for the adjacent clip. The figure on the

right shows the players common to both clips.

player based on his instantaneous position is not pos-

sible. Our task is to identify player role in the forma-

tion model Φ. As we mentioned before a simple nearest

neighbor approach will not work as the locations of the

players change.

We formulate the problem of player role identifica-

tion as a graph matching optimization problem. For each

tracklet in pv we associate it’s position to a role in for-

mation Φ. We form a graph pGf
v for every frame f in

video v, in which nodes represent player positions pfv
and edges denote inter-player distances. We match this

graph with a set of graphs ΦGf
v = {ΦiG

f
v}i∈(1,...,|Ψf

v |)
,

where |Ψf
v | = |Φ|C| pf

v |
is all possible combinations

from the model of |pfv | nodes. The nodes in this set of

graphs represent relative player positions in the model

formation given by Ψf
v = {iΨ

f
v}i∈(1,...,|Ψf

v |)
and edges

denote inter-player distances within the formation. We

search over all player combinations from the model and

compare them with actual player positions. For this

comparision we minimize over two costs: 1) A de-

formation cost σ
iD

f
v defined as the Bipartite cost over

node-node distances for graphs pGf
v and Φ

iG
f
v . These

distances are the summation of distances computed us-

ing original field co-ordinates and after registering both

graph’s means positions. This allows us to capture

deformation between frame tracks and the model sub-

graph more accurately. 2) a spatial displacement cost

defined as δ
iD

f
v = ‖ p

µ
f
v − Φ

iµ
f
v‖, where p

µ
f
v and Φ

iµ
f
v

are mean positions of pGf
v and Φ

iG
f
v respectively. We

generate a set of best player role candidates within the

formation by optimizing over the following cost func-

tion:

iΥ
f
v = argmin

top−λ

(α. δiD
f
v + β. σiD

f
v ). (1)

We accumulate the votes for roles assigned to each

tracklet and chose the role which has the maximum

votes. Fig. 6 shows how two graphs from two differ-

ent video clips are matched to model formation. The

overlap of player roles in model formation shows how

we can obtain continuous tracks of all players over the

course of the game. Details of the entire algorithm can

be found in Algorithm 1.

Algorithm 1 : Player Role Identification

Input: Ψv and pv

Output: Top λ elements of sorted Φ
iG

f
v

1: procedure PLAYERROLEID(Ψv ,pv)

2: for f = 1 to Fv do

3: Generate Model Graph Combinations ΦGf
v

4: Generate Player Graph pGf
v

5: for all Φ
iG

f
v in ΦGf

v do

6:
p
µ

f
v = Mean of pGf

v

7:
Φ
iµ

f
v = Mean of Φ

iG
f
v

8: R = ‖ pGf
v − Φ

iG
f
v‖

9:
δ
iD

f
v = ‖ p

µ
f
v − Φ

iµ
f
v‖

10:
σ
iD

f
v : Bipartite cost over R

11: iΥ
f
v = α. δiD

f
v + β. σiD

f
v

12: end for

13: Sort Φ
iG

f
v by iΥ

f
v

14: Return top λ elements of sorted Φ
iG

f
v

15: end for

16: end procedure

3.3.4 Joint Player Role Identification of Competing

Teams

In all cases of competitive behaviors that involve two or

more agents, the strategy of one team is closely linked

with the strategies adopted by the other teams. In soc-

cer, therefore we observe a high correlation between the

activitites or states of opposing teams. Correlation may

also be observed between individual players of opposing

teams as players are often assigned the task to counter

specific individuals. Therefore, the behavior of one team

can serve as a reliable cue in the estimation of the be-

havior of the other team. This is however a chicken

and egg problem as there is no obvious order by which

we can analyze the two behaviors one after the other.
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Figure 7. An explanation of the simultaneous best fit estima-

tion for both teams’ formation identities in a given frame. 1:

input frame. 2: Graphs constructed from detections for both

teams. 3: Graphs matched against candidates from model sub-

sets. 4: Best candidate solutions are chosen for each team. 5:

A simultaneous solution for best assignments for both teams

is estimated. 6: Each track point is assigned a formation iden-

tity. 7: An entire track is assigned an identity based on vote

pooling.

Therefore, we must compute a simultaneous likelihood

of joint events which we do so using high probability

candidate events for each team. Fig. 7 explains the in-

teraction between the two states and the cues we use to

estimate them.

A candidate solution for assigning formation iden-

tities to one team’s players in a frame is denoted by
Φ
Ai

Gf
v , where A denotes team identity. At the same

frame, a candidate solution for a second team (denoted

by B) is Φ
Bi

Gf
v . We divide members of each team into

three types, κ ∈ {defender,midfielder, attacker}.

We know that at any one time, typically one team is on

the attack while the other is on the defense. Hence, if

players from a team in one frame are mostly attacking

players, it is likely that players from the other team in

camera view will be defensive. Let us define sets JA

and JB as the sets of player types in frame f of clip v
for each team. The notation ΓAi,Bj

is defined as the

affinity between candidates Φ
Ai

Gf
v and Φ

Bi
Gf

v from the

two teams respectively.

ΓAi,Bj
= |JA ∪ JB|−|JA ∩ JB|/|JA ∪ JB| (2)

This is the Jaccard distance of the two sets JA and

JB. Once we obtain the set of candidate solutions for

Video # 1 2 3 4 5

MOTA (%) 82.07 85.01 80.02 80.17 79.43

MOTP (%) 89.24 93.13 82.59 81.23 84.18

ID switches 5 1 10 3 1

Frames 945 74 401 250 221

Table 1. Results for tracking within each clip.

Video # 1 2 3 4 5

Team 1 (Spain) 52 75 50 73 67

Team 2 (Germany) 50 78 60 - -

Table 2. Results showing accuracy (%) for player role identity

estimation of tracklets.

both teams for a given frame we choose a certain number

λ of highly likely solutions and form an affinity matrix

ΓAi,Bj
between candidate pairs Φ

Ai
Gf

v and Φ
Bi

Gf
v where

i, j ∈ 1, 2, .., λ. The final solutions for Φ
Ai

Gf
v and Φ

Bi
Gf

v

are chosen by optimizing over the equation:

Ξ = argmin
i,j

(Ai
Υf

v .ωA+

Bj
Υf

v .ωB + ΓAi,Bj
.ωγ). (3)

4. Experiments

4.1. Soccer Broadcast Dataset

We have collected our own dataset from the televi-

sion broadcast of an international soccer game. We have

manually segmented the video to extract only the seg-

ments that show the field from an almost overhead view

from the sidelines. We provide V = 5 such clips, in-

cluding track annotations covering almost 1900 frames.

We intend to make the dataset publicly available. Manu-

ally computed tracks as well as homographies, that warp

every frame of a video clip to the field model, are avail-

able.

4.2. Experimental Results

We perform tracking over 5 disjoint clips from a soc-

cer game. The initial tracklets are formed using Greedy

Bipartite and then all of them are merged together to get

one whole trajectory using Bipartite Graph matching.

The results are shown in Table 1 and are calculated us-

ing CLEAR MOT [5] metrics. MOTA measures the rate

of false positives, false negatives and ID switches over

all tracks in each video, where as MOTP is related to
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Figure 9. Confusion matrices between players of a team in one clip. The diagonal should ideally be large. Large non-diagonal

elements indicate confusion between corresponding players. Each color represents a pair of player roles.

precisely locating the object in each frame. Our results

show that we achieve an average accuracy of 81.5%.

Once we have the tracks for each sequence, our target

is to link all these tracks, which means we should be able

to identify each player in all the videos.

To test our identity estimation method within the

clips, we perform the method outlined in the algorithm

given in Algorithm 1 on each clip, on the tracks gen-

erated automatically. We then compare the estimated

identity with the ground truth identity for each tracklet.

The results for each clip are given in Table 2. The com-

bined accuracy is 58.4%, while the probability of ran-

domly choosing the correct answer is < 1% (Since track

labels are not independent, this is calculated as 1/ 11C7,

where 7 is the average number of players per clip). This

is notably high considering that a fair evaluation needs

ground truth that takes into account players switching

roles for brief periods of time.

(a) Left Midfielder (b) Defensive Midfielder (c) Offensive Midfielder
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Figure 8. Kernel Density Estimation over tracks of the high-

lighted player (yellow). Arrows indicate player movement di-

rection.

5. Analysis and Discussion

With cross clip tracking, we can retain the identity of

a track over the course of a game by associating each

clip to a known formation, allowing us to compute indi-

vidual player statistics over entire games. On the other

hand, qualitative analysis can be done using Kernel Den-

sity Estimation of the tracks of either an individual or

an entire team. This helps us in determining a player’s

strategy during the game and also analyze whether or not

he was successful in that strategy. Fig. 8 illustrates the

Kernel Density Estimation of the tracks of three mid-

fielders. It can be observed that although all three are

midfielders, they have very different strategies and par-

ticipate in different kinds of plays. Fig. 9 shows confu-

sion matrices built from votes accumulated from each of

our clips. This allows us to observe that adjacent players

from the model are often confused. The most confusing

pairs are shown in colored boxes and highlighted on the

field model on the right of the figure.

6. Conclusion

Our work shows that with the use of formations we

can associate tracks between consecutive clips, which is

possible due to the fact that players remain in an orga-

nized manner. We believe that this work is applicable

to other forms of sports and aerial surveillance of mul-

tiple agents, where well structured group activity can be

observed. Performing statistical and tactical analysis us-

ing tracks obtained over long durations wouldn’t have

been possible in archived broadcast sports videos, where

multi-camera systems were not available.
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