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Abstract

Human activity recognition is a fundamental problem in

computer vision with many applications such as video re-

trieval, automatic visual surveillance and human computer

interaction. Sports represent one of the most viewed content

on digital tv and the web. Automatically collected statis-

tics of team sports game play represent actionable infor-

mation for many end users such as coaches and broadcast

speakers. Many computer vision methods applied to sport

activity classification are often based on multi-camera se-

tups, player tracking and exploit information on the ground-

plane. In this work we overcome this limitations and pro-

pose an approach that exploits the spatio-temporal struc-

ture of a video grouping local spatio-temporal features un-

supervisedly. Our robust representation allows to measure

video similarity making correspondences among arbitrary

patterns. We tested our method on two dataset of Volley-

ball and Soccer actions outperforming previous results by

a large margin. Finally we show how our representation

allows to highlight discriminative regions for each action.

1. Introduction

Human activity recognition is a fundamental problem in

computer vision [15, 7, 25] with many applications such

as video retrieval[17], automatic visual surveillance[19, 20]

and human computer interaction[26]. Sports represent one

of the most viewed content on digital tv and the web. Sports

are watched by millions of people and broadcasters are con-

stantly improving user experience by providing real-time

statistics of games. Classifying player actions in sports is

an extremely relevant task that can provide several com-

mercial and professional applications. Speakers, analysts

and directors may obtain in real-time similar plays from the

current or other games providing an improved experience

for the audience. Head coaches may easily classify all the

plays of a certain player to track improvement or to analyze

other teams tactics; finally gameplay statistics can be auto-

matically gathered such as the amount of shots on goal and

corner kicks a team had in a game or a season.

Recently many computer vision researchers directed

their efforts in the automatic analysis of sports videos.

Sports video analytics is often performed to collect statis-

tics on player positions during games extracting individual

trajectories and team formation patterns [12, 6, 1].

Many action recognition datasets are comprised of just

sport videos and there is some, limited, interest in recogniz-

ing in a video [21, 14, 8]. More effort has been poured in

the analysis of team tactics and activity [4, 3]. Team activi-

ties are defined best by player positions in the field, for this

reason many works exploit this datum. Many methods are

based on multi-camera systems deployed to get full cover-

age of the court.

There are few methods, apart from generic action recog-

nition systems, that attempt to classify player activities

without localizing and tracking individual players [2]. In-

deed several techniques require a calibrated fixed view to

fuse visual features with geometrical features such as player

trajectories or positions in the field.

In this paper we propose an activity recognition method

that targets team sports. Our method does not require cali-

brated views of the field, player track annotations or player

tracking, neither is based on player team recognition. Our

method automatically groups visual features forming a ro-

bust representation of videos. We show how the proposed

method can recognize individual player activities as well as

collective team activities in two popular sports: soccer and

volleyball.

Our method is based on improved trajectories [24] and

does not encode explicitly player positions or the temporal

sequence of a video. We automatically group trajectories

and define a match kernel able to make arbitrary correspon-

dences of spatio-temporal patterns.

Our method is similar to [5, 7] but differently from [5]

we do not require a hierarchical partitioning of the fea-

tures nor use quantized local features that have worst per-

formance with respect to Fisher encoded descriptors; more-

over [7] require importance maps obtained processing Hi-

erachical Space-Time Segments [13] while we just rely on

our feature grouping method.

We test our method on two sport activity datasets im-
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Figure 1: Cluster matching between two videos from the same class of the Volleyball Activity dataset.

proving accuracy with respect to previously published

methods by a large margin. We also show state-of-the-art

results on UCF-Sports showing how our method is also a

viable generic action recognition system.

2. Related Work

We briefly review some recent contributions on auto-

matic sport activity recognition. Atmosukarto et al. [1] de-

veloped a method to recognize offensive team formation

in American football. Their method applies robust video

stitching and exploits the localization of the line of scrim-

mage to compute a feature based on gradient intensity on

the offensive side of the line. Bialkowski et al. [3] avoid

tracking players but apply player detection and team recog-

nition. The method exploits multiple calibrated views of the

field to locate players in the field. Team activity is recog-

nized computing team field occupancy maps.

Ballan et al. [2] match videos using a kernel for

sequences derived from the Needleman-Wunch distance

(NWD). The temporal structure of a video is a fundamen-

tal cue for recognizing complex events such as sport activi-

ties. Their approach is based on the fact that similar actions

should share similar appearance in a similar sequence. The

main limitation of their method is the use of static features

(SIFT) and the fact that NWD is not designed to make arbi-

trary correspondences between sequences.

Waltner et al. [23] propose a method to recognize indi-

vidual player activities in volleyball. Their method exploits

player detection and camera calibration. Single player ac-

tivities are recognized using a boosting based approach and

static and motion local features. They also compute a con-

textual feature based on player position for which they re-

quire player team recognition.

3. Video Representation

Our video representation is designed to capture the

spatio-temporal structure of the video. In team sports, ac-

tivities are often defined only by a subset of the players.

Ideally mapping visual features to players or other relevant

elements, e.g. the ball, the referee etc., allows to obtain a

detailed representation of the scene. Although player track-

ing and detection is an extremely challenging task that is

prone to failure. Failing to track or detect players or other

relevant entities breaks the recognition pipeline leading to

inconsistent results.

Our method is more robust and consists of two main

steps: first we group trajectories in an unsupervised man-

ner with an efficient method allowing to deal with the sev-

eral thousands of features per frame extracted, and then we

propose a cluster match kernel that allows to make corre-

spondences among the grouped trajectories. SVM is used

to learn the classifiers.

3.1. Trajectory clustering

We use Improved Dense Trajectories (IDT) [24] as a

feature extractor. To cluster trajectories, due to the large

amount of features extracted by the IDT algorithm, we used

Landmark Based Spectral Clustering (LSC).

Spectral clustering is a relaxation of Normalized Cut al-

gorithm that tries to exploit the connectivity of data. Spec-

tral clustering exploits the eigenvalues of the Laplacian to

obtain a better representation that allows to easily separate

clusters using k-means.

The main problem with big input data is computing the

graph Laplacian and its factorization. Let L = [l1, ..., ln] ∈
R

m×n be the data matrix. First we sample the input data

to obtain two matrices U ∈ R
m×p, the landmarks ma-

trix) and Z ∈ R
p×n, the data projected in a smaller space

of size p ≪ n so that we can approximate L ≈ UZ,

thus making Laplacian and eigenvectors computation more
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Figure 2: Automatically clustered trajectories on soccer dataset (10, 15 and 30 clusters). Several clusters gather features of a

single player. Noisy clusters often capture textured regions of the background.

Algorithm 1: LSCClustering

Data: n data points l1, l2, . . . , ln ∈ R
m, Cluster

number k

Result: Indices of k Clusters

1 Choose p landmarks using a K-Means pass with few

iterations

2 Compute matrix Z ∈ R
p×n as shown in Equation 1

3 Compute the first k eigenvectors of ZZT ,

V = [v1,v2, . . . ,vn] ∈ R
k×n

4 Apply K-Means to V to obtain the indices vector I of

the k clusters for the n input observations

5 return (I)

lightweight. Preselection of landmarks is performed using

K-Means. These samples are the basis vectors used to rep-

resent the input data in a reduced space.

Given the samples and matrix U, the elements of the

sparse representation matrix Z can be calculated efficiently

as

zji =
Kh(li,uj)

∑

j∈U Kh(li,uj)
(1)

Where Kh(·) is a kernel function, in our case the Gaussian

kernel Kh(li,uj) = exp(− ||li−uj ||
2

2h ). We now can com-

pute the eigenvalues and eigenvectors of ZZT , choosing the

first k and applying K-Means to obtain the clusters. The

clustering pseudocode is outlined in algorithm 1.

3.2. Cluster representation

We represent local features with HoG, HoF, MBH and

trajectory descriptors concatenating the normalized spatio-

temporal coordinates to the local descriptors. Each cluster

is represented with a Fisher Vector encoding of the local

descriptors that have been assigned to it.

We apply PCA retaining the first 80 components of all

histogram features and 20 of the trajectory descriptors; we

concatenate the normalized spatio-temporal coordinate of

each trajectory center to the PCA-compressed local feature

in order to retain information about the global location. We

learn a codebook of 256 Gaussians using GMM. PCA and

GMM codebook are learned on a random sample of 200K

training features.

Fisher Vectors are calculated using the Improved algo-

rithm (L2-normalization and power normalization are ap-

plied) and we use linear kernels according to [16], summing

kernel scores computed from different local features as in

Eq. 8.

Given a Gaussian Mixture Model with parameters

µn,σn,ωn and given soft-assignments γ
(n)
m for each of the

M augmented local feature xm ∈ X , the Fisher vector is

computed concatenating the likelihood gradients:

Ψ(X) = [Gµ
n(X) Gσ

n(X)] (2)

where

Gµ
n(X) =

1√
ωn

M
∑

m=1

γ(n)
m

(

xm − µn

σ2
n

)

, (3)

Gσ
n(X) =

1√
2ωn

M
∑

m=1

γ(n)
m

(

(xm − µn)
2

σ2
n

− 1

)

,(4)

and

γ(n)
m =

ωnpn(xm)
∑D

j=1 ωjpj(xm)
, (5)

4. Video Matching

Consider the set of augmented local features X extracted

from a video, the clustering yields a partition P(X) of set

X such that

⋃

Xi∈P(X)

Xi = X and
⋂

Xi∈P(X)

Xi = ∅ (6)
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We define a kernel inspired by Match Kernels [22] that

exploits trajectory grouping to reduce the matching com-

plexity and to compute correspondences among coherent

subset of video features.

4.1. Cluster Set Kernel

Given a pair of videos and their respective feature sets X

and Y , after applying clustering we can compute our cluster

set kernel by computing

K(X,Y ) =
1

|P(X)|
∑

Xi∈P(X)

max
j

Ψ(Xi)
TΨ(Y j)+

(7)

1

|P(Y )|
∑

Yj∈P(Y )

max
i

Ψ(Xi)
TΨ(Y j)

In this way, we obtain a symmetric kernel matrix. Our ker-

nel takes into account the similarity scores both of Y re-

spect to X and of X respect to Y . If two videos are simi-

lar, we should obtain high scores from both operations, and

thus a high combined score.

Even though our kernel can not formally satisfy the Mer-

cer property it has been shown that this is not a strict re-

quirement for an SVM classifier to learn an accurate solu-

tion. In practice the kernel matrices we have computed were

always positive definite so far.

Given different groupings P(Xf
n) for each feature f and

the respective kernels K(P(Xf
n),P(Y f

n)) our final kernel

can be computed as

K(X,Y ) =
∑

f

∑

n

K(P(Zf
n),P(Y f

n)) (8)

thus integrating different local representation and spatio-

temporal structures.

4.2. Action Localization

To gain insight on the potential localization capability of

our approach, we show a method for salient cluster mining.

We would like to find which are the clusters that better help

the classifier to discriminate. Given a video feature set Z,

and the learned kernel SVM classifier for an action defined

by Eq. 8, the weights αk and training sample labels yk we

greedily search for the cluster Zi that, if removed, causes

the higher classification score drop:

Zi = argmax
i

∑

k

αkyk [KXk(P(Z))−KXk(P(Z) \ Zi)]

(9)

where KX(Z) = K(X,Z). In Figure 3 we plot the ac-

cumulation of salient clusters bounding boxes generating a

heat map highlighting the most salient areas in the scene.

It can be seen that for the “Service” and “Attack” ac-

tion the serving and attacking players are respectively high-

lighted. While in the examples of “Reception” and “Set-

ting” multiple players are highlighted. In the “Setting”

action, both spikers, the middle-blocker and the opposite

player run-up are localized.

This behavior can be expected, as some actions need

global contextual information to be recognized, which

means that clustering is not able to understand their dy-

namic nature. It may also happen that some actions are

correctly classified by our clustering approach, but identi-

fying as meaningful some parts of the scene which are not

intuitively descriptive of the action.

5. Experiments

5.1. Dataset

To test our framework, we performed some tests on a

generic sport dataset (UCF Sports), and two specific sport

datasets, namely MICC-SOCACT4 and Volleyball Activity

Dataset 2014.

UCF Sports UCF Sports is comprised of 10 actions

selected from various sports and recorded from TV broad-

cast (Diving, Golf Swing, Kicking, Lifting, Riding Horse,

Running, Skateboarding, Swing-Bench, Swing-Side, Walk-

ing). There are 150 scenes at 720x480 resolution. For ac-

tion recognition, we use the Leave-One-Out (LOO) cross-

validation scheme.

MICC-SOCACT4 This dataset is composed by 100

MPEG-2 videos at PAL resolution (720x576). These videos

represent 4 soccer actions: “Goal Kick”, “Throw In”,

“Placed Kick”, “Shot on Goal” and were recorded from

5 different matches of the Italian “Serie A”. We picked a

match as the test set and the other 4 as the training set, per-

forming a 5-fold cross-validation.

Volleyball Activity Dataset 2014 This dataset is com-

posed by 6 full volleyball matches of the Austrian Volley

League originally recorded in full HD resolution. They

were annotated with 7 classes, 5 specific volley classes

(“Serve”, “Reception”, “Setting”, “Attack”, “Block”), and

2 more general classes (“Stand”, “Defense/Move”). We

take in exam the tracklets, which represent the continuous

player activities lasting about 1-2 seconds. We cut the orig-

inal videos according to the tracklets, obtaining about 900

videos, that we used as the actual classification dataset. The

cut script provided by the authors crops the area around an-

notated players, while we take the entire frame, reducing its

resolution to 640x360, and adding 15 frames at the begin-

ning and 15 at the end of the tracklet. Data was partitioned

in 50% for training and 50% for testing, according to [23].
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Figure 3: Heatmap of the most relevant clusters for collective actions “Attack”, “Reception” and “Service” (from top to

bottom).

5.2. Action Recognition

In all experiments we extracted dense trajectories de-

scriptors with the default parameters. For SOCACT and

UCF Sports datasets, we extracted descriptors also on

flipped versions of videos due to the low cardinality of the

datasets.

We make a baseline using a standard Fisher Vectors

pipeline using linear kernels. This is equivalent to our

framework with a single cluster containing all the features.

We run a set of experiments to show how the trajectory

clustering step affects classification accuracy. We report

classification results varying the number of clusters in Ta-

ble 2 and Table 3.

Accuracy of our method is not strongly dependent on the

amount of clusters extracted per sequence. In both dataset

Clusters

1 5 10 15 30

A
c
c
u
ra

c
y

80
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Figure 4: Accuracy values varying number of clusters for

the MICC-SOCACT4 dataset.

the best performance is obtained using 10 clusters.
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Figure 5: Accuracy values varying number of clusters for

the Volleyball Actions 2014 dataset.

Method Accuracy

Our 91.0

Fisher Vector Baseline 87.6

Karaman et al. [7] 90.4

Lan et al. [11] 83.7

Kovashka et al. [10] 87.3

Klaser et al. [9] 86.7

Wang et al. [24] 85.6

Yeffet et al. [27] 79.3

Rodriguez et al. [18] 69.2

Table 1: Comparison with the state of the art on the UCF

Sports dataset. Results are reported as mean per-class accu-

racy over the 10 classes.

We first show a comparison with the state-of-the-art on

UCF Sports Actions, which highlights the good behaviour

of our method respect to other known approaches. We

slightly outperform the state-of-the art of [7], without mak-

ing use of pooling maps to weight high saliency areas of the

scenes[7]. UCF Sports actions are performed by individ-

ual athletes, so the clustering step is able to put in evidence

the salient subset of trajectories without additional external

information.

We then report results of our method on the smaller

MICC-SOCACT4 dataset. Soccer actions are often defined

by collective behaviors. On this dataset our Fisher Vector

baseline already improves over [2] by a large margin as is

shown in Table 2. Nevertheless our correspondence kernel

can boost the accuracy further obtaining 92.50%, especially

raising the accuracy on “Goal Kick” and “Placed Kick”;

in both these actions there is a single player performing a

discriminative motion: kicking the ball from a fixed posi-

tion, while other players are less involved in the action. For

this reason our clustering can isolate this actions and better

match the respective spatio-temporal structures.

In Table 3 we report a comparison of our method with

previous work and our baselines on the Volleyball Activity

Dataset. It can be seen that our baseline based on a sin-

Method Accuracy

Our Fusion 92.5

Our clustering 91.5

Fisher Vectors Baseline 88.8

String Kernel+SVM[2] 73.0

NN+NWD [2] 54.0

Table 2: Mean per class accuracy of our method compared

with [2] on the MICC-SOCACT4 dataset.

Method Acc. 7 Cl. Acc. 5 Cl.

Our Fusion 91.2 94.1

Our clustering 68.2 78.5

Fisher Vector Baseline 60.3 53.7

Waltner [23] et al. 77.5 90.2

Table 3: Mean per class accuracy results on the VolleyBall

Activity dataset compared with [23].

gle Fisher vector per video perform worse than [23]. Our

clustering based baseline improves over the FV baseline by

8% (and by 25% on 5 classes). Some player activities are

better recognized in isolation as can be seen in the con-

fusion matrix while other are better recognized exploiting

context. From Figure 6 it is clear that collective activities

as “Block”,“Defence” and “Attack” are better captured by

a global representation (FV), while individual actions like

“Setting” and “Service” are better recognized by our corre-

spondence kernel.

The fusion approach implemented by Eq. 8 is able to ob-

tain accurate results in both setups outperforming the state

of the art by more than 14% (and by 4% on 5 classes).

The classification task noticeably benefits from the clus-

tering step, especially in the volleyball setup. However, it

appears clearly looking at the confusion matrices in Figure 6

that results are complementary. “Stand”,“Block” and “De-

fence” need some additional contextual information to be

recognized, while clustering focuses on local information

located in cluster areas, which is better for the other classes.

So we tested a combination of both approaches by means

of a kernel fusion. Notice how the kernel fusion allows to

distinguish between Block and Attack actions, which are

almost totally confused by the clustering method.

On soccer videos classification accuracy took just a small

advantage from kernel fusion, compared to clustered Fisher

encoding by itself. We can hypothesize that soccer scenes

do not benefit from global contextual information because

of their structure and dynamic characteristics, with very

high camera motion that is not fully compensated by im-

proved trajectories features, while volley sequences need to

be analysed both globally and in specific areas to locate the

distinctive elements, such as the players disposition.
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Figure 6: Confusion matrices for volleyball.
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Figure 7: Confusion matrices for soccer. Our method improves on “Goal Kick” and “Placed Kick” actions.

6. Conclusion

We have proposed a novel method for team sport ac-

tivities recognition based on local trajectory grouping and

matching. Our approach allows to automatically understand

what activities are performed in video. Thanks to our clus-

ter set kernel we can compute partial video correspondences

effectively without exhaustively matching all local features.

This approach proves effective in recognizing activities

where individual player actions are important. Our repre-

sentation is complementary to a global encoding of local

features. The fusion of these two representation yields state-

of-the-art results in recognition of volleyball and soccer ac-

tivities.

Our feature grouping allows to localize mid-level spatio-

temporal features that are semantically sensible. We further

show a method to understand what mid-level features are

relevant for a certain action.
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