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Abstract

Tracking objects like a basketball from a monocular view

is challenging due to its small size, potential to move at high

velocities as well as the high frequency of occlusion. How-

ever, humans with a deep knowledge of a game like bas-

ketball can predict with high accuracy the location of the

ball even without seeing it due to the location and motion of

nearby objects, as well as information of where it was last

seen. Learning from tracking data is problematic however,

due to the high variance in player locations. In this paper,

we show that by simply “permuting” the multi-agent data

we obtain a compact role-ordered feature which accurately

predict the ball owner. We also show that our formulation

can incorporate other information sources such as a vision-

based ball detector to improve prediction accuracy.

1. Introduction

The task we focus on in this paper is tracking the ball in

basketball from a monocular camera. To detect and track

the ball, the intuitive thing to do would be to run an image-

based ball detector on every frame and link the detections

together. However in practice this approach is problematic

as the ball is similar in appearance to human heads causing

false alarms, and it is constantly occluded by players. An

example of this is shown in Fig. 1 where we show a snapshot

from a fixed monocular video camera capturing footage of

a basketball match, where the players are clearly visible but

the ball is not. However, given a lot of training data it is pos-

sible that we would have seen this particular situation before

and would have found that it is highly probable that the ball

is owned by the point-guard (circled). Instead of using mul-

tiple cameras to resolve where the ball is, our approach is

to infer the most probable location of the ball given lots of

previously seen tracking data.
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Figure 1. When the ball is not visible (left), output from a ball

detector (red circle) is unreliable. In this paper, we predict the ball

owner by taking into account other player motion paths.

1.1. Problem Definition

In this paper, our task is to predict which player has the

ball in each frame given a monocular camera view of a bas-

ketball game. We focus on ball ownership - that is predict

which player has the ball at each time instant (i.e., frame).

We do this as the ball is an inanimate object, which means

that its movement relies solely on the actions of intelligent-

agents surrounding it which can be predictive of its loca-

tion. The added benefit of this approach is that the vari-

ance of behaviors of an agent is significantly smaller than

the object, making learning and predicting behaviors of the

object as a function of an agent a more viable task. In

group/team settings, the behavior of an intelligent agent is

further constrained by the actions/motions of the other in-

telligent agents. The key problem we tackle in this paper is

dealing with the high variance of player tracking data. An

example highlighting this issue is shown in Fig. 2(a), where

we show the player locations of each player of one team

across a half of a game (i.e., 5 players in a team and each

color refers to each player). As can be seen in this example,

players tend to be in all parts of the court – devoid of any

team structure – which we call the “misalignment” of player

tracking data. By effectively “aligning” the tracking data to

a team-template which enforces team structure, we mini-
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Figure 2. (a) Player locations of a team in basketball (M = 5)

across a half (T=29432). Each color refers to a player in a partic-

ular starting position – players are randomly located over the half.

(b) If we align the data, structure of team emerges.

mize the variance of the tracking data which improves the

prediction performance (Fig. 2(b)). This alignment essen-

tially tells us which position a player is in relative to his/her

teammates in each frame – which we call player role. We

show how we can learn a team template (i.e., set of roles) di-

rectly from data in an unsupervised fashion (Sec. 3). Using

this representation we then show by predicting which player

role has the ball and not player identity we can greatly im-

prove ball ownership prediction performance.

The specific tasks we focus on are predicting which

player has the ball given the following information:

1. Full player location information only (Sec. 4),

2. Full player location information + partial (noisy) ball

information (Sec. 5), and

In terms of data, we used two sources: a) 36 games of fully

annotated player and ball tracking data, and b) an automat-

ically tracked game via a vision system, coupled with an-

notations (33min) which has both noisy and its cleaned-up

counterpart. We conducted tasks i)-ii) to see how predictive

player motion was of ball location.

2. Related Work

In terms of tracking and predicting behaviors of multi-

ple agents, an abundance of work has recently focussed on

the topic due to the influx of real-world data sources and

a myriad of useful applications, most notably in the crowd

and security domains [1, 2, 3, 4, 5, 6, 7]. Recent progress

in this area has been gained by utilizing contextual features

which can greatly reduce the solution space, making predic-

tion tractable [5, 3, 7]. Tracking multiple objects moving

in formation has predominantly pertained to rigid forma-

tions, such as the approach proposed by Khan and Shah [8].

Recently, Liu and Liu [9] used a mixture of Markov net-

works to dynamically identify and track lattice and reflec-

tion patterns in video. However, the rigid assumption falls

down when considering more dynamic scenarios like track-

ing sports players [7], where the formations tend to be non-

rigid (i.e., particles freely move around locally, whilst ad-

hering to the overall global structure). With respect to track-

ing objects like a ball, typical approaches [10, 11, 12, 13]

detect the ball frame by frame then extract the optimum path

by linking and smoothing detections. While effective if the

ball is observable, these fail when the ball is occluded for a

period of time. Recently, Wang et al. [14] proposed a ball

occupancy map (BOM) to predict the ball owner when the

ball is hard to track. BOM is built by accumulating multi-

view evidence for the ball in a sparse ground-plane repre-

sentation. However, such an approach is not applicable for

monocular view apporaches. Wang et al. [15] proposed a

fully connected graphical model to track interactive objects

where one type of object may contain the other. However,

inference in this approach is computational expensive.

In terms of minimizing the variance of the tracking data,

the task is given the position information of multiple agents

across many frames, permute them to a fixed canonical tem-

plate. This is similar to the idea of ensemble image align-

ment, where the requirement is to align all images to a

canonical template [16]. Learned-Miller [17] proposed one

of the first methods to do this where he aligned a stack of

images which minimized the total entropy. Cox et al., [18]

formulated congealing as a least-squares problem, while the

RASL algorithm [16] uses rank as a measure of similarity.

Other low-rank objectives, such as transformed component

analysis [19] or robust parameterized component analy-

sis [20] have also been used. More recently, methods which

can deal with multiple modes (or semantically meaningful

groups), have been used to simultaneously align and clus-

ter images [21, 22]. The key difference between the work

in image alignment compared to multi-agent data is that we

want to find the set of permutation matrices rather than a

warp, which makes it a non-convex problem. To counter

this issue, Lucey et al. [23] recently used hand-crafted tem-

plates to form a “role-representation” to align the data to

clean up noisy detections. In this paper, we aim to learn the

templates directly from data and apply it to object predic-

tion. This approach is similar to one recently proposed by

Bialkowski et al. [24, 25].

Our work differs from current approaches as we: i) use

the permuted location data of to represent multi-agent be-

havior to predict the location of an object (i.e., ball), and

ii) incorporate image-based object detector with our group

representation to improve the prediction.

3. Aligning Multi-Agent Team Tracking Data

Given we have the continuous raw positions of M agents

within a team, we can represent the set of observations, O,

across T of multi-agent behavior as the matrix of concate-

nated sequence of 2D points
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Figure 3. Shows the drop in entropy of the probability distribution for each agent as we converge to a solution.
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where x
j
i = [xj

i , y
j
i ] denotes the 2D coordinates of the

jth agent at the ith time instance and Xi is the represen-

tation of all M agents for the ith frame. The first problem

we address is that of representation. In terms of fine-grain

analysis, we can use the raw position data which is attrac-

tive as we do not have to quantize the input signal (which

is lossy), and it provides a low-dimensional representation

of the signal. For example in basketball, we can represent

a team of five players by their 2D locations which results

in a 10 dimensional vector. However, if we plot their loca-

tions across T frames, we can see by Fig. 2(a) that the data

is the variance is quite large. But if we permute the data at

each frame which minimizes the variance (or entropy), we

can discover the hidden structure of the data which enables

us to perform better prediction. Given that our similarity

measure is entropy, Hm(xj) = − N
T
log2

N
T

, where N is

the frequency of the jth agent occupying the nth spatial bin,

our goal is to find the permutation matrix at each frame Pi

that minimizes the overall entropy of each agent’s position.

Given we have a reasonable initialization, we can use the

EM algorithm [26] to learn a probability distribution tem-

plate for each agent. The method is summarized in Algo-

rithm 1. We first estimate the set of 2D probability distribu-

tions of the M agents, R = {P (x1, . . . , P (xM )}, where

P (xm) =
PN

n=1
P (xm|n)P (n) and N is the number of

areas of the quantized court. As the court is 94 × 50 feet,

we used an occupancy map of 120 × 60 as the players are

sometimes off the court at times, and we estimated the prob-

ability distribution by a normalized count for each bin. We

then iterate through each frame by calculating the permu-

tation for each frame which has the lowest entropy. We do

this by calculating the change in entropy that assigning each

agent to a particular probability distribution. The assign-

ment is then done using the Hungarian algorithm [27] on

the basis of minimizing the total entropy. We then permute

each frame by the current alignment Xt and the permutation

matrix Pt. We then recalculate the probability distribution,

and calculate the change in entropy. We continue this pro-

cess until the change is below a threshold or the number of

maximum iterations is reached. Given training data, we use

this approach to learn the probability distribution for a tem-

plate for each particular role. In Fig. 3 we show how these

converge to lower the overall entropy. At test time, given

a frame of detections we find the cost matrix between these

detections and the set of probability distributions. The Hun-

garian algorithm is then used to find the permutation matrix

at each frame. This gives us the aligned data D
∗ which can

be described as

D
∗
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2
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where r
j
i refers to the jth role a player is performing at

time i. We use the term role to denote the dynamic posi-

tion an agent has at any time relative to their team-mates

instead of an agent maintaining the same feature correspon-

dence which has high variance. Using this method we see

distinct group patterns emerge (Fig. 2(b)).
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Algorithm 1 EM to Learn Templates

1: procedure LEARNTEMPLATES(D)

2: Estimate the initial probability distributions,R
3: whilerEntropyD < threshold or iterations < max do

4: for 1 to T do

5: Calculate Ct(i, j) = − log P (R(j) |Xi)
6: Find Pt using Hungarian algorithm

7: Permute current frame Xt by Pt

8: end for

9: Update probability distributions,R
10: Find change in total entropy,rEntropyD
11: end while

12: returnR∗  R . Our final set of templates

13: end procedure

4. Prediction using Clean Data

Given the clean data source, we assume we know the

identity, location and team affiliation for every player at ev-

ery frame. Additionally, in training we know the current

owner of the ball. At test time, our aim is to predict the

owner of the ball solely from the spatial location and short-

term motion patterns of all the players across a window of

time. This can translated to the problem of predicting the

most likely state sequence Y = {y1, . . . , yT }, given a set

of observations O = {X1, . . . ,XT } over T frames, where

yt is the state of the ball at time t where yt ∈ {1, ...,M+1}.

As the ball is an inanimate object, we assign the state to be

the ball owner, which can be one of the M players on the

court. We have an additional state which corresponds to

when the ball is in the air (i.e., shot or pass). Formulating

ball tracking as a ball ownership problem was first intro-

duced by Wang et al. [14], but instead of assigning the ball

to a player identity, we assign ball ownership to a particu-

lar role. We formulate the cost of the sequence in terms of

a Conditional Random Field

loss =

T
X

t=1

Ψ1(yt;O, θ1) +

T−1
X

t=1

Ψ2(yt, yt+1;O, θ2), (3)

where Ψ1 is the unary potential which measures the compat-

ibility between a label and observations at each frame. Ψ2

is the pairwise potential which measures the compatibility

between two labels and the observations. The set of param-

eters, θ1, correspond to O and the state y, and θ2 is a set of

parameters that correspond to feature O and edges between

yt and yt+1. In our formulation, both potential functions

take the negative log form

Ψ1(yt;O, θ1) = − log p(yt;O, θ1) and (4)

Ψ2(yt;O, θ2) = − log p(yt+1|yt;O, θ2), (5)

The assignment of ball owner can be found by minimizing

the loss function with dynamic programming. By modeling

group behavior via a CRF, we are able to incorporate spatial

prior within the unary term by aligning the data, in addition

to team tactics and game context via the pairwise terms.
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Figure 4. Training and testing error against model complexity.

4.1. Unary Term: Frame-Based Prediction

Given observations, we first want to determine how well

we can predict the owner of the ball at a given frame. In

terms of the CRF, this corresponds to calculating the unary

potential p(yt;O, θ1). This term refers to the probability of

an agent in a particular role owning the ball given features

and parameters. Due to its simplicity, the representation

given in Eqn. 2 is ideal as there is no need to and store spe-

cific hand-crafted features. The trade-off though, is that the

representation maybe needlessly high-dimensional which

can effect the overall prediction. An alternative is to explic-

itly specify the more relevant features by hand-engineering

as set of features (e.g., distance from basket and other play-

ers etc.). Another approach which circumvents this issue is

to quantize the court into a spatial grid and count the occu-

pancy of players in each grid. As such, we compared the

following representations: i) hand-crafted features, ii) oc-

cupancy maps, and iii) raw position data (aligned and mis-

aligned).

For the raw position data as well as occupancy maps,

not only do we include their spatial positions, but also their

deltas to incorporate their short-term motion. Our classifier

takes the form of a Random Decision Forest, which is robust

against the overfitting that might occur via bootstrapping. It

also has good local-feature space adaptivity via randomly

splitting the feature space at multiple levels of each tree.

We use 70% for the data for training and 30% for testing.

To determine the hyper-parameters of the classifier, we fur-

ther split the training set into k folds for cross validation.

Each time k − 1 folds are used for training and the remain-

ing one is for validation. Fig. 4(left) plots the out of bag

error against different number of trees. Fig. 4(right) shows

the training error and the validation error with respect to the

model complexity (minimum number of observations in the

leaf). We set number of trees to 150 and minimum leafs

as 30 to avoid overfitting. As our aim is to learn behaviors

from a lot of data, we first compared performance using 30

games for training. The quantitive results for the different

representations are shown in Table 1. We first compared

performance by just using the information about the offen-

sive team. We then incorporated the defensive team into the

representation, which further boosted performance. As it

66



player 

trajectories

ground truth!

owner trj

estimated!

owner trj

(a) (b) (c)

Figure 5. An example of our frame-based prediction: (a) the player trajectories of the offensive team, (b) ground-truth the ball owner (red

curve), (c) Our predicted ball owner (green curve).

27.10%63.42% 49.43%

(a) (b) (c)

Figure 6. More examples of our frame-based prediction only using player positions. Issues such as prediction flicker and passing and

shooting caused the most error.

can be seen, the permuted raw detections yield the best per-

formance with a prediction rate of over 63%. While this rate

may not appear to be high, visualizing the prediction shows

its impressive performance, which we explain via Fig. 5. In

(a), we first show the trajectories for the offensive team in

blue, in (b) we have superimposed a red-line on top to de-

pict the ball owner on the relevant trajectory, and in (c) we

show our frame-based prediction in green. In Fig. 6, we

show three more examples with varying degrees of success.

An issue with doing it at the frame-level is that there is con-

stant flicker between the predictions, and the prediction also

fails when the ball is in the air. The first issue can be dealt

with by incorporating the pairwise term, while the second

can be overcome by using an image-based ball detector. As

expected, the performance drops when reduce the number

of games used for training (> 50%). However, this is very

useful, as we can incorporate the vision-based ball detec-

tions to boost performance.

4.2. Pairwise Term: Tactics and Context

The pairwise potential, p(yt+1|yt;O, θ2), measures the

transition probability between potential owners at two con-

secutive frames given observation O and parameter θ2.

Similar to [14], we factorize this term into ptactics and

pcontext

p(yt+1|yt;O, θ2) = ptactics(yt+1|yt; θ2)

×pcontext(yt+1|yt;O, θ2)
(6)

Team Used Representation Prediction Rate (%)

30 games 1 game

Offense Hand-crafted 52.3± 1.0 44.0± 1.6
Occ map 4⇥ 2 53.5± 1.6 40.1± 2.3

Occ map 10⇥ 6 47.7± 2.5 31.5± 2.0

Offense Original Data 32.1± 1.2 35.9± 3.7
Permuted Data 58.6± 1.5 45.9± 2.0

Off & Def Permuted Data 63.1± 2.3 50.2± 3.0

Table 1. Ball ownership prediction performance with different fea-

tures and different number of games for training.

where ptactics describes the passing preference between

two roles regardless of location (Fig. 7(left)). The other

term, pcontext, is the transition probability conditioning on

current observation. In our work, pcontext is conditioned

on the distance between roles at two consecutive frames

(Fig. 7(right)). We use this term to add penalty into the

system if owners between two frames are not close to each

other which forces the continuity of owner’s trajectory. The

term ptactics can be learnt directly from the data, while

pcontext is computed by putting the distance between two

roles into a laplacian distribution. We then learn the param-

eter b of the laplacian distribution from the held-out set. In

our experiment, b is set to −5. The contribution of each

pairwise term is listed in Table 2, and we can see adding

these pairwise terms boosts performance.
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Figure 7. (Left) Ptatics: transition probability between roles.

(Right) Pcontext: transition probability conditioned on the loca-

tion of the agents.

5. Incorporating Image-Based Ball Detector

In the previous section, while we obtained reasonable

performance, poor prediction was experienced when the

ball was either passed or shot. This is fortuitous however, as

these are the situations where image-based detectors work

very well. Incorporating this into our model as an auxiliary

information source should boost performance as it reduces

the number of predictions we need to make, and thus lim-

its the number of possibilities (see Fig. 8). Given F frames

from a monocular video, our system will segment it into two

states F1 and F2, where F1 are frames in which the ball is

clearly visible (i.e., long passes) and F2 are frames in which

the ball is hard to detect. After detecting the frames which

we can reliably detect the ball, we assign labels in all those

frames in the CRF as observed and set to in the air before

decoding the sequence. Since CRFs are undirected model,

these revealed labels will also help predicting the owner be-

fore and after.

5.1. Estimating Ball Candidates

To estimate possible locations of the ball, we employ

a standard ball detection framework which consists of: i)

background subtraction using eigen-background segmenta-

tion, ii) color filtering, iii) region selection and iv) Hough

transform. A visualization of this pipeline is shown in

Fig. 9. To test the performance of the ball detector, we

randomly extracted 3796 frames of images where the ball

is visible. Even though it was visible, there were examples

where the frames where partially occluded or had a similar

color to the background. We tested two color space which

are RGB and HSV, with the RGB working best. The per-

formance is reported in Table 3. Parameters are set loosely

since we want to keep the precision high (false alarms can

be filtered at a later stage).

Method Percentage Accuracy

30 games 1 game

unary only 63.1 50.2

unary + Ptactics 63.8 51.3

unary + Pcontext + Ptactics 66.4 56.0

Table 2. Ownership prediction for unary and pairwise potentials.

y air air y air y

x x x x x x

t = 1 t = F

unary

pairwise

Figure 8. By knowing the frames in which we can accurately locate

the ball position via an image-based ball detector, we can limit the

number of predictions we need to make.

Detector Hit Rate Avg False Alarm

HSV 1802/3796 (49.56%) 4.93/frame

RGB 2435/3796 (64.15%) 2.83/frame

Table 3. Performance of the various color spaces for ball detection.

Method Percentage Accuracy

Without Ball Evidence 55.98%

With Ball Evidence 71.33%

Table 4. Ball prediction rates with and without ball evidence.

5.2. Segmentation

To segment long trajectories, we fit a 3D projectile

model [10] into ball detections across n frames. Depending

on how many detections can be fit into the model, the sys-

tem will decide if a pass or shot is detected. This threshold

is set to 10 in our experiments. To test its performance, we

annotated 206 long passes in our data set. Each pass has at

least 10 frames in the air. Our algorithm is able to detect

157 of them (76.21% hit rate). The performance of the sys-

tem after adding ball evidences are reported in Table 4. Ex-

amples from the fixed cameras are shown in Fig. 10, while

Fig. 11, shows an example of the result of our tracking sys-

tem based on each component.

6. Summary

In this paper, we presented a method to predict the owner

of the ball by learning the spatial and motion patterns of

multiple agents. Due to the amount of data available, we

focussed on basketball to show the utility of this approach.

We first show that there is high variance in the tracking data,

and that by permuting the data by finding the set of permu-

tation matrices to minimize the total variance/entropy of the

data, we can use this as a representation to predict the ball

owner at a high rate. Incorporating the prediction problem

into a CRF, we show we can include contextual and tac-

tic features which can boost performance. Additionally, as

there are instances where image-based detectors work quite

well, we incorporate this information source into our model

to boost performance.
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(a) (b) (c) (d)

Figure 9. Images depicted each stage of our ball detector: (a) input image, (b) output after eigen-background segmentation, (c) output after

color filtering, (d) output after region constraints and Hough transform.

(a) (b) (c)

Figure 10. Examples where the ball is visible and occluded (both fully and partial): (a) In the far corner the resolution is low, and the

background is of a similar color to the ball, (b) The ball is occluded by the player, (c) A pass is clearly visible.
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