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Abstract

This paper proposes a saliency detection method using

a novel feature on sparse representation of learnt texture

atoms (SR-LTA), which are encoded in salient and non-

salient dictionaries. For salient dictionary, a novel formu-

lation is proposed to learn salient texture atoms from image

patches attracting extensive attention. Then, online salient

dictionary learning (OSDL) algorithm is provided to solve

the proposed formulation. Similarly, the non-salient dictio-

nary can be learnt from image patches without any atten-

tion. A new pixel-wise feature, namely SR-LTA, is yielded

based on the difference of sparse representation errors re-

garding the learnt salient and non-salient dictionaries. Fi-

nally, image saliency can be predicted via linear combina-

tion of the proposed SR-LTA feature and conventional fea-

tures, i.e., luminance and contrast. For the linear combina-

tion, the weights corresponding to different feature channel-

s are determined by least square estimation on the training

data. The experimental results show that our method out-

performs several state-of-the-art saliency detection method-

s.

1. Introduction

For modeling visual attention, saliency detection refers

to computing on image features to characterize the regions

attracting different amounts of attention in a scene. Gen-

erally speaking, saliency detection is extensively studied in

the context of the human visual system (HVS). Similar to

the HVS , saliency detection enables machines to survive

from processing a deluge of visual data. Thus, it has been

widely applied in computer vision and image processing

areas, such as object detection [2], object recognition [6],

image retargeting [21], image quality assessment [5], and

image/video compression [25].

Saliency detection can be traced back to feature integra-

tion theory [23] by Treisman and Gelade in 1980, which

discussed on the possible visual features related to visual

attention. To combine these features together, Koch and

∗Mai Xu is the corresponding author of this paper.

Figure 1. An example of salient patches with similar texture patterns. The

regions inside the red squares (enlarged in the corners) are salient patches,

in the images of the eye tracking Kienzle database (the first row) and Doves

database (the second row). Some atoms of the dictionaries, learned from

the salient regions of the training images, are shown in the middle of two

images. In addition, the sparse representation coefficients α of the salient

patterns regarding the learnt dictionaries are also provided. It can be seen

that the salient patches across the different images may share some similar

basic patterns, and these basic patterns can be learned from the training

data. Note that the patch sizes are 96 × 96 for DOVES and 41 × 41 for

Kienzle et al., to ensure that the corresponding fovea degrees are about

1.5◦ in each database.

Ullman [15] in 1987 proposed to yield the saliency map for

an image, indicating which regions are conspicuous to at-

tract attention in the HVS. Later, Itti and Koch [11] found

out that the low level feature channels of intensity, col-

or, and orientation are efficient in generating the saliency

map. In their method, these feature channels are decom-

posed for images at various scales subsampled by a Gaus-

sian pyramid, and then conspicuity maps are worked out

by constructing center-surround responses to the decom-

posed feature channels. In each channel, conspicuity maps

are aggregated across different scales. Finally, the salien-

cy map can be obtained by the linear integration of con-

spicuity maps of all channels. Benefiting from the success

of Itti’s model [11], extensive saliency detection methods

(e.g., [1, 3, 8, 10, 27]), using the plausible features designat-

ed by humans, have been proposed in the past decade.

1 54



Recently, several saliency detection methods [12–14,

16, 19, 28] have been proposed to learn the parameters or

even features from the ground-truth eye fixations over train-

ing images. From the perspective of parameters, a gaze-

attentive fixation finding engine (GAFFE) [19] was devel-

oped to detect saliency, based on four low level image fea-

tures: luminance, contrast, and bandpass outputs of lumi-

nance and contrast. In GAFFE, for modeling the saliency

of natural images, the parameters and weights of bandpass

features are learnt from the extensive eye tracking data [24].

However, the above method only focuses on learning some

simple parameters, and prior features on diversifying salien-

cy of an image still need to be exploited from the ongoing

study on the HVS. From the perspective of features, Kien-

zle et al. [13, 14] proposed to directly learn patch pattern-

s of salient and non-salient regions from the ground-truth

eye tracking data. Specifically, two center-surround texture

patches are learnt as the most relevant patterns for draw-

ing visual attention, and two other patches are learnt as the

least possible patterns for receiving eye fixations. Then, the

saliency of an image patch can be detected with a simple

feed-forward network, which integrates the radial basis u-

nits of ℓ2-norm distances between the current image patch

and four learnt texture patterns. However, the learnt patch

patterns have limited expression, since only two positive

and two negative patterns are available for saliency detec-

tion. Figure 1 shows the possibility of learning hundreds of

salient patterns (by applying the dictionary learning algo-

rithm) for saliency detection.

Therefore, this paper proposes to learn extensive positive

and negative patterns from the eye tracking data of training

images, for saliency detection. Specifically, this paper first

proposes a formulation with a novel center-surround term,

for learning two dictionaries which contain the atoms for

basic texture patterns of salient and non-salient regions, re-

spectively. On the basis of online dictionary learning [17],

we develop the online salient dictionary learning (OSDL)

algorithm to solve the proposed formulation, and then the

discriminative dictionaries can be learnt from the eye track-

ing data of training images. Given the learnt dictionaries, a

novel feature based on sparse representation of learnt tex-

ture atoms (SR-LTA) is worked out, according to errors of

sparse representation regarding salient and non-salient dic-

tionaries. Next, the saliency of an image can be predicted,

via combining the SR-LTA feature with luminance and con-

trast features. For the linear combination, the weights cor-

responding to each feature channel are estimated via least

square fitting on the training data.

Although sparse representation of image patches has

been utilized in the previous saliency detection work [20,

26], it only deals with the dictionary atoms from the spatial-

ly or temporally neighboring patches for the currently pro-

cessed patch. Our method mainly focuses on learning the

dictionaries from the eye tracking data of training images,

rather than simply using the local image patches. Similar

to other learning based methods [13,14,19], this paper only

works on gray images with natural scenes.

The main contributions of this paper are listed as follows.

• We address a novel dictionary learning formulation

by developing the OSDL algorithm, for generalizing

salient and non-salient dictionaries from training eye

tracking data. The detail is to be introduced in Section

2.

• We propose the SR-LTA feature in light of the learnt

dictionaries, together with other two conventional fea-

tures (luminance and contrast), for bottom-up saliency

detection of gray images. For the detail, refer to Sec-

tion 3.

2. Dictionary learning for salient and non-

salient texture atoms

Due to the unmatured progress in visual psychophysics

and neurophysiology, the existing saliency detection meth-

ods have limitation on accurately predicting the particular

salient regions of images. Fortunately, the past few decades

have witnessed the flourish of machine learning, which has

potential in generalizing the low level features on attracting

human attention. In this section, we apply the dictionary

learning method to learn both salient and non-salient texture

atoms to provide the low level texture feature for saliency

detection. We introduce in Section 2.1 our dictionary learn-

ing formulation on generalizing both salient and non-salient

texture atoms. In Section 2.2, we present a solution to the

proposed dictionary learning formulation.

2.1. Dictionary leaning formulation

In sparse representation, an image patch1
x ∈ R

m can be

sparsely represented by only a few texture atoms of dictio-

nary D ∈ R
m×k. Specifically, sparse coefficients α ∈ R

k

need to be calculated for estimating image patch x with re-

spect to dictionary D. In fact, the problem of sparse repre-

sentation can be formulated by

min
α

‖x−Dα‖22 s.t. ‖α‖0 ≤ L, (1)

where L is the sparsity level of coefficients α. In (1), the

atoms in D indicate the basic texture patterns for recon-

structing image patches. Towards the texture atoms, dic-

tionary D needs to be learnt from training image patches

X = {xi}ni=1. This can be achieved through solving the

following minimization problem [18, 22]:

min
D,A

1

n

n∑

i=1

(‖xi −Dαi‖22 + λ‖αi‖1), (2)

1In this paper, mean value of the image patch is removed to avoid the

impact of pixel intensity on texture anlysis.
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Figure 2. An example of the center-surround weight function for the 6×6

image patches. Note that this example is only an illustration , and the real

patch size is much larger. In the left figure, the number in each grid is

the value of q for the weight function in (3), indicating the q-th Euclidean

distance. The right figure shows the weight of each pixel calculated by (3).

where A = {αi}ni=1 is the set of sparse representation

coefficients corresponding to X. In (2), λ is a regulariza-

tion parameter, representing the tradeoff between the re-

construction error ‖xi − Dαi‖22 and sparsity level ‖αi‖1.

Next, based on (2), we concentrate on the proposed formu-

lation on learning two dictionaries for salient texture and

non-salient texture atoms, respectively. Since the center-

surround patterns play an important role in attracting hu-

man visual attention [13], a novel center-surround term is

incorporated in our formulation to encourage/discourage

the center-surround patterns in the learnt salient/non-salient

dictionary.

To be more specific, we first propose a weight function

for encouraging the center-surround patterns in the learnt

dictionary with salient texture atoms. In our weight func-

tion, the weight of each pixel in an atom is imposed ac-

cording to its Euclidean distance to the atom’s center. The

same Euclidean distance corresponds to the same weight.

Assume that there are N different Euclidean distances sort-

ed in an ascending order. In each atom, the weight for the

pixels with the q-th Euclidean distance can be calculated in

the following function

W (q) =
1

nq

cos(
q

N
· π), (3)

where nq stands for the number of pixels with the q-th Eu-

clidean distance. An example for weight function is shown

in Figure 2.

Then, the set of weights W (q) for all pixels in an atom

is represented by vector lT ∈ R
1×m. Note that m is the

total number of pixels in an atom. Upon l
T , the center-

surround term can be designed by ‖lTD‖22, which quantifies

the degree of center-surround.

Given the center-surround term, we have the following

optimization formulation to learn (salient and non-salient)

texture atoms by rewriting (2):

min
D′,A′

1

n′

∑

x′

i
∈S′

(‖x′
i −D

′
α

′
i‖22 + λ‖α′

i‖1 − η‖lTD′‖22)

︸ ︷︷ ︸

Salient dictionary learning

,

min
D′′,A′′

1

n′′

∑

x′′

i
∈S′′

(‖x′′
i −D

′′
α

′′
i ‖22+λ‖α′′

i ‖1+η‖lTD′′‖22)

︸ ︷︷ ︸

Non-salient dictionary learning

, (4)

where S
′ is the training set of fixation patches2 denoted by

{x′
i}n

′

i=1, and S
′′ is the training set of non-fixation patch-

es denoted by {x′′
i }n

′′

i=1. {α′
i}n

′

i=1 and {α′′
i }n

′′

i=1 are sparse

representation coefficients corresponding to {x′
i}n

′

i=1 and

{x′′
i }n

′′

i=1, respectively. In addition, n′ and n′′ are the num-

bers of image patches in S
′ and S

′′. In (4), D′ is the dictio-

nary with salient texture atoms, learnt from the training fix-

ation patches, and D
′′ is the non-salient dictionary general-

ized from training non-fixation patches. η is a regularization

parameter to control the influence of the center-surround

term. Obviously, the center-surround degree is encouraged

for the atoms in salient dictionary D
′, as −η‖lTD′‖22 needs

to be minimized. On the contrary, the center-surround de-

gree is discouraged in non-salient dictionary D
′′ by making

η‖lTD′′‖22 small.

2.2. Solution to the dictionary learning formulation

As seen from (4), the dictionaries with salient and non-

salient texture atoms can be learnt separately. This section

only focuses on learning the salient dictionary, and we can

use the similar way to obtain the non-salient dictionary. Ac-

cording to (4), the salient dictionary can be learnt with the

following formulation:

min
D′,A′

1

n′

n′

∑

i=1

(‖x′
i −D

′
α

′
i‖22 +λ‖α′

i‖1 − η‖lTD′‖22). (5)

To solve (5), the OSDL algorithm is proposed, based on

online dictionary learning method [17], due to its fast speed

and warm restart mechanism.

Specifically, the optimization problem in (5) is normally

divided into two sub-problems: sparse representation and

dictionary updating. That is, once dictionary D
′ is fixed,

A
′ = {α′

i}ki=1 can be obtained through sparse representa-

tion for the first step. At the second step, given A
′, D′ can

be solved by dictionary updating. The above two steps are

iterated until convergence for solving (5). Note that in our

OSDL algorithm, only one randomly selected patch is input

for each iteration.

Sparse representation: Assume that at the t-th iteration,

x
′
t is the image patch randomly selected from the training

set of fixation patches. The sparse representation is required

to be conducted to work out sparse coefficients α
′
t of x′

t.

Since η‖lTD′‖22 in (5) is independent of α′
t, the following

formulation holds for estimating its sparse coefficients:

α
′
t � argmin

α′

t∈Rk

‖x′
t −D

′
t−1α

′
t‖22 + λ‖α′

t‖1, (6)

2In this paper, fixation patches mean the training patches attracting sev-

eral fixations, and non-fixation patches stand for the training patches at-

tracting no fixation.
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Table 1. The summary of online salient dictionary learning (OSDL) algorithm

– Input: The training set of fixation patches X′ = {x′

i}
n
i=1

.

– Output: The learnt dictionary D
′ with salient textures atoms.

• Set B′

0
∈ R

k×k and C
′

0
∈ R

m×k to be zero matrices.

• Initialize D
′

0
with the randomly selected fixation patches from the training set.

• For: t = 1 to T

1. Select an image patch x
′

t randomly from training set X′.

2. Obtain α
′

t by solving (6) with LASSO.

3. Update B
′

t and C
′

t as,
B

′

t = B
′

t−1
+ α

′

tα
′

t

T
,

C
′

t = C
′

t−1
+ x

′

tα
′

t

T
.

4. Update each atom of the dictionary as follows,

– For: j = 1 to k

d
′

j, t = d
′

j, t−1
+

1

B′

t(j, j)
(c′j, t − D̃

′

j, tb
′

j, t) + 2γηllT d
′

j, t−1
.

– End for

5. Obtain the salient dictionary D
′

t = [d′

1, t, . . . ,d
′

k, t] for the current iteration.

• End for

• Return learnt dictionary D
′ = D

′

T .

where D
′
t−1 is the salient dictionary learnt from the last it-

eration t− 1. In this paper, LASSO algorithm [4] is utilized

for solving the sparse representation of (6).

Dictionary updating: After sparse representation step

of the t-th iteration, sparse coefficients {α′
i}ti=1 for fixa-

tion image patches {x′
i}ti=1 are obtained. Given α

′
t, the

dictionary needs to be updated at the t-th iteration with the

following optimization function according to (5),

D
′
t� argmin

D′

t∈Rm×k

1

t

t∑

i=1

(‖x′
i−D′

tα
′
i‖22+λ‖α′

i‖1−η‖lTD′
t‖22). (7)

Note that D′
t is the salient dictionary learnt at the t-th itera-

tion. To solve (7), we use the block-coordinate descent [17]

to update each atom of the dictionary as follows,

d
′
j, t= d

′
j, t−1−

γ

t

∂

∂d′
j

t∑

i=1

(‖x′
i−D̃

′
j, tα

′
i‖22−η‖lT D̃′

j, t‖22)|d′

j,t−1
,

(8)
where

D̃
′
j, t = [d′

1, t, . . . ,d
′
j−1, t,d

′
j ,d

′
j+1, t−1, . . . ,d

′
k, t−1].

In (8), d′
j, t refers to the j-th atom of the dictionary at the

t-th iteration, and γ is the learning rate of gradient descen-

t. Note that dictionary D
′
t is updated for the t-th iteration,

once all atoms {d′
j, t}kj=1 are renewed in left-right order.

Note that in D̃
′
j, t only d

′
j is variable to be updated, whereas

{d′
1, t, . . . ,d

′
j−1, t} have been updated in the current itera-

tion and {d′
j+1, t−1, . . . ,d

′
k, t−1} have been updated in the

(t− 1)-th iteration. According to matrix differentiation, (8)

can be rewritten as

d
′
j, t=d

′
j, t−1+

2γ

t
(c′j, t−D

′
j, tb

′
j, t)+2γηllTd′

j, t−1. (9)

Note that, compared with D̃
′
j, t, D

′
j, t is the matrix where

the variable d′
j is replaced by d

′
j, t−1.

In (9), b′
j, t and c

′
j, t are the j-th columns of B′

t and C
′
t,

which are the matrices storing all information of sparse co-

efficients and image patches from the previous iterations

(i.e., from iteration 1 to t). Here, B′
t and C

′
t are defined

as

B
′
t =

t∑

i=1

α
′
iα

′
i

T
= B

′
t−1 +α

′
tα

′
t

T
,

C
′
t =

t∑

i=1

x
′
iα

′
i

T
= C

′
t−1 + x

′
tα

′
t

T
. (10)

Note that for achieving the warm restart mechanism,

2γ/t can be approximatively replaced by 1/B′
t(j, j), where

B
′
t(j, j) is the j-th diagonal element of B′

t. Note that dic-

tionary D
′
t is updated for the t-th iteration, once all atoms

{d′
j, t}kj=1 are renewed in left-right order. The overall pro-

cedure of our OSDL algorithm is summarized in Table 1.

3. Saliency detection with the features regard-

ing learnt texture dictionaries

Given the learnt salient and non-salient dictionaries, we

can develop a novel low level feature, based on SR-LTA.

More details about SR-LTA are discussed in Section 3.1.

Section 3.2 presents the saliency detection method on the

basis of the SR-LTA feature.

3.1. The SR-LTA feature

For detecting saliency, the SR-LTA can be used as a fea-

ture channel. When calculating the SR-LTA feature for a

pixel, the image patch with this pixel as the center needs to

be extracted. Then, the extracted patch x ∈ R
m is repre-

sented sparsely by D
′ and D

′′, respectively. As such, the

reconstruction errors of sparse representation regarding D
′

and D
′′ are obtained. Afterwards, the difference between

reconstruction errors ofD′′
α

′′ andD′
α

′ for an image patch

is denoted as r and computed by
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r = min
α′′

‖x−D
′′
α

′′‖22 −min
α′

‖x−D
′
α

′‖22 (11)

where α
′′ and α

′ are the sparse coefficients of x with re-

spect to D
′′ and D

′, respectively. Note that a large value

of r indicates the image patch is “close” to saliency texture

atoms and “far” from non-salient texture atoms.

It has been shown in Figure 3-(a) that the human fixation

map tends to be sparse, in which the saliency of major pix-

els is around zero. It is due to the fact that human visual

attention consistently focuses on small regions. However,

as can be seen from Figure 3-(b), the conspicuity map gen-

erated by (11) is far from that of ground-truth human fix-

ations, as the dynamic range of r is totally different from

that of human fixation map. Hence, we introduce an expo-

nential function into SR-LTA feature: f1 = rτ , where f1 is

the final pixel-wise output for the SR-LTA feature channel.

Moreover, τ is a parameter for adjusting the dynamic range

of f1 to cater for the real distribution of saliency by human

fixations. Here, a large value of τ is required for a more

sparse distribution of conspicuity values. For example, as

can seen from Figure 3-(c), τ = 5.6 makes the distribu-

tion of the conspicuity values of f1 be approaching to the

ground-truth human fixation map. Accordingly, τ is set to

5.6 in our experiments in Section 4. Finally, the pixel-wise

SR-LTA feature f1 for an image can be achieved by com-

puting f1 of all pixels.

3.2. Saliency detection with SR-LTA feature

Now, we focus on the saliency detection by combining

the SR-LTA feature with other two features. In [11], it has

been pointed out that the luminance is an important factor

on attracting human attention. However, the luminance is

not considered in dictionary learning for SR-LTA. There-

fore, the luminance feature is included in our method. Be-

sides, our saliency detection method also takes the contrast

feature into account, the same as [19]. For more details

about the computation on features of luminance and con-

trast, refer to [19]. Note that the bandpass features of lumi-

nance and contrast in [19] are not included in our method,

as it is not practical to learn the bandpass parameters from

the eye tracking data of testing images. Then, final saliency

map S can be computed by

S =

3∑

p=1

ωpN (fp), (12)

where {f1, f2, f3} indicate three low level features: our

SR-LTA feature, luminance, and contrast, with ω =
[ω1, ω2, ω3]

T being their corresponding weights. N (·) is

the normalization operator. Note that our method can on-

ly work on the gray images, since color information is not

considered.

Next, the remaining task for saliency detection on a gray

image by (12) is to work out the weight of each feature

channel. In fact, larger weight should be assigned to the

feature channel, of which conspicuity map is more close to

the human fixation map. Let vs be the vectorized human

fixation map of a training image. Given vs of all training

images, the optimal weights ω can be obtained by solving

the following ℓ2-norm optimization with least square esti-

mation,

argmin
ω

∑

s

‖Usω − vs‖2 s.t. ω ∈ (0, 1),

3∑

p=1

ωp = 1. (13)

In (13), Us is the matrix of conspicuity maps for each train-

ing image, in which each column denotes the conspicuity

map of one feature channel, among SR-LTA, luminance,

and contrast features. For solving the least square esti-

mation of (13), the disciplined convex programming ap-

proach [8] is applied in our method, and then the optimal

weights corresponding to different feature channels can be

worked out with least square fitting to the human fixations.

4. Experimental results

In this section, the experimental results are presented to

evaluate the proposed method for saliency detection on gray

images from two eye tracking databases: DOVES [24] and

Kienzle et al. [13]. For the sake of comparison, we also

provide the saliency detection results of other 8 state-of-the-

art methods, including BMS [27], Itti et al.’s method [11],

Duan et al.’s method [3], GAFFE [19], Hou et al.’s method

[9], Zhao et al.’s method [28], Judd et al.’s method [12],

and AWS [7]. In Section 4.1, we introduce the databases,

training patches, and parameter settings in our experiments.

In Section 4.2, we show the saliency detection results of

our and other 8 methods. Here, the accuracy of saliency

detection is evaluated using the metrics of receiver operator

characteristics (ROC), area under the ROC curve (AUC),

normalized scan-path saliency (NSS), and linear correlation

coefficient (CC).

4.1. Experimental setup

Database. Since this paper mainly concentrates on the

low level texture feature for saliency detection, only gray

natural images were tested in our experiments. Here, the

databases of DOVES [24] and Kienzle et al. [13], which

provide the eye tracking data over gray images, were uti-

lized for both the training and testing tasks of our experi-

ments. Note that both the training and test processes were

conducted for each database individually. In Table 2, we list

the key properties of these two databases. For more details,

refer to [24] and [13].

Training patches. For each database, we divided the im-

ages into training and test sets. For the training set, 78 and

150 images were randomly chosen for DOVES and Kien-

zle et al. databases, respectively. The remaining 23 and 50

images in these two databases were used for the test, to e-

valuate the performance of saliency detection. Next, in our
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(a) Human fixation map

 

 

 

 

 

 

 

 

 
(b) Conspicuity map by (11)

 

 

 

 

 

 

 

 

 
(c) Conspicuity map by f1

Figure 3. An example of distributions of human fixation map, conspicuity map by (11), and conspicuity map by f1. In the first row, (a), (b), and (c) are

the maps, generated by human fixations, the sparse representation errors in (11), and the exponential function f1 of sparse representation errors. In second

row, (a), (b), and (c) are the distribution of weights in the corresponding maps, with pixels sorted in ascending order of weights in the map. Note that the

exponent τ is set to be 5.6 according to the distribution of values of human fixation map in (a).

Figure 4. The procedure of our saliency detection method. The input image is processed through three channels, including our SR-LTA feature, contrast,

and luminance, to obtain three conspicuity maps. Note that the conspicuity map of our SR-LTA feature channel is obtained through two learnt dictionaries.

Then, a center bias mask [3] and an exponential function f1are processed on these maps to make saliency detection more reasonable. The weighted sum of

those three maps makes up the final saliency map.

Table 2. Details of two databases used in our experiments

DOVES Kienzle et al.

Images 101 200

Human observers 29 14

Image size in pixel 1024 × 768 1024 × 768

Image size in visual angle 17◦ × 13◦ 36◦ × 27◦

Total fixations 30,000+ 18,000+

method, about 5% patches with top fixation density were

picked out from the training set of each database to learn the

salient dictionaries. The same amount of patches in which

the fixation numbers rank bottom 5%, were picked out for

learning non-salient dictionaries. To eliminate the influence

of location on eye tracking data, each non-fixation patch is

extracted in the same location as selected fixation patch, but

from different images. It is worth pointing out that the patch

sizes were 96 × 96 for DOVES and 41 × 41 for Kienzle et

al., to ensure that the corresponding fovea degrees are about

1.5◦ in each database. In addition, all training patches from

the two databases were down-sampled to be 16 × 16, such

that the pixel number m of learnt dictionary atoms is 256 as

well.

Parameters settings. All parameters related to our ex-

periments are summarized in Table 3. For dictionary learn-

ing with our OSDL algorithm, according to the empirical

settings in [17], the number of atoms k of each dictionary

is set to 4 ·m, and the regularization parameter λ in (4)

for the tradeoff between reconstruction error and sparsity

is set to 1.2/
√
m. In addition, parameter η in (4) is tuned

to 0.5 and the learning rate γ in (9) is set to 0.05 in our

experiments, to make the results appropriate. For saliency

detection, as verified in Section 3.1, power parameter τ in

exponential function f1 is chosen to be 5.6, such that the

distribution of saliency detected by our method is similar

to that of human fixation map. Moreover, the weights cor-

responding to different features were learnt using (13) for

both DOVES and Kienzle et al. databases, and the final

weights are {0.72, 0.09, 0.19}.
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Table 3. The parameters setting for our method

Dictionary atom size m 256 pixels

Dictionary Atoms number in a dictionary k 1024

learning Regularization parameter λ 0.075

Regularization parameter η 0.5

Learning rate γ 0.05

Saliency Power parameter τ 5.6

detection Combination weights {ωp}3p=1
{0.72, 0.09, 0.19}
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Figure 5. The ROC curves of saliency detection by our and other 8 meth-

ods over two databases, respectively.

4.2. Saliency detection results

In this subsection, we present the saliency detection re-

sults of our method, compared with other 8 state-of-the-art

methods. In our method, the salient and non-salient dic-

tionaries were learnt with the OSDL algorithm from the

training images for each database, respectively. Then, the

saliency maps of test images of each database were detect-

ed upon the SR-LTA with respect to the dictionaries of the

corresponding database, using the method of Section 3.2.

Moreover, the same center bias mask was employed in our

and all other methods, since it has been pointed out [27]

that the center bias is able to make saliency detection more

precise according to the HVS.

First, we show in Figure 5 the ROC curves of saliency

detection by our and other 8 methods, averaged over all test

images, for each database. As can be observed from this

figure, our method outperforms all other methods for both

DOVES and Kienzle et al. databases. We further quantify

the ROC performance of our and other 8 methods via AUC

metric. Table 4 tabulates the AUC results of our and other

8 methods. It can be seen from this table that our method

offers the better AUC results on detecting saliency of test

images, for both DOVES and Kienzle et al. databases.

Second, we move to the comparison of NSS and CC

metrics for a more comprehensive evaluation. For evalu-

ating the accuracy of saliency detection, NSS is comput-

ed to quantify the relevance between fixation locations and

saliency prediction, and CC measures the strength of a lin-

ear relationship between human fixations and saliency map-

s. Note that a large value of NSS or CC indicates more

accurate saliency detection. The NSS and CC results, aver-

aged over all test images of each database, are also listed in

Table 4. Again, it can be found in this table that our method

is significantly superior to all other eight methods, in terms

of both NSS and CC metrics. Specifically, our method en-

joys at least 0.306 and 0.106 improvement in NSS and CC,

respectively.

Since our method is based on a novel low level feature

SR-LTA, it is important to evaluate its benefit to the im-

provement of saliency detection accuracy. In fact, both our

and GAFFE [19] methods employ the features of luminance

and contrast, whereas our method includes the SR-LTA fea-

ture instead of the bandpass features in [19]. Thus, the im-

provement by the proposed SR-LTA feature on saliency de-

tection can be determined, via comparing the saliency de-

tection accuracy between our and GAFFE methods. As seen

from Table 4, our method achieves 0.042 increment in AUC

over GAFFE. Beyond, our method offers 0.420 and 0.137

enhancement in NSS and CC metrics, respectively, when

compared with GAFFE. This verifies the effectiveness of

the SR-LTA feature.

It is interesting to investigate the results of only apply-

ing the SR-LTA channel to saliency detection. To this end,

in our method we set the weight of the SR-LTA channel to

one, and the weights of other channels to zero. Then, we re-

port the results in Table 4 (the second row for SR-LTA). As

seen from this table, the accuracy of saliency detection by

the SR-LTA feature is better than other methods, in terms of

AUC, NSS, and CC. More interestingly, it even slightly out-

performs our method in AUC and CC values for the Kienzle

database. However, the overall performance of our method

is superior to such a single feature, indicating the positive

effect of luminance and contrast features.

At last, we show in Figures 6 and 7 the saliency maps of

several randomly selected test images, detected by our and

other 8 methods as well as the human fixations. From these

figures, we can see that in comparison with other methods,

our method is capable of well locating the saliency regions,

much closer to the maps of human fixations. The subjec-

tive results here, together with all above objective results,

illustrate that our method performs much better than other

8 state-of-the-art methods on saliency detection.

5. Conclusions

In this paper, we have proposed a saliency detection

method with a novel feature called SR-LTA, to predict the

saliency maps of gray images. In the proposed method, an

optimization formulation with a novel center-surround term

was proposed, for learning both salient and non-salient dic-
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Table 4. The averaged accuracy of saliency detection on test images of two databases.

Metrics
DOVES Kienzle et al. Overall

AUC NSS CC AUC NSS CC AUC NSS CC

Our method 0.886(0.028) 1.961(0.365) 0.582(0.086) 0.766(0.065) 1.187(0.456) 0.488(0.139) 0.804(0.056) 1.431(0.429) 0.518(0.125)

SR-LTA 0.875(0.027) 1.815(0.358) 0.575(0.089) 0.765(0.064) 1.199(0.512) 0.491(0.146) 0.799(0.052) 1.393(0.463) 0.518(0.128)

BMS [27] 0.834(0.057) 1.274(0.374) 0.383(0.112) 0.728(0.093) 0.887(0.471) 0.364(0.170) 0.761(0.084) 1.009(0.442) 0.370(0.154)

Itti [11] 0.850(0.036) 1.331(0.234) 0.414(0.077) 0.734(0.068) 0.865(0.277) 0.364(0.110) 0.770(0.060) 1.012(0.264) 0.379(0.101)

Duan [3] 0.870(0.043) 1.463(0.272) 0.448(0.093) 0.735(0.080) 0.899(0.346) 0.387(0.142) 0.777(0.071) 1.077(0.324) 0.406(0.129)

GAFFE [19] 0.852(0.050) 1.404(0.313) 0.432(0.102) 0.721(0.076) 0.831(0.333) 0.357(0.139) 0.762(0.069) 1.011(0.327) 0.381(0.129)

Hou [9] 0.828(0.061) 1.213(0.343) 0.382(0.124) 0.690(0.095) 0.630(0.388) 0.286(0.179) 0.733(0.086) 0.814(0.375) 0.317(0.164)

Zhao [28] 0.843(0.052) 1.308(0.385) 0.407(0.123) 0.727(0.062) 0.860(0.288) 0.359(0.113) 0.764(0.059) 1.001(0.322) 0.374(0.116)

Judd [12] 0.849(0.058) 1.438(0.415) 0.439(0.133) 0.741(0.082) 0.981(0.491) 0.399(0.143) 0.775(0.075) 1.125(0.468) 0.412(0.140)

AWS [7] 0.822(0.034) 1.183(0.248) 0.363(0.079) 0.709(0.092) 0.825(0.512) 0.337(0.174) 0.745(0.079) 0.938(0.446) 0.346(0.150)

(a) Input (b) Human (c) Our (d) BMS (e) Itti (f) Duan (g) GAFFE (h) Hou (i) Zhao (j) Judd (k) AWS

Figure 6. Saliency maps of three test images from DOVES database, yielded by our and other 8 methods as well human fixations.

(a) Input (b) Human (c) Our (d) BMS (e) Itti (f) Duan (g) GAFFE (h) Hou (i) Zhao (j) Judd (k) AWS

Figure 7. Saliency maps of six test images from Kienzle et al. database, yielded by our and other 8 methods as well human fixations.

tionaries from the training fixation and non-fixation patch-

es. Beyond, the OSDL algorithm was developed to solve

the proposed formulation for learning dictionaries, in light

of online dictionary learning. Then, the SR-LTA feature

can be obtained, upon the difference of sparse representa-

tion errors regarding the learnt salient and non-salient dic-

tionaries. At last, the saliency map of an input gray image

can be generated, via combining the conspicuity maps of

the proposed SR-LTA feature with those of other two low

level features (luminance and contrast), in which the weight

of each feature channel is determined via the least square

fitting on training data. Compared with other 8 state-of-the-

art saliency detection methods, our method performs signif-

icantly better on two database: DOVES and Kienzle et al.,

in terms of ROC, AUC, NSS, and CC.
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