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Abstract

We demonstrate that the integration of the recently devel-

oped dynamic mode decomposition with a multi-resolution

analysis allows for a decomposition of video streams into

multi-time scale features and objects. A one-level sepa-

ration allows for background (low-rank) and foreground

(sparse) separation of the video, or robust principal com-

ponent analysis. Further iteration of the method allows a

video data set to be separated into objects moving at dif-

ferent rates against the slowly varying background, thus al-

lowing for multiple-target tracking and detection. The al-

gorithm is computationally efficient and can be integrated

with many further innovations including compressive sens-

ing architectures and GPU algorithms.

1. Introduction

Since the advent of scientific computing, matrix de-

composition techniques have dominated many of the trans-

formative algorithms used in applications across the en-

gineering, biological and physical sciences. Indeed, ef-

ficient computation of large scale systems almost always

depends upon taking advantage of a matrix decomposi-

tion in order to either leverage low-rank structure, spar-

sity or an efficient representation, for instance. In the spe-

cific application of video analysis, the time snapshots of

video streams are used to compose matrices that are high-

dimensional, but which often have a high-degree of cor-

relation between frames. Understanding the correlation

structure between time frames is fundamental for accu-

rate and real-time video surveillance techniques. For in-

stance, removing background variations in a video stream,

which typically are highly correlated between frames, are

at the forefront of modern data-analysis research. Back-

ground/foreground separation is typically an integral step in

detecting, identifying, tracking, and recognizing objects in

streaming video streams. We show that a recent innovation

from dynamical systems theory, the Dynamic Mode Decom-

position (DMD) [23, 24, 9, 22, 30, 16], provides a decompo-

sition of data into spatio-temporal modes that correlates the

data across spatial features (like principal component anal-

ysis (PCA)), but also pins the correlated data to unique tem-

poral Fourier modes. This method easily distinguishes the

stationary background from the dynamic foreground by dif-

ferentiating between the near-zero temporal Fourier modes

and the remaining modes bounded away from the origin,

respectively. We demonstrate that the method can be gener-

alized for tracking objects, thus providing a principled ap-

proach to video diagnostics and target detection.

For computer vision applications integrating video feeds,

algorithms are envisioned to be implemented in real-time

on high-definition video streams. The algorithms must not

only be extremely fast to handle the data demand, but also

must be robust enough to handle diverse, complicated, and

cluttered backgrounds. Methods often need to be flexible

enough to adapt to changes in a scene due to, for instance,

illumination changes that can occur naturally throughout

the day, or potential location changes for portable devices.

Given the importance of this task for surveillance and target

tracking/aquisition, a variety of matrix decomposition tech-

niques have already been developed. For instance, a num-

ber of iterative (optimization and gradient descent based)

techniques have already been developed in order to perform

background/foreground separation [18, 28, 19, 13, 8]. We

point the reader to several recent reviews [1, 2, 25, 26, 3]

and a textbook [27] which highlight many of the methods

developed and their performance metrics.

As a matrix separation problem, the task is to sepa-

rate the video data into low-rank (background) and sparse

(foreground) components. The importance of this view-

point was realized by Candès et al. in the framework

of robust principal component analysis (RPCA) [8]. By

weighting a combination of the nuclear and the L1 norms,

a convenient convex optimization problem (principal com-

ponent pursuit) was demonstrated, under suitable assump-

tions, to recover the low-rank and sparse components ex-

432181



actly of a given data-matrix (or video for our purposes). It

was also compared to the state-of-the-art computer vision

procedure developed by De La Torre and Black [15]. We

advocate a similar matrix separation approach, but by us-

ing DMD [23, 24, 9, 22, 30, 16]. Since the method ties

the spatial correlation of pixels to temporal Fourier dy-

namics, the zero mode represents the stationary, or low-

rank, background. Although it was originally introduced

in the fluid mechanics community, DMD has emerged as

a powerful tool for analyzing the dynamics of nonlinear

systems [23, 24, 9, 22, 30, 16], including those in neuro-

science [5] and financial trading [20].

More broadly, video streams often are often comprised

of multi-scale temporal and/or spatial features of inter-

est. This is also true in many multi-scale systems that

pervade the engineering, biological and physical sciences.

The DMD method can be used as a transformative tool of

innovation in such problems since it can circumvent the

significant challenges in efficiently connecting micro- to

macro-scale effects that are separated potentially by orders

of magnitude spatially and/or temporally [17]. Wavelet-

based methods and/or windowed Fourier Transforms are

ideally structured to perform such multi-resolution analyses

(MRA) as they systematically remove temporal or spatial

features by a process of recursive refinement of sampling

from the data of interest. Typically, MRA is performed

on either space or time, but not both simultaneously. By

integrating the concept of MRA with the DMD, a Multi-

Resolution DMD (MRDMD) is developed and shown to

naturally integrate space and time so that the multi-scale

spatio-temporal features are easily separated. This allows

for a separation of objects of interest in video feeds that are

evolving temporally at different rates. For instance, in a

video feed with a person walking and a car driving by, it is

envisioned that three separate feeds would be created: the

background (no temporal evolution), a video of the walker

(slow temporal evolution) and a car (fast temporal evolu-

tion). The MRDMD allows for this decomposition and

analysis of video feeds in a real-time architecture.

2. Dynamical Systems and Decompositions

The DMD method emerged from the dynamical systems

literature, with specific applications in modeling complex

fluid flows. In this context, it is assumed that there is some

driving dynamical system generating the observed data. For

video feeds, we don’t expect this to be true. For instance,

in the example video of a person walking and a car driving

by, dynamics are not prescribed by some set of governing

equations. However, DMD reconstructs the best linear dy-

namical system modeling these features.

One may consider the DMD as a way to approximate the

dynamics of a nonlinear system:

dx

dt
= f(x, t) . (1)

In addition, both measurements of the system g(x, t) = 0,

and initial conditions are prescribed x(0) = x0. Typically x

is an N -dimensional vector (N ≫ 1) that arises from either

discretization of a complex system, or in the case of video

streams, it is the total number of pixels in a given frame.

The governing equation and initial condition specify a well-

posed initial value problem. The inclusion of measurements

g(x, t), let’s say M of them, make the system overdeter-

mined. By including model error along with noisy mea-

surements, one can formulate an optimal predictive strategy

using data-assimilation and Kalman filtering innovations.

In general the solution of the governing nonlinear evo-

lution is not possible to construct since it is unknown, es-

pecially for video applications. In the DMD framework,

the snapshot measurements and initial conditions alone are

used to approximate the dynamics and predict the future

state. The DMD procedure thus constructs the proxy, ap-

proximate linear evolution

dx̃

dt
= Ax̃ (2)

with x̃(0) = x̃0 and whose solution is

x̃(t) =

K
∑

k=1

bkψk exp(ωkt) (3)

where ψk and ωk are the eigenfunctions and eigenvalues of

the matrix A. The ultimate goal in the DMD algorithm is

to optimally construct the matrix A so that the true and ap-

proximate solution remain optimally close for true solution

in a least-square sense:

‖x(t)− x̃(t)‖ ≪ 1. (4)

Of course, the optimality of the approximation holds only

over the sampling window where A is constructed, but the

approximate solution can be used to not only make future

state predictions, but also decompose the dynamics into var-

ious time-scales since the ωk are prescribed and have true

temporal meaning. Moreover, the DMD makes use of low-

rank structure so that the total number of modes, K ≪ N ,

allows for dimensionality reduction of the video stream.

At its core, the DMD method can be thought of as an

ideal combination of spatial dimensionality-reduction tech-

niques, such as PCA, with Fourier Transforms in time. In-

terpreting a video stream in this context allows for back-

ground/foreground separation. It also allows for further in-

novations that integrate the DMD with key concepts from

wavelet theory and MRA. Specifically, the DMD method
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takes snapshots of video streams, with sampling windows

of variable frequency and duration, in order to leverage

ideas from wavelet theory that sifts out information at dif-

ferent scales. Indeed, an iterative refinement of progres-

sively shorter snapshot sampling windows and recursive ex-

traction of DMD modes from slow- to increasingly-fast time

scales allows for a MRDMD that allows for object tracking

of video features evolving on different timescales.

3. Dynamic Mode Decomposition

The DMD method provides a spatio-temporal decom-

position of data into a set of dynamic modes that are de-

rived from snapshots or measurements of a given system

in time. The mathematics underlying the extraction of dy-

namic information from time-resolved snapshots is closely

related to the idea of the Arnoldi algorithm [23], one of the

workhorses of fast computational solvers. The data collec-

tion process involves two parameters:

N = number of spatial points saved per time snapshot

M = number of snapshots taken

Originally the algorithm was designed to collect data at reg-

ularly spaced intervals of time. However, new innovations

allow for both sparse spatial [6] and temporal collection of

data as well as irregularly spaced collection times. Indeed,

Tu et al. [30] gives the best definition of the DMD:

Definition: Dynamic Mode Decomposition (Tu et al.

2014 [30]): Suppose we have a dynamical system (1) and

two sets of data

X=



x1 x2 · · · xM



, X
′=



x
′
1 x

′
2 · · · x

′
M



 (6)

with xk an initial condition to (1) and x
′
k it corresponding

output after some prescribed evolution time τ with there be-

ing m initial conditions considered. The DMD modes are

eigenvectors of

A = X
′
X

† (7)

where † denotes the Moore-Penrose pseudoinverse.

The DMD method approximates the modes of the so-

called Koopman operator. The Koopman operator is a lin-

ear, infinite-dimensional operator that represents nonlinear,

infinite-dimensional dynamics without linearization [22,

21], and is the adjoint of the Perron-Frobenius operator. The

method can be viewed as computing, from the experimen-

tal data, the eigenvalues and eigenvectors (low-dimensional

modes) of a linear model that approximates the underly-

ing dynamics, even if the dynamics is nonlinear. Since the

model is assumed to be linear, the decomposition gives the

growth rates and frequencies associated with each mode. If

the underlying model is linear, then the DMD method re-

covers the leading eigenvalues and eigenvectors computed

using solution methods for linear differential equations.

Mathematically, the Koopman operator A is a linear,

time-independent operator A such that

xj+1 = Axj (8)

where j indicates the specific data collection time and A is

the linear operator that maps the data from time tj to tj+1.

The vector xj is anN -dimensional vector of the data points

collected at time j. The computation of the Koopman oper-

ator is at the heart of the DMD methodology. It should be

noted that this is different than linearizing the dynamics.

In practice, when the state dimension N is large, the ma-

trix A may be intractable to analyze directly. Instead, DMD

circumvents the eigendecomposition of A by considering a

rank-reduced representation in terms of a projected matrix

Ã. The DMD algorithm proceeds as follows [30]:

1. Decompose the data matrix X via an SVD [29]:

X = UΣV
∗, (9)

where ∗ denotes the conjugate transpose, U ∈ C
N×K ,

Σ ∈ C
K×K and V ∈ C

M−1×K . Here K is the rank

of the reduced SVD approximation to X. The left sin-

gular vectors U are like PCA modes.

The SVD reduction in (9) could also be used for a low-

rank truncation of the data using, for instance, a prin-

cipled way to truncate noisy data [11].

2. Compute Ã, the K × K projection of the full matrix

A onto low-rank modes of U:

A = X
′
VΣ

−1
U

∗

=⇒ Ã = U
∗
AU = U

∗
X

′
VΣ

−1. (10)

3. Eigendecompose Ã:

ÃW = WΛ, (11)

where columns of W are eigenvectors and Λ is a diag-

onal matrix containing the corresponding eigenvalues

λk.

4. Reconstruct the eigendecomposition of A from W and

Λ. In particular, the eigenvalues of A are given by Λ

and the eigenvectors of A (DMD modes) are given by

columns of Ψ:

Ψ = X
′
VΣ

−1
W. (12)
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Note that Eq. (12) from [30] differs from the formula Ψ =
UW from [23], although these will tend to converge if X

and X
′ have the same column spaces.

With the low-rank approximations of both the eigenval-

ues and eigenvectors in hand, the projected future solution

can be constructed for all time in the future. By first rewrit-

ing for convenience ωk = ln(λk)/∆t, where ∆t is the time

between frames, then the approximate solution at all future

times, x̃(t), is given by

x̃(t)=

K
∑

k=1

bk(0)ψk(ξ) exp(ωkt)=Ψdiag(exp(ωt))b (13)

where ξ are the spatial coordinates, bk(0) is the initial am-

plitude of each mode, Ψ is the matrix whose columns are

the eigenvectors ψk, diag(ωt) is a diagonal matrix whose

entries are the eigenvalues exp(ωkt), and b is a vector of

the coefficients bk.

An alternative interpretation of (13): it is the least-square

fit, or regression, of a linear dynamical system dx̃/dt = Ax̃

to the data sampled much as suggested in (4). For a multi-

resolution analysis, each level of the multi-scale decompo-

sition produces a linear dynamical system, or matrix A, for

the time-scale under consideration.

It only remains to compute the initial coefficient values

bk(0). If we consider the initial snapshot (x1) at time t1 =
0, let’s say, then (13) gives x1 = Ψb. This generically is

not a square matrix so that its solution

b = Ψ
†
x1 (14)

can be found using a pseudo-inverse. Indeed, Ψ† denotes

the Moore-Penrose pseudo-inverse. The pseudo-inverse is

equivalent to finding the best solution b the in the least-

squares (best fit) sense. This is equivalent to how DMD

modes were derived originally.

4. Robust PCA with DMD

For a given data matrix, perhaps generated from a non-

linear dynamical system such as (1), the RPCA method will

seek out the sparse structures within the data, while simul-

taneously fitting the remaining entries to a low-rank (highly

correlated) basis. As long as the given data is truly of this

nature, i.e., it is a superposition of a component that lies in

a low-dimensional subspace and a sparse component, then

the RPCA algorithm has been proven by Candès et al. [8] to

perfectly separate the given data X such that

X = L+ S , (15)

where L is low-rank and S is sparse. The key to the

RPCA algorithm is formulating this specific problem into a

tractable, nonsmooth convex optimization problem known

as principal component pursuit (PCP) [3].

For DMD, the separation relies on the interpretation of

the ωk frequencies in the DMD solution reconstructions

represented in general by (3), and more specifically as in

(13). In particular, low-rank features in video, for instance,

are such that |ωj | ≈ 0, i.e. they are slowly changing in

time. Thus if one sets a threshold ǫ so as to gather all the

slow, low-rank modes where |ωj | ≤ ǫ, then the separation

can be accomplished. The selection of the threshold value

ǫ is chosen to select out the stationary (zero mode) and

potential quasi-stationary (near zero mode(s)) behavior of

the video stream. The total number of snapshots collected

would guide the selection of the threshold value. This re-

produces a representation of the L and S matrices of the

form:

L ≈
∑

|ωk|≤ǫ

bkψk exp(ωkt) , S ≈
∑

|ωk|>ǫ

bkψk exp(ωkt) . (16)

Note that the low-rank matrix L picks out only a small num-

ber of the total number of DMD modes to represent the slow

oscillations or DC content in the data (ωj = 0). The DC

content is exactly the background mode when interpreted

in the video stream context with a fixed and stable camera.

The advantage of the DMD method and its sparse/low-rank

separation is the computational efficiency of achieving (16),

especially when compared to the optimization methods of

RPCA, i.e. a single SVD versus an SVD at each iteration

step. A demonstration of the performance is given in Sec. 6.

5. Multi-Resolution Analysis of Video

The MRDMD recursively removes low-frequency, or

slowly-varying, content from a given collection of snap-

shots, making it ideal for separating different time-scale

features in video. Typically, the number of snapshots M
are chosen so that the DMD modes provide an approxi-

mately full rank approximation of the dynamics observed.

Thus M is chosen so that all high- and low-frequency con-

tent is present. In the MRDMD, M is originally chosen in

the same way so that an approximate full rank approxima-

tion can be accomplished. However, from this initial pass

through the data, the slowest m1 modes are removed, and

the domain is divided into two segments with M/2 snap-

shots each. DMD is once again performed on each M/2
snapshot sequences. Again the slowest m2 modes are re-

moved and the algorithm is continued until a desired termi-

nation.

MRDMD approximates the solution (13) as:

xmrDMD(t) =

M
∑

k=1

bk(0)ψ
(1)
k (ξ) exp(ωkt) (17)

=

m1
∑

k=1

bk(0)ψ
(1)
k (ξ) exp(ωkt)+

M
∑

k=m1+1

bk(0)ψ
(1)
k (ξ) exp(ωkt)

(slow modes) (fast modes)
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where the ψ
(1)
k (x) represent the DMD modes computed

from the full M snapshots.

The first sum in this expression is the slow-mode dynam-

ics whereas the second sum is the faster time-scale dynam-

ics. The second sum can be computed to yield the fast scale

data matrix:

XM/2 =

M
∑

k=m1+1

bk(0)ψ
(1)
k (ξ) exp(ωkt) . (18)

The DMD analysis outlined in the previous section can now

be performed once again on the data matrix XM/2. How-

ever, the matrix XM/2 is now separated into two matrices

XM/2 = X
(1)
M/2 +X

(2)
M/2 (19)

where the first matrix contains the first M/2 snapshots and

the second matrix contains the remaining M/2 snapshots.

The m2 slow-DMD modes at this level are given by ψ
(2)
k ,

where they are computed separately in the first of second

interval of snapshots.

The iteration process works by recursively remov-

ing slow frequency components and building the new

matrices XM/2,XM/4,XM/8, · · · until a desired multi-

resolution decomposition has been achieved. The approxi-

mate MRDMD solution can then be constructed as follows:

xmrDMD(t)=

m1
∑

k=1

b
(1)
k ψ

(1)
k exp(ω

(1)
k t) (20)

+

m2
∑

k=1

b
(2)
k ψ

(2)
k exp(ω

(2)
k t)+

m3
∑

k=1

b
(3)
k ψ

(3)
k exp(ω

(3)
k t) + · · ·

where at the evaluation time t, the correct modes from the

sampling window are selected at each level of the decompo-

sition. Specifically, the ψ
(k)
k and ω

(k)
k are the DMD modes

and DMD eigenvalues at the kth level of decomposition, the

b
(k)
k are the initial projections of the data onto the time inter-

val of interest, and themk are the number of slow-modes re-

tained at each level. The advantage of this method is readily

apparent: different spatio-temporal DMD modes are used to

represent key multi-resolution features. Thus there is not a

single set of modes that dominates the SVD and potentially

marginalizes features at other time scales.

Figure 1 illustrates the multi-resolution DMD process

pictorially. In the figure, a three-level decomposition is per-

formed with the slowest scale represented in blue (eigenval-

ues and snapshots), the mid-scale in red and the fast scale

in green. Such an example may correspond to the example

video stream attempting to extract the background and two

objects moving at different speeds, a pedestrian and a car,

for instance. The connection to multi-resolution wavelet

analysis is also evident from the bottom panels as one can

see that the mrDMD method successively pulls out time-

frequency information in a principled way. The sampling

strategy can be easily modified so as to sample a fixed num-

ber, for instance M , data snapshots in each sampling win-

dow. The value of M need not be large as only the slow

modes need to be resolved. Thus the sampling rate (in real

time units) would increase as the decomposition proceeds

from one level to the next.

5.1. Formal mrDMD Expansion

To construct the MRDMD solution, one must account for

the number of levels (L) of the decomposition, the number

of time bins (J) for each level, and the number of modes

retained at each level (mL):

ℓ = 1, 2, · · · , L number of decomposition levels

j = 1, 2, · · · , J number time bins per level (J = 2(ℓ−1))

k = 1, 2, · · · ,mL number of modes extracted at level L.

To formally define the series solution for xmrDMD(t), the in-

dicator function is used

fℓ,j(t) =

{

1 t ∈ [tj , tj+1]
0 elsewhere

with j = 1, 2, · · · , J

(22)

where J = 2(ℓ−1). This is only non-zero in the interval, or

time bin, associated with the value of j. The parameter ℓ
denotes the level of the decomposition.

The three indices and indicator function (22) give the

MRDMD solution expansion

xmrDMD(t) =

L
∑

ℓ=1

J
∑

j=1

mL
∑

k=1

fℓ,j(t)b
(ℓ,j)
k ψ

(ℓ,j)
k (ξ) exp(ω

(ℓ,j)
k t) .

(23)

This is a concise definition of the MRDMD solution that in-

cludes the information on the level, time bin location and

number of modes extracted. Figure 2 demonstrates the

mrDMD decomposition in terms of the solution (23). In

particular, each mode is represented in its respective time

bin and level. An alternative interpretation of this solution

is that it yields the least-square fit, at each level ℓ of the

decomposition, to the linear dynamical system

dx(ℓ,j)

dt
= A

(ℓ,j)
x
(ℓ,j) (24)

where the matrix A
(ℓ,j) captures the dynamics in a given

time bin j at level ℓ.
In connecting this to sparse and low-rank decomposi-

tions, the MRDMD is equivalent to producing a series of

decompositions at each level of resolution where

X
(ℓ,j) = L

(ℓ,j) + S
(ℓ,j) . (25)
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Original Video

Man CarBackgroundL             +                S

X

Figure 1: Representation of the multi-resolution dynamic mode decomposition on an example video (top left) that includes

three different time scale features (annotated), a background, a pedestrian (slow) and a car (fast). A standard DMD fore-

ground/background separation of the video X = L + S is shown in the bottom left panels. The MRDMD with successive

sampling of the data, initially with M snapshots and decreasing by a factor of two at each resolution level, is shown on

the right. The DMD spectrum is shown in the middle panel right where there are m1 (blue dots) slow-dynamic modes

(background) at the slowest level, m2 (red) modes at the next level (man) andm3 (green) modes at the fastest (car) time-scale

shown. The shaded region represents the modes that are removed at that level. The bottom right panels shows the wavelet-like

time-frequency decomposition of the data color coded with the snapshots and DMD spectral representations.

Figure 2: The MRDMD mode decomposition and hierar-

chy. Represented are the modes ψℓ,j
k (ξ) and their position

in the decomposition structure. The integer values, ℓ, j and

k, uniquely express the time level, bin and decomposition.

Thus the decomposition is recursive in nature. In this for-

mulation, we can alternatively rewrite (23) using (16) as

xmrDMD(t) = L
(1,j) + L

(2,j) + L
(3,j) + S

(3,j) (26)

where a 3-level truncation is assumed.

The indicator function fℓ,j(t) acts as sifting function for

each time bin. Interestingly, this function acts as the Gabór

window of a windowed Fourier transform [16]. Since our

sampling bin has a hard cut-off of the time series, it may

introduce some artificial high-frequency oscillations. Time-

series analysis, and wavelets in particular, introduce various

functional forms that can be used in an advantageous way.

Thus thinking more broadly, one can imagine using wavelet

functions for the sifting operation, thus allowing the time

function fℓ,j(t) to take the form of one of the many poten-

tial wavelet basis, i.e. Haar, Daubechies, Mexican Hat, etc.

This will be considered in future work. For the present, we

simply use the sifting function introduced in (22)

5.2. Object Tracking

To demonstrate the efficacy of the MRDMD method, we

first construct a video example that is comprised of four dif-

ferent video feeds: a background and three different tempo-
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Modes

Time

Figure 3: Demonstrate of the MRDMD for decomposing a stream of four unique video streams (left panels) that are con-

structed to have different time-scale dynamics (middle panels). Also included in the middle panel are the reconstructed time

dynamics from the MRDMD method versus the standard DMD technique. The MRDMD does an exceptional job of separat-

ing the time scales and capturing transient dynamics. The right panels illustrate the regions in time-frequency space where

relevant information for each mode is found, giving a visual diagnostic for how information is encoded in the video stream.

ral objects (features). Figure 3 shows the specific modes

combined. Such a video helps build intuition about how the

decomposition works, especially in relation to the standard

DMD method. Thus we combine the four modes shown in

the left panels with the time dynamics given in the middle

panels. The four modes used to construct the true solution

are represented by ψ̄j for j = 1, 2, 3 and 4. Their corre-

sponding time dynamics are given by aj(t). Thus the true

solution is expressed by

X =

4
∑

j=1

aj(t)ψj . (27)

DMD (represented by xDMD and the modes ψj of (13) with

j = 1, 2, 3 and 4) and mrDMD (represented by xmrDMD and

the ψ
(ℓ,j)
k of (20) where k=1 and ℓ=1, 2, 3) reconstruct x̄.

The success of the MRDMD algorithm suggests how one

can track objects that have different temporal signatures.

For instance, Fig. 1 already shows that a realistic video with

both cars and pedestrians is ideally suited for the method

as it can distinguish between slow moving pedestrians and

rapidly moving cars. The example of Fig. 3 shows that a

good separation can be achieved in such a situation pro-

vided the objects of interest have a time-scale separation.

6. Experimental Evaluation

The DMD is evaluated on seven gray scaled videos be-

longing to four different categories (each representing a

specific challenge) of the ChangeDetection.net benchmark

dataset [31]. The binary foreground (classification) mask

can be obtained by thresholding the euclidean distance

between the modeled background and the original video

frame. The performance is then quantified by different sta-

tistical metrics like F-measure, recall, precision, percentage

of wrong classifications (PWC), false positive rate (FPR),

false negative rate (FNR) and specificity [31, 7]. Table 1

summarizes the results and Figure 4 shows a sample frame.

In our experimental setting, the target rank k = 15
was used for all videos. Additionally, a soft-threshold

based on Lasso was used to select the low-rank modes, in-

stead of defining a hard threshold ǫ in advance [14]. Fi-

nally, for smoothing the foreground mask and reducing

noise a median filter was applied. The archived results are

highly competitive and show the ability of DMD for back-

ground/foreground separation. A primary advantage is the

computational time (e.g. ∼ 55 fps for a 320x240 video) of

DMD in comparison with most other state-of-the-art algo-

rithms that are capable of computing 10 to 25 frames per

second (fps). However, the performance depends on the

length of the used video sequence, hence the number of

frames is a trade-off between speed and accuracy. In fu-
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Measure Baseline Bad Weather Dynamic Background Intermit. Obj. Motion

Highway Pedestrian Skating Blizzard Canoe Sofa Parking

F-Measure 0.918 0.960 0.917 0.864 0.921 0.674 0.895

Recall 0.911 0.975 0.853 0.843 0.895 0.617 0.878

Precision 0.924 0.946 0.993 0.886 0.950 0.744 0.913

PWC 0.971 0.079 0.760 0.310 0.540 2.601 1.586

FPR 0.005 0.001 0.000 0.001 0.002 0.010 0.007

FNR 0.089 0.025 0.147 0.157 0.105 0.383 0.122

Specifity 0.995 0.999 0.999 0.999 0.998 0.990 0.993

Evaluated frames 1230 800 3100 5000 389 2250 1400

Table 1: Evaluation results.

(a) Original frame (b) Ground truth (c) Modeled background (d) Foreground mask

Figure 4: Illustration of background/foreground separation using DMD.

ture research we will investigate the performance on a more

comprehensive set of videos in order to evaluate DMD with

heavily crowded scenes or camera jitter, for instance.

7. Conclusions and Outlook

By interpreting video streams as a dynamical system,

the power of the DMD algorithm can be leveraged to de-

compose video data into a set of dynamic modes that are

derived from individual snap shots. It also leverages ideas

from wavelet theory and multi-resolution analysis, allowing

for a principled reconstruction of multi-resolution, spatio-

temporal video feeds. The effectiveness of the method is

demonstrated on several example data sets, highlighting its

ability to extract critical information and enact data-driven

discovery protocols for background removal and multiple

target detection. The method can be viewed as comput-

ing, from the snapshots alone, the eigenvalues and eigen-

vectors (low-dimensional modes) of a linear model that ap-

proximates the underlying video dynamics. By interpreting

the DMD eigenvalues as corresponding to prescribed time

scale dynamics, one can extract spatio-temporal structures

recursively for shorter and shorter sampling windows. Thus

the slow-modes are removed first and the data is filtered for

analysis of its higher frequency content. This recursive sam-

pling structure is demonstrated to be effective in allowing

for a reconstruction of different time-scale features.

One of the most attractive features of the DMD algorithm

is the number of enhancements and innovations around the

basic decomposition scheme. This can help performance in

three specific areas: (i) accuracy of foreground/background

subtraction as well as object detection, (ii) computational

speed and (iii) memory requirements. In what follows, a list

of innovations are highlighted that are capable of greatly en-

hancing the MRDMD algorithm. Compressive Sampling:

Natural images are known to be sparse in many basis func-

tions, e.g. wavelets. The DMD architecture can easily

capitalize on this fact by sub-sampling of the pixel space.

For DMD, this has been recently demonstrated to work

well for understanding dynamical systems [6]. This helps

the MRDMD with both speed and memory requirements.

Incremental and Random SVDs: Background and fore-

ground objects do not typically change significantly from

frame to frame, thus allowing for incremental updates (in-

cremental SVD [4]) of the background and foreground ob-

jects. Further, random SVD architectures [12] can also be

utilized to improve computational efficiency. Denoising:

Recent innovations in DMD theory suggest that a princi-

pled and effective approach can be taken to removing noise

from the data matrix X before performing a DMD decom-

position [10]. Such a step is critical in evaluating video

streams, especially if noise removal happens in a recursive,

multi-time scale manner. GPU Architectures: The DMD

algorithm is also amenable to efficient implementation on

GPU platforms, allowing for real-time target tracking and

foreground/background separation on HD video feeds. One

can easily envision applications where the MRDMD archi-

tecture is integrated in hardware, and the GPU provides an

effective strategy for providing real-time analysis of objects.
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