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Abstract

This paper presents a simple and effective way of solving

the robust subspace estimation problem where the corrup-

tions are column-wise. The method we present can han-

dle a large class of robust loss functions and is simple

to implement. It is based on Iteratively Reweighted Least

Squares (IRLS) and works in an iterative manner by solv-

ing a weighted least-squares rank-constrained problem in

every iteration. By considering the special case of column-

wise loss functions, we show that each such surrogate prob-

lem admits a closed form solution. Unlike many other ap-

proaches to subspace estimation, we make no relaxation of

the low-rank constraint and our method is guaranteed to

produce a subspace estimate with the correct dimension.

Subspace estimation is a core problem for several appli-

cations in computer vision. We empirically demonstrate the

performance of our method and compare it to several other

techniques for subspace estimation. Experimental results

are given for both synthetic and real image data including

the following applications: linear shape basis estimation,

plane fitting and non-rigid structure from motion.

1. Introduction

Subspace estimation problems appear as a subtask in

many seemingly different applications, such as motion seg-

mentation, structure from motion and face recognition. The

problem can be posed as finding a low-rank matrix approxi-

mation of a given measurement matrix. Naturally, the prob-

lem has been investigated in depth. Recent work has fo-

cused on robustness to outliers and noise, leading to new

robustified versions of standard techniques, for instance,

Robust Principal Component Analysis (RPCA) [6]. In this

work, we present a simple and yet effective method for ro-

bust rank approximation, which is capable of handling a

large class of robust loss functions and which is guaranteed

to find a solution of a given rank. Hence, no relaxation of

the rank constraint is required.

There are essentially two approaches to robust rank ap-

proximation. The first one is based on relaxing the original

hard, non-convex problem to a convex optimization prob-

lem, e.g., [7, 6, 27, 21, 28]. Many of these methods simply

replace the rank function with the nuclear norm. In [7], it

is shown that for their model, the method comes with the-

oretical performance guarantees of recovering the correct

solution provided the low-rank matrix satisfies so called in-

coherence conditions and that the outliers are sparse and

uniformly distributed. However, for many problems these

assumptions are not in general fulfilled and the method

risks breaking down to such violations. Further, it has been

noted that when the dimension of the underlying subspace is

known, the performance of nuclear norm based methods is

worse compared with other approaches that ensure the cor-

rect subspace dimension [5]. This leads us to a second class

of approaches that do not apply relaxation, and instead work

directly with the original non-convex problem. Bilinear for-

mulations are common which make sure that the recovered

solution has the correct rank [1, 17, 12, 24]. Often, alternat-

ing optimization techniques are applied which are known to

be sensitive to the local minima problem, and hence they

require a good initialization.

We will follow the second class of approaches and work

directly with the rank constraint. Our method is based on

Iteratively Reweighted Least Squares (IRLS) and this by it-

self is not new for robust subspace estimation. In [19, 18],

IRLS is analyzed and used for minimizing the nuclear norm

relaxation of the rank function. It is shown that this can

lead to efficient and convergent algorithms for solving the

convex program, but it still suffers from the disadvantages

of relaxation. We will experimentally compare our method

to those that use nuclear norm relaxation for similar prob-

lem formulations. IRLS has also been used in a bilinear

formulation of the robust subspace estimation problem [1].

Here, each step in the IRLS is solved by a heuristic op-

timization technique by iteratively solving a series of ap-

proximate problems called surrogates. However, there is no

guarantee of convergence for the surrogate problems and as

a non-convex problem is solved, there is a risk of getting

trapped in a local minimum.

The work most similar to ours is perhaps [11], where

IRLS is also used to solve robust subspace estimation prob-

lems. In [11] the loss functions considered are robust to

element-wise corruptions. While this is a more general er-

ror model it comes with the drawback that the update step

becomes much more difficult to solve. The authors in [11]

propose an alternating minimization scheme to solve the

weighted least squares problem which has no optimality

guarantees. In contrast, this work considers the special case
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of column-wise outliers. For this case we show that the up-

date has a closed form solution which is globally optimal.

Further, as there is a closed form solution, the method be-

comes very simple to implement and analyze. We prove that

under mild conditions the objective function decreases in

each iteration. The conditions are satisfied for a large fam-

ily of robust loss functions which includes the column-wise

ℓ1-loss and Huber-loss. The proposed method has in exper-

iments been observed to converge very quickly and in other

applications IRLS based methods have been shown to con-

verge exponentially fast (linear convergence) when close to

the optimum [10].

In summary, we propose an IRLS method for robust sub-

space estimation which is very simple to implement and

contains no tuning parameters except for the choice of ro-

bust loss function. We can handle a large class of robust loss

functions and the solution is guaranteed to have (at most)

a pre-defined rank. Each iteration decreases the objective

function but as the rank problem is non-convex, we cannot

be certain that the computed solution is globally optimal.

It has been tested on a number of applications in computer

vision, including linear shape basis estimation, plane fitting

and non-rigid structure from motion and we show competi-

tive performance in both speed and solution quality.

Notation. For a matrix X , the notation Xk refers to the

k-th column of X . The Frobenius norm of X is given by

‖X‖2F =
∑

k ‖Xk‖2 =
∑

i,k |Xik|2, whereas the ℓ2,1-

norm is defined as ‖X‖2,1 =
∑

k ‖Xk‖. The nuclear

norm is defined as the sum of singular values of X , i.e.,

‖X‖∗ =
∑

k σk(X). The pseudo-inverse is denoted X†.

2. Robust Subspace Estimation Problems

In this paper we are mainly interested in low-rank ap-

proximation problems where the data term is robust to in-

correct columns. The robust minimization problems we

consider are of the form

min
X

∑

k

ϕ(‖Xk −Mk‖) s.t. X ∈ C (1)

where C is some constraint set and ϕ : R+ → R
+ is some

robust loss. The constraint set C is typically used to restrict

the columns of X to have some simple structure, e.g. be-

long to a low-dimensional subspace. Some examples of

constraint sets C which are tractable are shown in Table 1

but other choices are possible in the framework as well.

For the robust loss ϕ the two choices we will consider

are ϕ(x) = x, which gives us the ℓ2,1-norm and

ϕ(x) =

{

1
2x

2 if x ≤ δ

δx− 1
2δ

2 if x ≥ δ

which gives the well known Huber-loss. In the experiments

throughout the paper we will use the Huber loss except for

the experiment in Section 5.1 where the ℓ2,1-loss is used.

The derivations for the IRLS method are performed for a

general loss function ϕ. We only require that the function

ψ(x) := ϕ(
√
x) is concave and differentiable (except at a

finite number of points), which is the case for the previously

mentioned loss functions.

Problem Constraint set

Subspace estimation C = {Z | rank(Z) = k}
Affine space estimation C = {Z + t1T | rank(Z) = k, t ∈ R

n}
Dictionary selection C = {AZ | rank(Z) = k}
Affine Non-rigid SfM1 C = {RZ + t1T | rank(Z) = k}

Table 1. Some examples of possible constraints in the framework.

3. Iteratively Reweighted Least Squares with

Constraints

To minimize (1) we apply IRLS which has been exten-

sively used in the optimization literature for the approxima-

tion of robust norms, e.g. [10, 16]. In IRLS the idea is to

solve a sequence of weighted least squares problems which

converge to the true cost. In each iteration we solve prob-

lems of the following form

min
X

∑

k

w2
k ‖Xk −Mk‖2 s.t. X ∈ C (2)

where wk ∈ R
+ are the sample specific weights. This can

be rewritten in matrix form as

min
X

‖(X −M)W‖2F s.t. X ∈ C (3)

where W is a diagonal matrix containing the weights. The

weights are selected by requiring that the derivatives of

ϕ(rk) and w2
kr

2
k with respect to rk are equal, where rk =

‖Xk −Mk‖ , k = 1, ..., N , which implies that

w2
k =

ϕ′(rk)

2rk
. (4)

In order to be able to employ our IRLS approach we will

require that the weighted projection PW
C onto the constraint

set C (in Frobenius norm), i.e.,

PW
C (Z) = argmin

X∈C

‖(X − Z)W‖2F , (5)

can be computed. Given the projection operator the solution

to (3) is given by X⋆ = PW
C (M). The complete algorithm

is summarized in Algortithm 1.

4. Convergence Analysis

Next we show that the sequence of minimizers gener-

ated by the IRLS method gives decreasing objective val-

ues. Since the objective values are bounded from below

they must converge.

1We assume known cameras, i.e., R,t are known.
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while not converged do
rk = ‖Xk −Mk‖
Wkk = (ϕ′(rk)/(2rk))

1/2

X = PW
C (M)

end

Algorithm 1: Constrained IRLS.

Theorem 1. LetXt denote the sequence of minimizers gen-

erated from Algorithm 1. Then the function values f(Xt)
satisfy

f(Xt+1) ≤ f(Xt)

and the sequence f(Xt) converges.

Proof. The proof is easily obtained using a very elegant ar-

gument from [16, 2]. Using the previously defined ψ(x) :=
ϕ(

√
x) we can rewrite the optimization problem

min
X

∑

k

ψ(‖Xk −Mk‖2) s.t. X ∈ C. (6)

Let rk,t denote the k-th residual at iteration t and sim-

ilarly for wk,t. Since we solve the weighted least squares

problem optimally on the constraint set C we must have

∑

k

w2
k,tr

2
k,t+1 −

∑

k

w2
k,tr

2
k,t ≤ 0. (7)

Since ψ is assumed to be concave, it follows that

ψ(r2k,t+1)− ψ(r2k,t) ≤ ψ′(r2k,t)(r
2
k,t+1 − r2k,t). (8)

Note that using (4), it follows that ψ′(r2k,t) = w2
k,t. From

(7) we then get

∑

k

ψ(r2k,t+1)−
∑

k

ψ(r2k,t) ≤ 0. (9)

So the function values are decreasing in each iteration and

since they are bounded from below they must converge.

4.1. Convergence Rate

In this section we empirically evaluate the convergence

rate of the proposed approach for the robust subspace esti-

mation problem on synthetic data. In the subspace estima-

tion problem we have the constraint set

C = {X | rank(X) = r}. (10)

The set of rank r matrices can be parameterized by two thin

matrices as X = AB where A ∈ R
m×r, B ∈ R

r×n. In this

parametrization (1) can be rewritten as

min
A,B

∑

k

ϕ(‖ABk −Mk‖). (11)

We compare our IRLS approach with the standard Con-

jugate Gradient method applied to this parametrization.

We compare with using both the Fletcher-Reeves [13] and

Polak-Ribière [20] update rules.

The columns of M ∈ R
100×1000 are sampled from a

randomly generated subspace of R
100 and corrupted with

small Gaussian noise with zero mean. Then 25% of the

columns are replaced by Gaussian noise to simulate outliers.

Figure 1 shows the function values plotted against iterations

for one of the instances. Table 2 shows the average number

of iterations required until convergence over 1000 instances.

For both methods we consider the method converged when

the relative error (to the optimal function value) is smaller

than 10−6.
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Figure 1. Convergence comparison with Conjugate Gradient. The

function values have been shifted to the interval [0, 1] for presenta-

tion. CG-FR corresponds to the β update rule by Fletcher-Reeves

[13] and CG-PR to the rule from Polak-Ribière [20]. Note that

the IRLS approach converges to the optimum within the first few

iterations and that the two conjugate gradients methods have very

similar performance.

IRLS CG-FR CG-PR

Mean 7.2 28.7 24.2

Median 5.0 22.0 22.0

Table 2. The average number of iterations for convergence. The

average time for each iteration was 0.013 seconds for IRLS and

0.034 seconds for the CG methods. Note that CG methods are

using exact line search by numerical optimization in MATLAB.

4.2. Robust Initialization

Since IRLS is a local optimization method having a good

initialization is essential. Here we only consider the sub-

space estimation problem, C = {X | rank(X) = r0} but

the approach generalizes to the other constraints in Table 1.

To find a good initialization we propose a random sampling

approach. We randomly select r columns and and take these

as a basis for the column space. Let B ∈ R
n×r0 be the ma-
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trix containing the samples. Then the problem reduces to

min
Z

∑

k

ϕ(‖BZk −Mk‖) (12)

which is separable in the columns of Z, so we can solve for

each Zk separately. We iterate this procedure and keep the

solution with best objective value.

5. Experimental Evaluation

5.1. Comparison to Convex Relaxation

A popular heuristic for solving rank approximation prob-

lems is to replace the non-convex rank constraint with a nu-

clear norm penalty term. Due to the convexity of the nu-

clear norm the resulting problem can be solved using con-

ventional convex optimization methods. On the downside

the nuclear norm penalizes all singular values equally in

contrast to the desired regularization where only the smaller

singular values are penalized. In this section we present an

experiment where we compared our method to the convex

relaxation approach used in [27, 21]. In these works the

authors consider the following version of Robust Principal

Component Analysis (RPCA)

min
X

λ ‖X‖∗ + ‖X −M‖2,1 , (13)

as a convex substitute for

min
X

λ rank(X) + ‖X −M‖2,1 . (14)

In the experiment we generated 1000 points on a 10-

dimensional subspace in R
100. The points were corrupted

by noise and 25% of the points were also heavily cor-

rupted and became outliers. We solved (13) for varying

values of the parameter λ using ADMM [3]. Note that

the trailing singular values of the minimizers to (13) will

generally be small but non-zero. To determine the rank we

counted the number of singular values which were larger

than 0.01σ1(M). Then to find a true low-rank solution we

truncated the remaining singular values. We also compared

to simply projecting the measurement matrix to the correct

rank using SVD. The result can be seen in Figure 2. Note

that the uncorrupted measurement matrix has rank 10. Dif-

ferent error metrics for the rank 10 solutions can be seen in

Table 3. The runtimes for the rank 10 solutions were 0.068s

for IRLS and 1.056s for RPCA-(2,1).

5.2. Robust Shape Model Estimation

In this section we consider the problem of robust linear

shape model estimation. We assume that we are given some

samples Mk in R
n which we want to describe by a low-

dimensional shape basis B, i.e.,

Mk = BZk B ∈ R
n×r, Zk ∈ R

r

2 4 6 8 10 12 14 16 18 20
2,500

3,000

3,500

4,000

4,500

5,000

rank

er
ro

r

Our

SVD

RPCA-(2,1)

Figure 2. The error against the noisy data measured on all samples

in the ℓ2,1-norm plotted against rank. Note that there is no value

of λ for which the error is as low as for the IRLS method.

Our SVD RPCA-(2,1)

Noisy data (all samples) 3086 3232 3209

Noisy data (inliers) 706 888 779

Ground truth (inliers) 252 594 390

Table 3. The errors for the rank 10 solutions. The first row cor-

responds to Figure 2. The second is the error w.r.t. the noisy data

measured only on the inliers. Finally the third row is the error w.r.t.

the ground truth data measured only on the inliers. All the errors

are measured in the ℓ2,1-norm.

where r is some small integer. If we assume that the sam-

ples are corrupted by Gaussian noise on the samples, then

the maximum likelihood estimate is given by

min
B,Z

‖BZ −M‖2F = min
rank(X)=r

‖X −M‖2F . (15)

If some outlier samples are present in the data, then the

squared error can distort the solution heavily and we instead

consider the robustified version

min
rank(X)=r

∑

k

ϕ(‖Xk −Mk‖). (16)

We consider the hand dataset from [23]. The dataset con-

tains 40 images of hands in various poses. For each image

56 points along the edge of the hand are given. See Figure 3

for some examples.

The dataset is outlier free so to evaluate the robustness

of the method we corrupt the first five images by shrink-

ing one finger in each image. Using the proposed method

we find a five dimensional shape basis for the hands. We

compare with the result of solving (15) using SVD which

is standard in Active Shapes [8]. Figure 4 shows how well

each sample can be represented in each shape basis. Note

that the first five samples correspond to the outliers. The

robust objective function allows for solutions where a few

samples have high error. Some qualitative results can be

seen in Figures 5 and 6.

To evaluate the performance we measured the error on

the 35 inlier samples. Table 4 shows the errors in Frobe-
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Figure 3. Example images from the hand dataset [23].

5 10 15 20 25 30 35 40
0

0.2

0.4
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SVD

IRLS

Figure 4. Reconstruction error for the individual samples, i.e.,

‖Xk −Mk‖.

nius norm for the inlier samples. For comparison we also

include the results from minimizing the error in the elemen-

twise ℓ1 norm. The minimization is performed by using the

augmented lagrangian method which was proposed in [15]

for solving the problem

min
Z,U,V

‖M − Z‖1 s.t. Z = UV T (17)

The table also includes the optimal estimates found by using

only unknown the inliers.

Optimal IRLS ALM-ℓ1 SVD

Error 0.5268 0.5513 0.5787 0.6967

Table 4. Error in Frobenius norm measured only on the inliers.

Optimal is found by performing SVD on only the inliers.

5.3. Affine Subspace Estimation

Next we consider the problem of estimating an affine

subspace

min
Z,t

∑

k

ϕ(‖Zk + t−Mk‖) s.t. rank(Z) = d. (18)

data

SVD

IRLS

Figure 5. Example of result for some inlier samples. The input

data is shown in green, the output of our method in red and the

output from SVD in blue.

data

SVD

IRLS

Figure 6. Example of result for some outlier samples. The input

data is shown in green, the output of our method in red and the

output from SVD in blue.

The projection onto an affine subspace of dimension d is

given by

PW
C (M) = argmin

Z,t

∥

∥(Z + t1T −M)W
∥

∥

2

F
s.t. rank(Z) = d.

(19)
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Differentiating w.r.t. t we get

(Z+t⋆1T−M)W 2
1 = 0 =⇒ t⋆ =

−1

1TW 21
(Z−M)W 2

1.

(20)

The remaining minimization in Z then becomes

min
Z

∥

∥

∥

∥

(Z −M)(I − 1

1TW 21
W 2

11
T )

∥

∥

∥

∥

2

F

s.t. rank(Z) = d.

(21)

If we denote A = (I − 1
1TW 21

W 2
11

T ) we get from the

arguments in the appendix that the minimum norm solution

is given by

Z⋆ = Pd (MAV1) Σ
−1UT

1 (22)

where A has the SVD,

A =
[

U1 U2

]

[

Σ 0
0 0

] [

V T
1

V T
2

]

. (23)

The IRLS algorithm for affine subspace estimation is sum-

marized in Algorithm 2.

while not converged do
ri = ‖Xi −Mi‖
Wii = (ϕ′(ri)/(2ri))

1/2

A = (I − 1
1TW 21

W 2
11

T )
U1ΣV1 = svd(A)
Z = Pd(MV1)ΣU

T
1

t = −1
1TW 21

(Z −M)W 2
1

X = (Z + t1T )
end

Algorithm 2: IRLS for affine subspaces.

5.3.1 Experiment: Plane Fitting in 3D

Now to evaluate the effect by the robust initialization we

consider the problem of robust 3D plane fitting. The prob-

lem can be thought of as an affine subspace estimation prob-

lem where we are given points in R
3 and want to fit a two

dimensional affine subspace. Note that the problem of 3D

plane fitting can in general be solved extremely well by ran-

dom sampling approaches due to the low dimensionality of

the problem and this experiment is only used to illustrate

the behavior of the robust initialization.

We generated data for the experiment by sampling 100

points on a random plane in R
3. We then added small noise

to these points and for a subset of the points we also added

large noise, thus creating some outlier samples. We then

projected the points onto a two dimensional affine space us-

ing Algorithm 2 initialized both using the standard Total

Least Squares estimate and using the robust initialization

from Section 4.2. In the experiment the Huber loss was

used. We ran the experiment for varying levels of noise and

number of outliers. The averaged results can be seen in Fig-

ure 7. We can see that for low number of outliers the robust

initialization makes no difference.
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Figure 7. Synthetic experiment with plane fitting in 3D. The graphs

show the average inlier error for varying levels of noise and num-

ber of outliers. Top: The percentage of outliers is varied and the

noise level is kept fix at σ = 0.01. Bottom: The noise level is

varied and the number of outliers is kept fix at 25%. The baseline

is Total Least Squares.

5.4. NonRigid Structure from Motion

In Non-Rigid Structure from Motion (NRSfM) we want

to reconstruct a dynamic scene from image measurements.

We consider the case of known affine cameras2. Let

(Rk, tk) ∈ R
2×3 × R

2, k = 1, .., F, be the known cam-

eras and construct

R = diag(R1, ..., RF ), t =
[

tT1 . . . tTF
]T
. (24)

We assume that the measurement matrix M ∈ R
2F×N is

formed as M = RX + t1T where X ∈ R
3F×N is the un-

known 3D-points in each frame stacked vertically. To regu-

larize the solution we make a linear shape basis assump-

tion which is common in NRSfM [4]. This implies that

rank(X) ≤ 3K where K is the number of basis elements.

To perform non-rigid structure from motion which is ro-

bust to outlier tracks we want to solve the problem

min
X

∑

k

ϕ(‖RXk + t−Mk‖) s.t. rank(X) = 3K.

(25)

We now consider the weighted projection operator onto

constraint set C = {RZ + t1T | rank(Z) = 3K}, i.e.,

PW
C (M) = argmin

rank(Z)=3K

∥

∥(RZ + t1T −M)W
∥

∥

2

F
. (26)

2This step is only a subtask in the complete problem.
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LetR = U
[

Σ 0
] [

V1 V2
]T

be the SVD ofR, then by

the arguments in the appendix the optimal solution to (26)

is given by

Z⋆ = (V1Y
⋆
1 + V2Y2)W

−1, (27)

Y ⋆
1 = Σ−1P3K

(

UT (M − t1T )W
)

, (28)

and Y2 is any matrix such that rank(
[

Y T
1 Y T

2

]T
) ≤ 3K.

Let Y ⋆
1 = Ū Σ̄V̄ T be the thin SVD of Y ⋆

1 . Then any

choice of Y2 which preserves the rank can be written as

Y2 = ΘV̄ T . The choice of Y2 affects the solution along

the nullspace of R, i.e., along the principal axis of the cam-

eras. This has an large effect on the quality of the solution

and the minimum norm solution will favor points close to

the camera plane. To choose Y2 we assume a smoothness

prior which was suggested in [9]. Let D be the first order

finite difference matrix. We then solve the problem

min
Θ

‖DZ(Θ)‖ = min
Θ

∥

∥D(V1Y
⋆
1 + V2ΘV̄

T )W−1
∥

∥ .

(29)

This is a simple least squares problem with the solution

Θ = −(DV2)
†
(

DV1Y
⋆
1 W

−1
)

(V̄ TW−1)†. (30)

The algorithm is summarized below.

U
[

Σ 0
]

[

V T
1

V T
2

]

= svd(R)

while not converged do
ri = ‖RZi + t−Mi‖
Wii = (ϕ′(ri)/ri)

1/2

Y1 = Σ−1P3K

(

UT (M − t1T )W
)

Ū Σ̄V̄ T = svd(Y1)
Θ = −(DV2)

†
(

DV1Y
⋆
1 W

−1
)

(V̄ TW−1)†.
Z = (V1Y1 + V2ΘV̄

T )W−1

end

Algorithm 3: Rank Constrained IRLS for affine NRSfM.

5.4.1 Experiment: CMU Motion Capture Database

We now consider data from the CMU Motion Capture

database [25]. The dataset consists of 3D point tracks ob-

tained using a motion capture system. To generate the mea-

surement matrix M we projected the 3D points into syn-

thetic orthographic cameras and added some small Gaus-

sian noise. The orthographic cameras rotated around the

subject at ≈ 1 degree per frame. Since we are interested

in evaluating the robustness to outliers we also add some

tracks consisting of random noise. The sequence we con-

sidered3 consists of 330 points tracked in 740 frames. We

added an additional 100 outlier tracks.

3Subject 26, Trial 9.
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Figure 8. The reprojection errors for the sequence 26-09 in the

CMU Motion Capture database. The last 100 tracks are outliers.

Figure 9. Reprojections in frame 650 of all points (left) and only

inliers (right). The gray circles are the measurements.

Figure 10. The reconstruction for the sequence 26-09 in the CMU

Motion Capture database. The outlier tracks have been removed.

The gray circles are the ground truth 3D points.

Figure 8 shows the reprojection errors obtained using the

proposed algorithm. Due to the robust formulation the out-

lier tracks are able to have a high reprojection error without

degrading the rest of the solution. Note that without the rank

constraint every track would have had zero reprojection er-

ror. Figure 9 shows the reprojections of a single frame with

and without the points indicated as outliers and Figure 10

shows the 3D reconstruction together with the ground truth.

Note that two of the outlier tracks were incorrectly regarded

as inliers. This is due to them being close enough to the sub-

space to be indistinguishable from a true inlier.
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Figure 11. The x-coordinate for a single point across all frames for

the different reconstructions.

3D error Time

No outliers Added outliers

Our 0.0968 0.1228 27.1s

Dai et al. [9] 0.1405 0.4257 231.8s

Table 5. Normalized mean 3D error measured only on the inliers

with K = 3 and the total running time.

We also compared our results to the non-robust method

proposed by Dai et al. [9]. In their method they estimate the

cameras and structure separately. Here we assume known

cameras so we only use the structure estimation part of their

algorithm together with the ground truth cameras. In [9]

they find the structure by solving the convex problem

min
X

∥

∥X#
∥

∥

∗
s.t. RX = P3K

(

M − t1T
)

(31)

where X# denotes the stacked matrix where each row cor-

responds to a frame, i.e., X ∈ R
3F×N and X# ∈ R

F×3N .

After solving the optimization problem they project the

stacked matrix to rank K to ensure a valid shape basis fac-

torization exists.

To evaluate the reconstructions we measure the normal-

ized mean 3D error given by

e3D =
1

σFN

F
∑

f

N
∑

n

efn, σ =
1

3F

F
∑

f

(σfx+σfy+σfz),

(32)

where σfx, σfy and σfz denote the standard deviation of the

x, y, and z-coordinates in ground truth shape. This is the

same error metric that was used in [9]. Table 5 shows the

errors for the experiment with and without outliers. When

outliers are added the quality of solution is heavily de-

graded. Figure 11 shows the x-coordinate of a single point

in all frames for the two methods.

6. Conclusions

We have shown that several subspace estimation prob-

lems can be robustly performed using IRLS. The proposed

method is competitive both in terms of solution accuracy

and the running times compared to other approaches. The

method can simply be implemented in a few lines of Matlab

code and have few if any tuning parameters.

A. Rank Constrained Least Squares

In this section we give a short review of how to estimate

a rank constrained matrix under the Frobenius norm. The

approach seems to have first appeared in [22] and has later

been used in [14, 26]. We consider optimization problems

of the type

min
X

‖AXB − C‖2F s.t. rank(X) = d. (33)

If the matrices A and B are invertible the solution is easily

found using

X⋆ = A−1Pd (C)B
−1, (34)

where Pd (C) is projection onto the rank d matrices (in the

Frobenius norm sense). For the general case we let

A =
[

UA1 UA2

]

[

ΣA 0
0 0

] [

V T
A1

V T
A2

]

, (35)

and

B =
[

UB1 UB2

]

[

ΣB 0
0 0

] [

V T
B1

V T
B2

]

, (36)

be the singular value decompositions of A and B respec-

tively. Inserting into the objective function of (33) we see

after some manipulations that it reduces to
∥

∥ΣAY11ΣB − UT
A1MVB1

∥

∥

2

F
, (37)

where

Y =

[

Y11 Y12
Y21 Y22

]

=

[

V T
A1

V T
A2

]

X
[

UB1 UB2

]

. (38)

Note that the matrices ΣA and ΣB are of full rank and there-

fore the optimal Y11 is given by

Y11 = Σ−1
A Pd

(

UT
A1MVB1

)

Σ−1
B . (39)

The minimum norm solution is obtained by setting the re-

maining blocks of Y to zero. For the general set of solutions

we see that Y21 = ΘrY11, that is, the rows of Y21 must be

linear combinations of the rows of Y11. A similar argument

for the other blocks gives the general solution to (33) as

X⋆ =
[

VA1 VA2

]

[

Y11 Y11Θc

ΘrY11 ΘrY11Θc

] [

UT
B1

UT
B2

]

, (40)

for any choice of Θr and Θc.
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