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Abstract

There have been tremendous improvements of the face

alignment algorithms, among which the regression frame-

work becomes the most popular one recently. The regres-

sion based works start from an initial face shape, and they

learn regression models to predict the face shape updates

based on the shape-indexed local appearance features.

However, most of the regression methods ignore the fact

that the regression function should directly rely on the cur-

rent shape (e.g. regression function for frontal face should

be different from that for the left profile face). To utilize

this information and improve over the existing regression

based methods, we propose the shape augmented regres-

sion method for face alignment where the regression func-

tion would automatically change for different face shapes.

We evaluated the performance of the proposed method on

both the general “in-the-wild” database and the 300 Video

in the Wild (300-VW) challenge data set. The results show

that the proposed method outperforms the state-of-the-art

works.

1. Introduction

The goal of face alignment algorithm is to locate several

facial key points and landmarks (e.g. eye corner, mouth cor-

ner) on the facial images (see Figure 1). The information of

landmark locations is crucial for understanding and analyz-

ing the human facial behavior. For example, the locations of

facial landmarks can be used as features for facial expres-

sion analysis [27], head pose estimation [14], etc. However,

face alignment is still a challenging task, even though there

have been extensive studies over the past few decades.

The typical face alignment methods utilize the facial ap-

pearance information and the face shape patterns. The fa-

cial appearance information refers to the distinct intensity

patterns around the facial landmarks or in the whole face

Figure 1. Facial images with the detected facial landmarks with

the proposed method. Images are from the Helen database [11]

region. The face shape patterns refer to the distinct patterns

of the face shape defined by the landmark locations. For

example, in the early study, the Active Appearance Model

(AAM) [6] represents the appearance (texture) and shape

information of human face with Principle Component tech-

niques. In the Constrained Local Method (CLM) [8], local

appearance information and the global face shape patterns

are modeled. Recently, regression based works [26][15][4]

show significant better performances than the AAM and

CLM frameworks. They do not explicitly learn any shape

model, and they directly predict the landmark locations

from the facial appearance features.

One major limitation of the current regression based

methods is the ignorance or ineffective usage of the shape

information. Specifically, the existing regression based

methods [26][15][4] learn the regression functions with-

out explicitly considering the current global shape, while,

in fact, the regression function should change according to

the current face shape (e.g. frontal face should have differ-

ent regression function from that for the profile face). To

tackle this problem and improve upon the regression based

methods, in this work, we explicitly combine the shape in-

formation with the appearance information to build better

regression functions.

The remaining part of the paper is organized as follows.

In section 2, we review the related work. In section 3, we

introduce the proposed method. In section 4, we show the

experimental results. We conclude the paper in section 5.
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2. Related Work

Face alignment methods can be classified into three ma-

jor categories, including the holistic methods, the con-

strained local methods, and the regression based methods.

The holistic methods model the facial appearance in the

whole face region and the global face shape. The typ-

ical holistic model is the Active Appearance Model [6].

Most holistic methods [12][2][21] focus on designing

new fitting algorithms that estimate the model parameters

for the testing image. The Constrained Local Methods

(CLM) [17][22][28][24] search each landmark point inde-

pendently based on the local appearance information with

the constraint that the estimated face shape satisfies the an-

thropological constraint embedded in the face shape model.

It has been shown that the CLM based works outperform

AAM based approaches, and they achieve better robustness

in terms of illuminations, occlusions, etc.

The regression based methods directly learn the mapping

from facial images to the landmark locations with regres-

sion models. They directly predict either the absolute land-

mark coordinates or the displacement vectors (the current

landmark locations to the ground truth locations) based on

the image appearance features. For example, in [19], deep

convolutional neutral network model is used to learn the di-

rect mapping from facial appearance of the whole face re-

gion to the landmark coordinates. In [4][19][26], regression

models are used to learn the mapping from local appearance

around the current landmark locations to the shape updates.

There are some regression based works that utilize the

shape information, although in a limited sense. In [4], the

shape indexed image features are proposed to embed the

local facial appearance. It uses the pixel intensity differ-

ences as features while the pixel is indexed relative to the

currently estimated shape instead of the image coordinate

system. It is shown in [4] that the shape-indexed features

achieve better geometric invariance and faster convergence.

In the typical regression methods, since all the points are up-

dated jointly, the shape pattern constraint is implicitly em-

bedded in the model. In [9], the regression functions are

learned for faces with different head poses which are then

combined jointly in testing to handle varying poses.

The most similar work to our work is the Global Su-

pervised Descent method (Global SDM) [25], which is de-

veloped independently and concurrently with the proposed

method. It improves over the Supervised Descent Method

(SDM) [26] by learning eight sets of shape dependent re-

gression functions, where each set of the regression func-

tion is specifically learned for images with similar shape

updates. During testing, one set of the regression function is

selected based on the shape updates from the last iteration.

The proposed method differs from the Global SDM. First,

the proposed method can automatically and continuously

adjust the regression model parameters based on the aug-

mented shape features, and it does not need to select from

a few regression functions as the Global SDM. Second, the

proposed shape augmentation method can be applied to any

face alignment method with regression framework. Third,

in Global SDM, learning a few sets of regression functions

may need a larger number of training data, and it is more

time consuming than the proposed method.

3. Shape augmented regression method

In this section, we first discuss the general regression

methods and then introduce the proposed shape augmented

regression method.

3.1. General regression method

The Supervised Decent Method (SDM) [26] is one pop-

ular regression method that has been applied to face align-

ment. It formulates the face alignment task as a general

optimization problem, which is then approximately solved

by learning several sequential mapping functions from the

local appearance to the shape updates with linear regression

models. In particular, assuming the facial landmark coordi-

nates are denoted as x = {x1, x2, ..., xD}, where D denotes

the number of landmarks, face alignment problem can be

formulated as a general optimization problem:

x̃ = arg min
x

f(x)

= arg min
x

1

2
‖Φ(x, I) − Φ(x∗, I)‖2

2
.

(1)

Here, Φ(x, I) represents the local SIFT features around the

landmark locations x for image I. The ground truth land-

mark locations are denoted as x∗. With Taylor expansion

and assuming that we have an initial face shape x0, the ob-

jective function can be approximated as:

f(x) = f(x0 + ∆x)

≈ f(x0) + Jf (x0)
T ∆x +

1

2
∆xT Hf (x0)∆x,

(2)

where Jf (x0) and Hf (x0) represent the Jacobian and Hes-

sian matrices of function f(.) evaluated at the current shape

x0. Then, with gradient descent method and the Taylor ex-

pansion approximation, the problem becomes finding the

shape updates ∆x that minimize Equation 2 in each shape

update step. The new face shape can be calculated as

x0 + ∆x, which is then used in the next iteration until con-

vergence. In Equation 2, take the derivation of f(x) w.r.t.

∆x and set it to zero, we get:

∆x = −Hf (x0)
−1Jf (x0)

= −Hf (x0)
−1JΦ(x0)(Φ(x0, I) − Φ(x∗, I))

= −Hf (x0)
−1JΦ(x0)Φ(x0, I) + Hf (x0)

−1JΦ(x0)Φ(x∗, I)
(3)
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There are two difficulties in the estimation of ∆x in Equa-

tion 3. First, the Jacobian and Hessian matrices are gener-

ally difficult to estimate due to the involved complex fea-

tures such as SIFT. Second, the ground truth landmark lo-

cations x∗ are unknown in testing. To solve these issues,

SDM uses some approximate representations:

R = −Hf (x0)
−1JΦ(x0) (4)

b = Hf (x0)
−1JΦ(x0)Φ(x∗, I) (5)

Here, R ∈ ℜ2D×128D and b ∈ ℜ2D are the regression

parameters. The SDM assumes that R, b and the regres-

sion function only change according to iterations but stay

the same, regardless of the current face shape x0. Then, in

each gradient descent iteration t, the shape update can be

calculated as:

∆xt = RtΦ(xt−1, I) + bt (6)

The shape update is added to the current shape for the esti-

mation in the next iteration.

3.2. Shape augmented regression method

One major limitation of the Supervised Descent Method

and some other general regression methods is that they usu-

ally assume constant regression parameters R and b for each

gradient descent iteration, but, in fact, these regression pa-

rameters should change according to the current face shape

as shown on the right hand side in Equations 4 and 5. To

overcome this limitation, we propose to modify the regres-

sion function in Equation 6, so that the regression prediction

would change explicitly according to the current face shape

xt−1. To achieve this goal, we add an additional term in the

regression function:

∆xt = RtΦ(xt−1, I) + bt + QtΨ(xt−1), (7)

where Ψ(xt−1) represents the shape features and Qt repre-

sents additional parameters of the linear regression model.

With the new term, the linear regression function would

change directly according to different face shapes, which

would better approximate the true prediction in Equation 3.

The general framework of the shape augmented regression

method is summarized in Algorithm 1.

One remaining issue is to figure out how to embed the

shape information and calculate the shape features Ψ(xt−1)
in Equation 7. There are a few options. The first approach

is to learn a Point Distribution Model (PDM) beforehand

and use the shape model parameters to represent the cur-

rent shape. However, as shown in the prior arts [7][3][24],

the face shape models may be difficult to construct. The

second option is to use the distances among pairs of land-

marks. The local distance information would provide use-

ful features to the regression model. However, the distance

Algorithm 1: Shape augmented regression method

Initialize the landmark locations x0 using the mean face

for t=1, 2, ..., T or convergence do
Predict the landmark location update

∆x
t = R

tΦ(x
t−1

, I) + b
t + Q

tΨ(x
t−1)

Update the face shape

x
t = x

t−1 + ∆x
t

end

Output the estimated landmark locations xT

metric would tend to stay unchange with in-plane rotation.

The third option is to use the differences (both x and y co-

ordinates) between pairs of landmark locations. With the

shape features, the linear regression model would change

according to different face shapes that vary with scale, rota-

tion, translation, and non-ridge changes. Some details and

experimental comparison are shown in section 4.

Model training is similar to the standard regression and

SDM algorithm. Given the training data, including the fa-

cial image Ii, the ground truth landmark locations x∗i , and

the initial landmark locations x0

i as the mean face, we first

calculate the appearance and shape features, denoted as

Φ(x0

i , Ii) and Ψ(x0

i ). In addition, we can calculate the true

shape updates ∆x
0,∗
i = x∗i − x0

i . Then, parameter estima-

tion in each iteration can be formulated as a least square

problem with closed form solution:

R̃
t
, Q̃

t
, b̃

t
= arg min

Rt,Qt,bt

∑

i

‖∆x
t,∗
i

− RtΦ(xt−1

i , Ii) − bt − QtΨ(xt−1

i )‖2

2
(8)

Given the learned regression parameters R̃
t
, Q̃

t
, b̃

t
, the face

shape updates for the training data can be estimated, and

they are added to the current shape xt−1

i to generate the

shape xt
i for the prediction in the next iteration.

4. Experimental results

In this section, we first discuss the implementation de-

tails. We then evaluate the proposed method and com-

pare it to other state-of-the-arts on the general “in-the-wild”

database and the 300-VW database.

4.1. Implementation details

Databases: In the experiments, we used two kinds of

databases. The first type of database refers to the general

“in-the-wild” Helen database [11]. The Helen database con-

tains general “in-the-wild” facial images collected from the

web (Figure 3). It has 2000 training images and 330 test-

ing images. All the images are annotated with 194 facial
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landmarks. The Labeled Face Part in the Wild [3], and the

Annotated Face in the Wild (AFW) databases [28] can also

be considered as general “in-the-wild” databases, which we

also used in the experiments.

The second database refers to the data provided by the

300 Videos in the Wild Challenge (300-VW) [18]. The

training data includes both “in-the-wild” videos and images.

Specifically, there are 50 high resolution video sequences

with moderate expression, head pose, and illumination

changes. Each video lasts around 1 minute. Facial land-

mark annotations (68 points) are provided for each frame

with the semi-automatic annotation process [5][20]. There

are also annotated “in-the-wild” images from the 300 Faces

In-the-Wild Challenge (300-W) [16], which are collected

from Helen[11], Labeled Face Part in the Wild (LFPW) [3],

Annotated Face in the Wild (AFW) databases [28] etc.

There are three testing scenarios in the 300-VW test set,

each contains 50 videos. Sample images and the detection

results with the proposed method are shown in Figure 2.

Videos in scenario 1 are with “well-lit” conditions display-

ing moderate facial expression, head poses, and illumina-

tion changes. Videos in this scenario could represent the

facial motion in laboratory or naturalistic “well-lit” condi-

tions. Videos in the second scenario are recorded in un-

(a) Scenario 1

(b) Scenario 2

(c) Scenario 3
Figure 2. Left: sample images from three scenarios of 300-Video

in the Wild (300-VW) test set. Right: detection results with the

proposed method.

Figure 3. Facial landmark tracking results on sample images from

Helen database [11] with the proposed methods.

constrained conditions with varying illuminations, arbitrary

facial expressions, and moderate head poses without signif-

icant illuminations. Videos in the second scenario would

mimic the real world human computer interaction applica-

tions. The third scenario contains videos captured in com-

pletely unconstrained conditions, including significant oc-

clusions, make-up, and head poses. The third scenario could

be considered as the most challenging “in-the-wild” video

sequences recorded.

Model parameters: Before model training, we first ap-

ply the Viola-Jones face detector [23] to training images.

Both the images and landmark locations are normalized,

so that the width of the face is approximated 200 pixels.

Then, we calculate the mean face shape with the normal-

ized training face shapes. To improve the robustness of

the learned model, similar as the existing regression based

methods [26], we generate multiple initial face shapes for

each training image by randomly re-scaling, rotating, and

shifting the mean face. To calculate the face shape fea-

tures as discussed in section 3, we use every pair if only

68 landmarks are provided. If 194 landmarks are provided,

to prevent over-fitting and improve the efficiency, we only

use every pair of 64 key points.

Extend detection to tracking: To apply the shape-

augmented regression methods to tracking, the only change
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Table 1. Comparison of facial landmark detection errors (normal-

ized by inter-ocular distance, Eocular) on Helen database [11].

The reported results from the original papers are marked with “*”.

algorithm Helen

(Eocular)

LBF [15] 5.41(fast 5.80)*

General regression method 5.82

(SDM [26])

ESR [4] 5.70*

CompASM [11] 9.10*

STASM [13] 11.1

outs (distance shape feature) 5.49

ours (difference shape feature) 5.53

is to initialize the face shape based on the landmark loca-

tions in the last frame.

Evaluation criteria: There are two evaluation criteria in

the experiments. In the first evaluation criteria, we calcu-

late the detection and tracking error as the distance between

the estimated landmark location and the ground truth loca-

tion normalized by the inter-ocular distance (times 100). In

the second evaluation criteria, we normalize the error by

the distance between two outer eye corners. We use two

criteria, because existing state-of-the-arts tend to use differ-

ent criteria on different databases. Thus, we follow them

for fair comparison. We denote the first and second criteria

as Eocular and Ecorner. In the experiments, we show the

mean errors across all landmarks for all testing images. In

addition, we show the cumulative distribution curves.

4.2. General “in-the-wild" database

In this section, we show the experimental results on gen-

eral “in-the-wild” Helen database [11]. We train the model

with the training set and test it on the testing set. The train-

ing setting is similar to that used in the existing works [15].

In this section, we calculate the error by normalizing it with

the inter-ocular distance (Eocular) for fair comparison. We

implemented two versions of the proposed method with dif-

ferent realizations of the shape features as discussed in sec-

tion 3.2. The “distance shape features” refer to the distance

between pairwise landmarks, while the “difference shape

features” refer to the location differences.

The experimental results and their comparison with other

state-of-the-art works are shown in Table 1 and Figure 3.

There are a few observations. First, the proposed shape aug-

mented regression method is better than the general SDM

algorithm without the explicit shape information. Second,

the proposed method outperforms the other state-of-the-

art works, including the Explicit Shape Regression (ESR)

method [4], Component based ASM (CompASM) [11], the

STASM [13] method, and the fast LBF [15] algorithm.

Third, the “distance shape features” and “difference shape

features” achieve similar performances.

4.3. 300-VW database

In this section, we discuss the experimental results on

300-VW testing set with three scenarios. To train the

model, we use the training set from Helen [11], LFPW [3],

AFW [28], and some images from Multi-PIE database [10].

In total, there are 6222 training images. We randomly sam-

pled some frames from the videos in the 300-VW training

set. We use the “difference shape features” in this section

and we calculate the error by normalizing it with distances

between two outer eye-corners (Ecorner). Chehra [1] with

cascade framework is the baseline method.

The experimental results are shown in Figure 4, 5, and

Table 2. There are a few observations. First, the proposed

method significantly outperforms Chehra [1] as the base-

line in all three scenarios. Second, the performances on

scenario 2 are better than those on scenario 1 and 3. Sce-

nario 3 is the most challenging set, and the performances of

both algorithms drop significantly when evaluating on this

set. Third, by considering the contour points when calculat-

ing the errors, the performances drop for all three scenarios.

The most obvious drop happens on scenario 3. The visual

results can be found in Figure 2, and Figure 6 shows the

results on one sample sequence.

The proposed algorithm can achieve realtime tracking

on a typical dual-core desktop machine with matlab imple-

mentation. It can track 68 points in about 20 frames per

second. The speed is comparable to most of the existing

algorithms [26][28][19], but is slower than very efficient al-

gorithm, such as the LBP method in [15].

5. Conclusion

In this work, we proposed the shape augmented face

alignment method. Different from the conventional regres-

sion based face alignment methods, which only use the

appearance features, the proposed method explicitly adds

the shape information. As a result, the regression predic-

tion function would directly change according to different

face shapes. We evaluated the proposed method on both

Table 2. Detection rates (percentage of successfully detected im-

ages with an error less than 6, Ecorner) of the proposed method

and the baseline (Chehra [1]) on 300-VW databases.

# of points Baseline [1] Proposed method

scenario 1 49 63.75% 80.95%

68 - 75.30%

scenario 2 49 67.75% 87.00%

68 - 83.47%

scenario 3 49 47.96% 70.87%

68 - 52.78%
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Figure 4. Cumulative distribution curves of facial landmark de-

tection and tracking results (49 points, Ecorner) on the 300-VW

databases with three scenarios.
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Figure 5. Performance of the proposed shape augmented facial

landmark detection algorithm (68 points, Ecorner) on the 300-

VW database with three scenarios.

the general “in-the-wild” database and the 300 Video in the

Wild (300-VW) challenge data set, on which the proposed

method outperforms the state-of-the-art works.
In the future, we would extend the proposed work in a

few directions. First, the evaluation results on the most
challenging scenario in 300-VW indicate that the perfor-
mances of the existing algorithms, including the proposed
method, drop noticeably comparing to those on the eas-
ier scenarios. So, we should improve the robustness of
the proposed algorithm to handle the difficult cases and
compare it to similar work (e.g. Global SDM [25]) in
those conditions. Second, contour point detection still re-
mains challenging, as indicated by the fact that by adding
the contour points, the performances of the proposed
method drop noticeably. So, we should also improve the
method to better handle the contour points. Third, we
would further evaluate different shape features on more
databases.
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