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Abstract

In this paper, we present a multi-stage regression-based

approach for the 300 Videos in-the-Wild (300-VW) Chal-

lenge, which progressively initializes the shape from obvi-

ous landmarks with strong semantic meanings, e.g. eyes

and mouth corners, to landmarks on face contour, eye-

brows and nose bridge which have more challenging fea-

tures. Compared with initialization based on mean shape

and multiple random shapes, our proposed progressive ini-

tialization can very robustly handle challenging poses. It

also guarantees an accurate landmark localization result

and shows smooth tracking performance in real-time.

1. Introduction

Face alignment plays a very important role in many com-

puter vision research topics and applications, such as face

recognition [20], face synthesis/morphing [11, 9], face de-

tection [6], and 3D face modeling [4]. The accuracy of

landmark position localization can directly influence the fi-

nal performance of these applications. Though many ef-

forts [5, 18, 8] have been devoted during the past decades,

facial landmark localization is still very challenging in the

cases of large pose variations, abrupt illumination changes,

extreme facial expressions and heavy occlusion.

Regression-based facial points detection methods [3, 18,

5] have become very popular recently. Such models ba-

sically consist of two steps, feature extraction and regres-

sion. Features are extracted around the predicted shape at

each cascade stage. The shape update for the current pre-

diction can be easily generated by projecting the features

to a learned regression matrix. After a few steps, the esti-

mation error can converge to an arbitrarily small error. A

major reason behind the popularity of the regression-based

methods is their efficiency. Compared with other methods,

e.g. Deformable Part Model [14, 22] and Active Appear-

ance Models [17, 12], the regression-based models can be

much faster [5, 18, 13].

Though regression-based models are fast and accurate in

Figure 1. Some landmark localization results from challenging

face images collected from the Web. Top: faces with expressions;

middle: faces with large poses; bottom: faces under occlusion.

most cases, landmark detection is still challenging for faces

with large poses and expressions. One major limitation of

recent model-based regression methods [5, 18, 13] is that

they may be easily trapped by a local optimum if the start-

ing shape is far away from the ground-truth shape. Multiple

random initializations [5] can improve the localization per-

formance for simple cases. For faces with large pose, poor

illumination or a large expression, multiple random initial-

izations cannot guarantee good performance [21]. Burgos

et al. proposed smart initialization in [3] where the set of

initial shapes is stopped if its variance of regressed shapes

is large and a new set of shapes is randomly selected for re-

gression initialization. While this enables selection of good

starting points, but too many uncertainties are introduced

due to randomness. The performance enhancement due to

smart restart is limited as reported in [3].

In this paper, we present progressive initialization for

the facial landmark detection and tracking. The work is

based on the observation that obvious points which have

very strong discriminative features, e.g., eyes and mouth

corners, are usually positioned first with strong confidence
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when we manually annotate these landmarks. Landmarks

on the face contour, nose bridge and eyebrows, which are

more challenging to be positioned, are localized at last usu-

ally with reference to the early defined points. This is ac-

tually a simple but very efficient strategy which guides the

annotating process and ensures the great efficiency even if

the to-be-processed face image is under a challenging con-

dition. These points can be roughly inferred with reference

to the early-positioned points. Zhang et al. [19] proposed

a deep Convolutional Neural Network-based framework to

learn a model which solves multiple objectives, i.e., regres-

sion of five facial landmarks, smile detection and sunglasses

detection. They have validated that the five facial points de-

tected by their approach can be used for more robust initial-

ization and improve the landmark detection results for more

points. Motivated by their findings, we propose to progres-

sively initialize the face shape from a few easy landmarks to

challenging landmarks. The major limitation of [19], which

is its heavy computational resource requirement, is solved

with the popular cascaded regression tree model. Fig. 1

shows some landmark detection results for a few selected

face images under challenging conditions, e.g. expressions,

poses and occlusion.

The main contributions of this paper are summarized as

follows:

• An efficient face tracking approach is proposed.

• A simple but efficient facial landmark tracking ap-

proach which guarantees real-time performance in an

unconstrained environment is presented.

• Progressive initialization is proposed to ensure a robust

initialization for landmark detection of 68 points.

The remainder of the paper is as follows. We provide a re-

view of related work in Section 2 before introducing our

progressive initialization algorithm in Section 3. The ex-

perimental results are presented and discussed in Section 4

before we conclude the paper in Section 5.

2. Related Work

Regression-based models have been very successful and

popular in recent research. In this section, the cascaded

regression tree and the local binary feature are briefly re-

viewed. More details can be found in [18, 5, 13, 3].

2.1. Cascaded Regression Trees

Cascaded regression trees formulate the shape regression

for L landmarks into an additive cascade form as follows:

ŝk = ŝk−1 +Mk(Φk(I, ŝk−1)), (1)

where ŝk ∈ R2L×1 and Φk(·) are the predicted shape and

the feature extractor at the k-th cascade stage accordingly.

Mk(·) represents the mapping function which projects the

feature extracted from the image I at the predicted shape

ŝk−1 to the target shape. For cascaded regression trees, this

mapping function can be formulated as

Mk(Φk(I, ŝk−1)) =
T∑

t=1

fk
t (φ

k
t (I, ŝ

k−1)), (2)

where T is the number of trees in the current stage and

fk
t (·) generates shape increment with the given image I

and the estimated shape ŝk−1. φk
t (·) is the feature ex-

tracted from the t-th regression tree in the k-th cascade

stage. For a given input image I and a current shape es-

timation ŝk−1, after passing a few node split tests from the

t-th regression tree with Lf leaf nodes, a leaf node with in-

dex lf ∈ {1, 2, ..., Lf} will be reached and the correspond-

ing regression output rkt,lf = fk
t (φ

k
t (I, ŝ

k−1)) is generated.

The feature extracted is simply an Lf bits binary value with

the lf -th bit being 1 and the rest bits being 0.

For clarification purposes, the cascade regression pro-

cess of shape prediction can be further defined as

ŝK = M
K(I, s0) (3)

where MK represents a K-stage cascade regression which

takes input image I and initial shape s0 and generates output

ŝK .

2.2. Local Binary Feature [13]

To learn the structure of the regression trees, Ren et

al. [13] divided the process into two steps: 1) learn tree

structures locally and 2) learn tree output globally.

Consider a global feature Φk = [φk
1 , φ

k
2 , ..., φ

k
L] where

φk
x is the local feature for the x-th landmark. φk

x =
[φk

1,x, φ
k
2,x, ..., φ

k
Tx,x

] where Tx is the number of regression

trees trained for the landmark x. For Tx trees, the structure

of the tree is learned locally via optimizing

min
wk

x,φ
k
x

M∑

i=1

‖πx ◦ s̃ki − wk
xφ

k
x‖

2
2, (4)

where the global regression target s̃ki is defined as s̃ki =
s∗i − ŝki , and πx is an operator which extracts the regression

target of the x-th landmark. The node split is trained by

maximizing the reduced variance of local regression targets,

πx ◦ s̃k, from all training samples passed into the node.

When the structures of regression trees are fixed, the tree

output is learned jointly by solving the regression problem

similar as [18] but with a regularization term to prevent

overfitting as stated below

min
Wk

M∑

i=1

‖s̃ki −W kΦk‖22 + λk‖W
k‖22, (5)
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where M is the number of training samples, λk is the regu-

larization term at the k-th stage and W k ∈ R2L×TD is the

regression matrix with TD being the number of leaf nodes

of all regression trees within k-th cascade stage. The leaf

node output is simply given by the corresponding column

vector from the regression matrix W k.

3. Progressive Initialization

In this section, we introduce the components of our ap-

proach, including progressive initialization for both training

and testing. Some techniques used for robust and efficient

landmark tracking are also presented. The notations used in

the rest of the paper are given in Table 1.

Table 1. Notations used in this paper

Category Notation Meaning

Scalars
K cascade stages of a model

M number of initializations used

Vectors

I image window

Sn n points face shape

NS transformation matrix of S to

mean shape space

D distances between prior shape

and K-mean centers

Ŝ
0 initial shapes Ŝ

0 =
{Ŝ0,1, ..., Ŝ0,N}

Functions

Φn(I, Sn) feature extraction for Sn at I

Mn(I,Φn) mapping function for n points

MK
n (I, S0

n) shape prediction with model

Mn and starting shape S0
n

Symbols
x̂ value/vector estimated

x∗ ground-truth value/vector

3.1. Normalized K-means Shape Centers for Initial-
ization

All training shapes are first normalized by similarity

transformation where a training shape is aligned to the mean

shape to minimize their L2 distance given by

NS = argN min ‖S̄ −N ◦ S‖2, (6)

where S̄ is the mean shape and N consists of rotation and

scaling operations. The normalized shapes are then defined

by SN = NS ◦ S. K-means shape centers are formed with

the normalized shapes. Fig. 3 and Fig. 4 show randomly

selected K-means centers of normalized training shapes for

19 points and 68 points respectively. From these two fig-

ures, we observe that all centers have a rotation angle of

about zero. This is because all training samples undergo a

similarity transformation, i.e., Eqn. (6). More details will

be given on how to preserve the rotation information later.
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Figure 3. K-means centers, SN19
, for normalized 19-points shapes

in the mean shape space. There are 191 K-means centers in total

and 49 K-means centers are randomly selected and shown here.
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Figure 4. K-means centers, SN68
, for normalized 68-points shapes

in the mean shape space. There are 681 K-means centers in total

and 49 K-means centers are randomly selected and shown here.

3.2. Guided Initialization with Prior Shape

A prior shape is a predicted face shape but with less

points. For instance, Ŝ5 is the prior shape for 19P shape pre-

diction and Ŝ19 is the prior shape for 68P shape prediction.

Prior shapes provide essential information for initial shape

selection. For instance, to select initial shapes for 19P shape

prediction, we first calculate the L2 distance from the nor-

malized prior shape NS5
◦ S5 to the 19P K-means centers,

i.e.,

Di = ‖P19→5 ◦ S
i
N19 −NS5

◦ S5‖2 (7)

where SN19 = {S1
N19, S

2
N19, ..., S

N19

N19} denotes the 19P

K-means centers with N19 being the number of centers.

P19→5 extracts the 5P landmarks from 19P in a way that

P19→5 ◦ Si
N19 and the prior shape S5 are within the same

landmark space.

The corresponding initial shape for the i-th K-means

center is defined as

S0,i = N−1
S5

◦ Si
N19. (8)

Since the distance from the prior shape to K-mean cen-

ters is known, i.e., Di, i = {1, 2, ..., N19}, initial shapes
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Figure 2. The framework of our progressive initialization consists of three stages. Each stage consists of a shape regressor. Three regressors

are trained progressively which predict shapes with 5, 19 and 68 points. The 5 points with strong features, i.e., eyes, mouth corners and nose

tip, are predicted first. This predicted 5P shape is then used to guide the initialization process of the 19P face shape predictor. Similarly,

the 68P shape predictor uses the predicted 19P shape as reference to select initial shapes.

which are close to the prior shapes can be easily selected

by sorting D = {D1, D2, ..., DN19
}. Compared to [21],

the computational resources required are much lower for

searching good initial shapes, as only the distances between

the prior shape and a limited number of K-means centers are

required. Rotation information can still be preserved by di-

rectly applying inverse similarity transformation, i.e., N−1
S5

,

to the selected K-means centers.

The general initial shape selection process can be sum-

marized in Algorithm 1.

3.3. Perturbed Training for Robustness

Robustness of landmark tracking can be achieved in the

training process. The key factors such as bounding box vari-

ation and bad prior shape initialization are handled explic-

itly in the training process.

3.3.1 Bounding Box Robustness

To ensure bounding box robustness, bounding box augmen-

tation is performed when training the 5P shape predictor.

The center of the detected bounding box is perturbed with

Algorithm 1 Initial Shape Selection from K-means Centers

1: Input: Prior shape detected: Ŝp. K-means face centers:

SNc = {S1
Nc, S

2
Nc, ..., S

Nc

Nc}. Number of K-means

centers: Nc. Number of shapes to be selected: x; Num-

ber of landmarks used in SNc: c. Number of landmarks

used in Ŝp: p.

# center shape for next stage has more points than

prior shape, i.e, centers SN19 with prior Ŝ5

2: Output: Initial shapes for next stage shape prediction:

Ŝ
0
c = {Ŝ0,1

c , Ŝ0,2
c , ..., Ŝ0,x

c }
3: Get N

Ŝp
with Eqn. (6)

4: for i=1:SNc.length()

5: D[i] = ‖Pc→p ◦ S
i
Nc −N

Ŝp
◦ Ŝp‖2

6: end

7: Sort D to get a vector of distance order in ascending

form: Idx
8: for i=1:x

9: Ŝ0,i
c = N−1

Sp
◦ S

Idx[i]
Nc # reverse transformation

10: end
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a uniformly distributed random translational offset within

10% of the interocular distance calculated from the ground-

truth shape. A scaling disturbance is also applied to the

bounding box.

3.3.2 Initialization Robustness

Each prior shape provides initialization guidance for the

face shape predictor of the next stage. In the training pro-

cess, initial shapes are selected in a way that distant K-mean

centers can also be selected. This mimics the situation when

prior face landmark detection fails and a bad K-mean cen-

ter is selected as the starting shape. Algorithm 2 is used

to select centers to train a 19P predictor from the 5P shape

prior.

Algorithm 2 K-means Centers Selection for Shape Initial-

ization in Training Process

1: Input: Prior shape detected: Ŝ5. 19P K-means cen-

ters: SN19 = {S1
N19, S

2
N19, ..., S

N19

N19}. Number of K-

means centers in SN19: N19. Number of initializations

for training: x. K-means center selection sampling rate:

r.

2: Output: K-means centers selected: SK =
{S1

K , S2
K , ..., Sx

K}
3: Get N

Ŝ5
with Eqn. (6)

4: for i=1:N19

5: D[i] = ‖P19→5 ◦ S
i
N19 −N

Ŝ5
◦ Ŝ5‖2

6: end

7: Sort D to get a vector of distance order in ascending

form: Idx
8: for i=1:x

9: p=rand > 0.1 # random number

10: if p

11: Si
K = S

Idx[(i−1)r+1]
N19

12: else

13: Si
K = S

Idx[N19−(i−1)r]
N19

14: end

15: # i-th initial shape: S
0,i
19 = N−1

S5
◦ Si

K

Similar steps are taken to generate the initial shapes for

the 68P predictor in the training process. We use 68P K-

means centers SN68
and sort the calculated distances be-

tween the prior shape Ŝ19 and SN68
when selecting the ini-

tial shapes in the training process.

After initializations are fixed, LBF [13] is used to train

the models for 5P, 19P and 68P shape regressors progres-

sively. In the testing process, the top M closest K-means

centers are selected for initialization if multiple initializa-

tions are used. The steps are shown in Algorithm 1.

3.4. Shape Prediction via Progressive Initialization

Our approach consists of three stages which predict

shapes with 5, 19 and 68 points (the points selected are man-

ually defined at each stage) in a cascaded way. Fig. 2 shows

the framework of the proposed approach. The 5P predictor

first locates the 5 key points, including eyes, mouth corners

and nose tip. These 5 key points are chosen as they have

obvious features and used by most face detectors to identify

a face. They are relatively more robust to face detectors as

compared to other landmarks, e.g. eyebrows and chin. The

predicted 5P face shape acts as the prior shape for the 19P

landmark detector to help choose initial shapes from the K-

means centers. The shape estimated from the 19P predictor

then guides the initial shapes selection for the 68P shape re-

gressor. These steps can be summarized as Algorithm 3 in

the testing process.

Algorithm 3 Shape Prediction via Progressive Initialization

1: Input: Image: I; Bounding box: B; models:

M
K5

5 , MK19

19 , MK68

68 ; K-means shape centers: SN19,

SN68; Previous Estimation: Ŝ68,p; Number of initial

shapes for 5P, 19P and 68P: x5, x19, x68;

2: if B is from face detector

3: Ŝ0
5 = S̄5

4: ŜK5

5 = M
K5

5 (I, Ŝ0
5)

5: else # estimated bounding box from last frame

6: Select initial shapes Ŝ0
5 from SN19 based on Ŝ68,p

7: ŜK5

5 = 1
x5

∑x5

i M
K5

5 (I, Ŝ0,i
5 )

8: Given ŜK5

5 , select initial shapes Ŝ0
19 with algorithm 1

9: 19P prediction: ŜK19

19 = 1
x19

∑x19

i M
K19

19 (I, Ŝ0,i
19 )

10: Given ŜK19

19 , select initial shapes Ŝ0
68 with algorithm 1

11: 68P prediction: ŜK68

68 = 1
x68

∑x68

i M
K68

68 (I, Ŝ0,i
68 )

12: end

3.5. Face Detection and Tracking

Although the processing speed of the recent face land-

mark detection algorithms can be less than 1ms [13], the

speed for processing face alignment in videos can hardly

reach 1ms in practice. There are a few key factors which

limit the face landmark tracking in video sequences, includ-

ing the video decoding speed and the face detection speed.

Loading all frames into memory and processing individ-

ual frames are hardly practical due to the huge amount of

memory consumption for decoding and storing the decoded

video frames. Popular existing OpenCV face detectors, e.g.,

Viola-Jones-based, can achieve almost-real-time face detec-

tion on a normal PC. However, the detection performance

deteriorates significantly for faces with large poses, slight

occlusion and bad light illumination. Yu et al. [1] devel-

oped a face detection library which guarantees a satisfactory

detection speed and accuracy for challenging cases. How-
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ever, the speed decreases dramatically for faces under chal-

lenging conditions. To ensure efficiency, face tracking is

essential as the computational resources required for face

detection make real-time facial landmark tracking almost

impossible with most existing algorithms.

Since our framework can easily regress to a very stable

face shape, we can use this face shape to estimate a bound-

ing box. The estimated bounding box can then be used as

the face bounding box for the next frame under the assump-

tion that the face moves within an arbitrary range. However,

there are still cases where landmark tracking fails due to

heavy occlusion and scenery boundary. Inspired by smart

restart [3], a similar scheme is applied to trigger the face

detector when the variance of regression results exceeds a

pre-defined threshold. This successfully prevents error from

accumulating due to bad bounding box estimation. Mean-

while, the computational resources required for face detec-

tion can be significantly reduced.

4. Experiment and Result

Our models are trained with the 300W dataset (LFPW,

HELEN, and AFW) and the randomly selected 10% frames

from the training videos provided by the event organizer.

Standard evaluation measures are adopted in this event. The

error of each frame can be calculated as follows:

ei =
‖S∗ − Ŝ‖

Di

, (9)

where Di is the inter-ocular distance determined by outer

corners of left and right eyes, i.e. the 37-th and the 46-th

point.

4.1. Results on 300-VW Testing Set

Our approach has been evaluated independently by the

300-VW Challenge [15] organizers using their own testing

videos which are not disclosed to the participants. The de-

tails of annotation process for the training and testing set are

presented in [7, 16]. There are 150 testing videos which are

divided into three scenarios. Scenario 1 consists of videos

taken under well-lit conditions; Scenario 2 contains videos

taken in unconstrained conditions without heavy occlusion;

Scenario 3 consists of videos recorded under completely

unconstrained conditions. The 49 points (excluding points

from the face contour) errors are returned together with the

baseline performance [2]. For 68 points errors, only the per-

formance of our approach is provided.

Fig. 5 shows that our approach yields much better perfor-

mance in facial landmark tracking for all categories when

compared with the baseline [2]. More than 90% of the test-

ing frames are within 8% point-to-point error for all cat-

egories. Our approach has outperformed the baseline for

more than 20% in each category.
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Figure 5. Comparison of facial landmark tracking performance on

49 points between our approach and the baseline [2] in all three

scenarios.
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Figure 6. Results of 68 points and 49 points tracking in all three

scenarios.

Fig. 6 shows that the performance of 68 points tracking

degrades about 5% ∼ 10% as compared to that of 48 points

tracking. This is reasonable as landmarks on the face con-

tour are challenging points with less discriminative features

as compared to facial feature landmarks (49 Points). With

the developed framework, which gradually determines these

challenging landmarks with reference to the per-estimated

inner facial landmarks, our 68 point landmark tracking per-

formance is very promising as well.

4.2. Results on Real-time Video

Further evaluation is done to verify our framework on

the challenging Youtube Celebrities Database [10] which

contains videos of celebrities captured in the wild. Some

frames of challenging poses and expressions are shown in

Fig. 7. We notice that even in the cases of extreme poses,
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our approach can still robustly track the landmarks without

using the face detector which is normally computationally

expensive. The face detection process will be triggered (e.g.

Fig. 7 Row-3 to Row-4) only when the variance (Sec. 3.5) is

too large. This mechanism can efficiently help us to prevent

error accumulation.

Our approach is computationally efficient. Without

much code optimization, our implementation can reach 30+
FPS for landmark tracking on a single core E5-1603 CPU.

The speed may be further improved via code optimization

and parallel computation. In fact, the current version can be

used in most real-time face-related applications.

5. Conclusion

In this paper, we introduced a facial landmark tracking

framework which progressively initializes and predicts the

face shapes for the 300-VW competition. The proposed

method locates simple and easy-to-detect facial landmarks

first which are then used to guide the initial shapes selection

process for the regressor in later stages. To ensure overall

landmark tracking efficiency, our efficient face tracking ap-

proach uses the bounding box estimated by landmark pre-

diction from the previous frame. Our method showed sig-

nificant improvement over the baseline in all three testing

scenarios and its real-time performance also makes it possi-

ble to be used in many face-related applications.

Currently, the shape at each stage is fixed and manually

determined. In the future, a framework which automatically

and gradually infers the locations of landmarks from the

most obvious landmarks to the most difficult landmarks is

to be developed.
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