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Abstract

In this paper, we develop a spatio-temporal cascade

shape regression (STCSR) model for robust facial shape

tracking. It is different from previous works in three as-

pects. Firstly, a multi-view cascade shape regression (M-

CSR) model is employed to decrease the shape variance in

shape regression model construction, which is able to make

the learned regression model more robust to shape vari-

ances. Secondly, a time series regression (TSR) model is

explored to enhance the temporal consecutiveness between

adjacent frames. Finally, a novel re-initialization mecha-

nism is adopted to effectively and accurately locate the face

when it is misaligned or lost. Extensive experiments on the

300 Videos in the Wild (300-VW) demonstrate the superior

performance of our algorithm.

1. Introduction

Face alignment is among the most popular and well-

studied problem in the field of computer vision with a wide

range of applications, such as facial attribute analysis [20],

face verification [17], [28], and face recognition [31], [38],

to name a few. In the past two decades, a lot of algorithms

have been proposed [6], which can be roughly categorized

as either generative or discriminative methods.

Generative methods typically optimize the shape param-

eters iteratively with the purpose of best approximately re-

constructing input image by a facial deformable model. Ac-

tive Shape Models (ASMs) [10] and Active Appearance

Models (AAMs) [13], [9], [21] are typical representative

subject to this category. In the ASMs, a global shape is

constructed by applying the Principal Component Analysis

(PCA) method to the aligned training shapes, and then the

appearance is modeled locally via discriminatively learned

templates. In the AAMs, the shape model has the same

point distribution as that is in the ASMs, while the global

appearance is modeled by PCA after removing shape varia-

tion in canonical coordinate frame. Discriminative meth-

ods attempt to infer a face shape through a discrimina-

tive regression function by directly mapping textual fea-

tures to shape. In [12], a cascaded regression method built

on pose-index feature has been proposed to pose estima-

tion with excellent performance. Cao et al. [5] combine

two-level boosted regression, shape indexed features and

a correlation-based feature selection method to make the

regression more effective and efficient. Xiong et al. [32]

concatenate SIFT features of each landmark as the feature

and obtain regression matrix via linear regression. In[29],

a learning strategy is devised for a cascaded regression ap-

proach by considering the structure of the problem.

Although these methods have achieved much success for

facial landmark localization, it remains an unsolved prob-

lem when applied to facial shape tracking in the real world

video due to the challenging factors such as expression, illu-

mination, occlusion, pose, image quality and so on. A suc-

cessful facial shape tracking includes at least two character-

istics. On the one hand, face alignment on images is sup-

posed to perform well. On the other hand, face relationship

between the consecutive frames should provide a solid tran-

sition. A typical work linking to face relationship between

the consecutive frames is multi-view face tracking [8]. [11]

demonstrates that a small number of view-based statistical

models of appearance can represent the face from a wide

range of viewing angles, in which constructed model is suit-

able to estimate head orientation and to track faces through

wide angle changes. In [23], S. Romdhani et al. adopt a

nonlinear PCA, i.e., the Kernel PCA [26], which is based

on Support Vector Machines [30] for nonlinear model trans-

formation to track profile-to-profile faces. In [14], an online

linear predictor tracker without need for offline learning has

been introduced for fast simultaneous modeling and track-

ing. [2] proposes an incremental parallel cascade linear re-

gression (iPar-CLR) method for face shape tracking, which
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automatically tailor itself to the tracked face and become

person-specific over time. [34] proposes a Global Super-

vised Descent Method (GSDM), an extension of SDM [32]

by dividing the search space into regions of similar gradient

directions.

In this paper, we construct a spatio-temporal cascade

shape regression model for robust facial shape tracking,

which aims at transferring spatial domain alignment into

time-sequence alignment. A multi-view regression model

is employed into robust face alignment, which greatly de-

creases the shape variance from face pose, thereby mak-

ing the learned regression model more robust to shape vari-

ances. Futhermore, a time series regression model is ex-

plored to face alignment between the consecutive frames,

thereby enhancing the temporal consecutiveness between

alignment result in the former frame and initialization in

the latter. In addition, a novel re-initialization mechanism is

adopted to effectively and accurately locate the face when

the face is misaligned or lost.

In summary, the main contributions are summarized as

follows: (1) We improve the cascade shape regression mod-

el by constructing a multi-view cascade shape regression,

making the learned regression model more view-specific,

and better for generalization and robustness. (2) Our spatio-

temporal cascade shape regression model is fully automatic

and achieves fast speed for online facial shape tracking even

on a CPU. (3) Extensive experiments on the 300 Videos in

the Wild (300-VW) demonstrate the superior performance

of our algorithm.

2. The proposed method

2.1. Overview

Figure 1 illustrates the proposed spatio-temporal cas-

cade shape regression (STCSR) model for robust face shape

tracking.

Figure 1. Overview of STCSR. MCSR denotes multi-view cascade

shape regression. Re-initialization will be discussed in Section 2.4

In the first frame, the JDA [7] (Joint detection and align-

ment) face detector is utilized to initialize the system. Sim-

ilarity transformation parameters (rotation, translation, and

scale) are estimated from the five landmarks and the face

view (left, front, and right) is also predicted by those five

landmarks. Then a multi-view cascade shape regression is

employed to predict face shape in the current frame, which

will be discussed in section 2.2. When the score of the

alignment result is larger than threshold, time series regres-

sion is performed for facial shape tracking, which will be

discussed in section 2.3. When the score of the alignment

result is smaller than a threshold, a re-initialization mech-

anism is adopted to avoid false convergence during facial

shape tracking, which will be discussed in section 2.4.

Shape initialization from the JDA face detector and the

alignment result of the previous frame are under a unified

framework. On images, JDA is able to provide five facial

landmarks to estimate face pose on images. Meanwhile, we

assume that the face shape will not change abruptly between

the consecutive frames on videos. So the parameters of sim-

ilarity transformation and the yaw angle of the �-th shape are

able to initialize the shape of the � + 1-th frame. Based on

the face pose, the algorithm selects the view-specific model

and transforms the view-specific mean shape with similarity

transformation parameters.

2.2. Multi-view cascade shape regression

The main idea of the cascade shape regression model is

to combine a sequence of regressors in an additive manner

in order to approximate an intricate nonlinear mapping be-

tween the initial shape and the ground truth. Specifically,

Given a set of � images {��}
�
�=1

and their corresponding

ground truth {�∗

� }
�
�=1

. A linear cascade shape regression

model [32] is formulated as:

argmin
� �

�∑

�=1

∑

�

∥∥(�∗

� −��−1

�� )−� ��(��, �
�−1

�� )
∥∥2,

(1)

where � � is the linear regression matrix, which maps the

shape-indexed features to the shape update. ��−1

�� stands for

the intermediate shape of image ��, � = 1, ⋅ ⋅ ⋅ , � is the iter-

ation number, Φ is the shape-index feature descriptor, and �

counts the perturbations. Usually, training data is augment-

ed with multiple initializations for one image, which serves

as an effective method for improving the generation capabil-

ity of training. Inspired by the subspace regression [34] that

splits the search space into regions of similar gradient di-

rections and obtains better and more efficient convergence.

We decrease shape variation by dividing the training data

into three views (right, frontal, and left), then specific-view

model is trained within each dataset. We estimate the face

view with five landmarks (left eye center, right eye center,

nose tip, left corner of mouth, right corner of mouth).

As shown in Figure 2, five facial landmarks indicate the

face layout, so we use the locations of five landmarks to

estimate the view status by

argmin
�

�∑

�=1

∥�� −���∥
2

2
, (2)
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Figure 2. Illustrations of view specific shape initialization.

where �� is the view status. �� ∈ ℝ
10×1 is the locations of

the five facial landmarks. � is the regression matrix, which

can be solved by least square method. In the experiments,

we only categorize the face views into the frontal (−15∘ −
15∘), left (−30∘ − 0∘), and right (0∘ − 30∘) views, which

cover all of the face poses from the 300-W training dataset1.

The overlaps between the frontal view and the profile views

are used to make view estimation more robust.

The shape variance of each view set is much smaller than

that of the whole set, and the mean shape of each view

is much closer to the expected result, so the view-specific

shape model is not only able to decrease the shape variance,

but also it can accelerate the shape convergence.

2.3. Time series regression

Performing face detection on each frame for face align-

ment is time-consuming. Futhermore it tends to decrease

the alignment accuracy on videos, because the initial mean

shape is far from the ground truth shape under large face

pose variation. So establishing a correlationship between

the consecutive frames is of great importance. In this sec-

tion, we propose three methods (box tracking, landmark

tracking, and pose tracking) to link the consecutive frames.

Figure 3 shows the workflow of box tracking. In this

method, we build a tracker based on face appearance mod-

el. Face location (�, �, �, ℎ) at the current frame is estimat-

ed based on the tracker. Then a CSR is performed to pre-

dict the landmark locations from the mean shape based on

the shape indexed features. This procedure is repeated until

the last frame comes. The whole procedure combines the

previous frame and the current frame with the face appear-

ance information, and overlooks the relationship between

two consecutive frames’ landmarks. It is obvious that such

a method is extremely time-consuming. Even worse, long-

time tracking will cause tracking drift due to tremendous

variation in the object appearance caused by illumination

changes, partial occlusion, deformation and so on.

Figure 4 shows the workflow of landmark tracking. In

this method, we deliver shape in previous frame directly to

1Face pose of each training image is estimated by

http://www.humansensing.cs.cmu.edu/intraface/download.html.

Figure 3. Box tracking. A visual tracker is employed to predict

face location at present. Initial shape is the mean shape.

current frame as initial shape. Then MCSR is performed

to predict the landmark locations from the alignment re-

sult of previous frame. For training CSR method in image

datasets, the initial set of perturbations (Δ�) are obtained

by Monte-Carlo sampling procedure [32], in that perturba-

tions are randomly drawn within a fixed pre-defined range

around the groundtruth shape �∗. Direct shape deliver ap-

proach cannot guarantee residual between previous shape

and current shape within perturbation and might not con-

verge to final shape due to cumulative error on videos.

Figure 4. Landmark tracking. Shape in the previous frame is de-

livered directly to current frame as initial shape. Initial shape is

previous shape.

Figure 5 shows the workflow of pose tracking. In this

method, we deliver shape similarity transform parameter-

s of previous frame to the current one. Parameters of face

rigid changes from the previous shape is employed to adjust

the mean shape, and the adjusted mean shape is taken as ini-

tial shape in current frame. MCSR is performed to predict

the landmark locations from the transformed view-specific

mean shape. Compared to landmark tracking, the noise of

the initial shape from the previous frame is smoothed by

pose tracking, thus making the facial shape tracking more

stable.

Figure 5. Pose tracking. Similarity transform parameters of the

previous frame are delivered to the current frame. Initial shape is

calculated based on the above information.

2.4. Re-initialization

As has been discussed above, MCSR is exploited to pre-

dict landmark location on each frame, while time series re-
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Algorithm 1 Facial shape tracking via spatio-temporal cas-

cade shape regression

Require: the �-th image frame in face video

1: if � == 1 then

2: detect face location at the current frame

(��, ��, ��, ℎ�)

3: predict face shape �̂� via MCSR

4: else

5: if �����(�) > 0.7 then

6: Pose tracking is employed to predict the face

shape.

7: else

8: detect face location at current frame

9: if non face is detected then

10: Adaptive compressive tracker is used to predict

face location (��, ��, ��, ℎ�).

11: predict face shape �̂� via MCSR

12: else

13: predict face shape �̂� via MCSR

14: end if

15: end if

16: end if

Ensure: face shape �̂� at �-th image frame.

gression is employed to create a link between the consec-

utive frames. Both steps work when previous alignment is

reliable to predict the current frame. If the previous align-

ment tends to drift, which will lead to face misaligned or

lost, a novel re-initialization mechanism is adopted to effec-

tively and accurately locate the face. In this work, we intro-

duce the fitting score, which corresponds to the goodness

of alignment. When fitting score is lower than the setted

threshold (0.7), shape re-initialization is performed. For this

purpose, we train an SVM classifier to differentiate between

the aligned and misaligned images based on the last shape

indexed features. We generate the positive samples from an-

notations and then randomly generate samples around the

ground truth to generate the negative samples. The score

from the trained SVM is used as the criteria to judge the

goodness of alignment. In our experiments, confidence of

face alignment above 0.7 is seen as a successful landmark

location. Given a face video, if fitting score from the pre-

vious frame alignment is below 0.7, face detector embarks

on face detection at the current frame. If non face is de-

tected, adaptive compressive tracker [19] starts to locate the

face with the appearance model built on the face appearance

once alignment confidence is below 0.7.

The main steps of our facial shape tracking are summa-

rized in Algorithm 1.

3. Experiments

We test our algorithm on two scenarios. One is face

alignment on images, which is initialized with the output of

a face detector. Another is face alignment on videos, which

is initialized by the alignment result of the previous frame.

3.1. Experimental Data

Image datasets. A number of face image dataset-

s [3, 18, 37] with different facial expression, pose, illumi-

nation and occlusion variations have been collected for e-

valuating face alignment algorithms. In [24], AFW [37],

LFPW [3], and HELEN [18] are re-annotated2 by the well

established landmark configuration of Multi-PIE [16] using

the semi-supervised methodology [25]. A new wild dataset

called IBUG is also created by [24], which covers different

variations like unseen subjects, pose, expression, illumina-

tion, background, occlusion, and image quality. IBUG aims

to examine the ability of face alignment methods to handle

naturalistic, unconstrained face images. In this paper, AFW,

LFPW, HELEN and IBUG are used to train the multi-view

cascade shape regression model.

Video datasets. Even though comprehensive bench-

marks exist for localizing facial landmark in static images,

very limited effort has been made towards benchmarking fa-

cial landmark tracking in videos [27]. 300-VW (300 Videos

in the Wild) has collected a large number of long facial

videos recorded in the wild. Each video has duration of

about 1 minute (at 25-30 fps). All frames have been an-

notated with regards to the well-established landmark con-

figuration of Multi-PIE [16]. 50 videos3 are provided for

validation, and 150 facial videos are selected for test. This

dataset aims at testing the ability of current systems for fit-

ting unseen subjects, independently of variations in pose,

expression, illumination, background, occlusion, and im-

age quality. There are three subsets for test with different

difficulty:

Scenario 1: This scenario aims to evaluate algorithms

that are suitable for facial motion analysis in laboratory and

naturalistic well-lit conditions. There are 50 tested videos of

people recorded in well-lit conditions displaying arbitrary

expressions in various head poses but without large occlu-

sions.

Scenario 2: This scenario aims to evaluate algorithm-

s that are suitable for facial motion analysis in real-world

human-computer interaction applications. There are 50 test-

ed videos of people recorded in unconstrained conditions

displaying arbitrary expressions in various head poses but

without large occlusions.

Scenario 3: This scenario aims to assess the perfor-

mance of facial landmark tracking in arbitrary conditions.

2http://ibug.doc.ic.ac.uk/resources/facial-point-annotations/
3300VW Clips 2015 07 26.zip
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There are 50 tested videos of people recorded in completely

unconstrained conditions including the illumination condi-

tions, occlusions, make-up, expression, head pose, etc.

3.2. Experimental setting

Data augmentation. Data augmentation serves as an ef-

fective method for improving the generation of training. We

flip all of the training data and augment them with ten ini-

tializations for each image. We first get mean shape �̄ from

all ground truth shapes by Procrustes Analysis [15], then we

train a linear regression to remove the translation and scale

difference between the initial mean shape and the ground

truth shape by the location of the face rectangle. Finally,

the residual distribution between the initial mean shape and

the ground truth shape is utilised to generate other initial

shapes of identical distribution. Actually, the expectation of

all of those initial shapes are the mean shape.

Shape initialization. Generally, the normalized mean

shape is used as the initial shape during face alignment on

images. The scale and the translation parameters of the

initial shape are estimated from the output face rectangle

of a face detector. The stability of the face detector is of

great importance, because the drift from a face detector has

more or less effect on the following face alignment. On

videos, the initialization shape is generated from the align-

ment result of the previous frame, which makes face align-

ment more accurate due to the more accurate translation,

scale, and face pose (yaw, pitch, roll) information inherited

from the previous frame. However, in this paper we unify

face alignment on images and videos by the proposed TSR

model. Shape initialization is always from the five facial

landmarks, which are utilized to remove rotation, transla-

tion and scale differences and select the view-specific mod-

els. The only difference is that the five facial landmarks are

generated from JDA face detector on images and the previ-

ous alignment result on videos. We compare these different

shape initialization methods and report the alignment result

on IBUG dataset.

Regularization. To avoid overfitting, an additional L2

penalty term is added to the original least square objective

function to regularize the linear projection. The regulariza-

tion parameter is set as the number of the training example

according to our experiment.

Evaluation metric. Fitting performance is usually as-

sessed by the normalised mean error. In particular, the av-

erage Euclidean point-to-point error normalized distance is

used. The error is calculated over (a) all landmarks, and

(b) the facial feature landmarks (eyebrows, eyes, nose, and

mouth).

The normalized mean error over all landmarks,

�� =

1

�

�∑
�=1

∣��,� − ��,� ∣2

∣�� − ��∣2
, (3)

where M is the number of landmarks, p is the prediction, g

is the ground truth, l and r are the positions of the left eye

corner and right eye corner.

The distance between eye corners is used to normalize

the error as in [24]. The allowed error (localization thresh-

old) is taken as some percentage of the inter-ocular distance

(IOD), typically ≤ 10%. The normalization is able to make

the performance measure independent of the actual face size

or the camera zoom factor. Following the evaluation crite-

ria of the 300-VW challenge, we use the cumulative error

curve of the percentage of images against NME to evaluate

the algorithms.

3.3. Evaluation of MCSR

We first investigate the influence of shape initialization

on the face alignment. We compare the JDA face detector

with the 300-W face detector4 and the OpenCV face detec-

tor5 on the IBUG dataset. For the JDA face detector and

the OpenCV face detector, we select the rectangles with the

largest overlap with the bounding box of the annotated land-

marks. Moreover, for the OpenCV face detector, we drop

the rectangles, which have smaller overlap than particular

thresholds. We adopt two thresholds, 0.5 and 0.7, which

are named as OpenCV ov0.5 and OpenCV ov0.7. For the

JDA face detector, we give three kinds of alignment result.

The first one is the shape initialization from face rectangle,

which is named as JDA (box). The second one is the shape

initialization from five landmarks of JDA, which helps to

remove the rotation, translation and scale difference and is

named as JDA (5 landmarks). The last one is the multi-

view shape initialization from five landmarks of JDA, which

further reduces the shape variation from face pose and is

named as JDA (5 landmarks, multiview).

We implement the linear cascade shape regression mod-

el, using HOG [33] as shape indexed feature, with seven

steps of iteration. We train the cascade shape regression

models based on these different kinds of face shape ini-

tialization, and the alignment results are shown in Table 1.

Compared to the OpenCV ov0.5, the OpenCV ov0.7 is able

to decrease the NME by 7.2%, which indicates that the drift

of face detection generates great influence on the follow-

ing face alignment and more accurate detection results can

greatly improve the alignment accuracy. Compared with the

performance of 300-W official detector, the JDA face detec-

tor improves alignment results by 14.12%, which indicates

that the face rectangles generated from JDA are more se-

mantically stable. Compared to shape initialization from

normal face detectors, the face shape initialization generat-

ed from JDA five facial landmarks are better because the

rotation, translation and scale difference are removed. Fi-

4rectangles marked as ”bb detector” in

http://ibug.doc.ic.ac.uk/media/uploads/competitions/bounding boxes.zip
5haarcascade frontalface alt.xml
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nally, we estimate face pose (yaw, pitch, and roll) from five

landmarks, and the view-specific model is trained on each

subset according to the yaw angle, which can further im-

prove the alignment accuracy under different face poses and

decrease the NME to 4.68%.

We further compare the proposed multi-view cascade

shape regression with the other eight state-of-the-art meth-

ods reported in [22], including DRMF [1], RCPR [4], ES-

R [5], CFAN [35], SDM [33], LBF [22], TCDCN [36],

Linkface6. Please note that the distance used to normal-

ize the mean error is the distance between eye center in-

stead of eye corner. Table 2 lists the experimental results,

and we can see that the proposed method outperforms the

other eight methods by a large margin. Figure 6 illustrates

some example results of the proposed method on the IBUG

dataset. It can be seen that the proposed method is robust

under various conditions.

3.4. Evaluation of TSR

We investigate the facial shape tracking on the videos

by comparing the proposed three tracking strategies. As is

shown in Figure 7, face box tracking is the worst method

due to the shape initialization is always from the mean

shape, and the alignment accuracy decreases dramatical-

ly under large face pose variation. Even worse, long time

tracking will cause tracking drift, which will also affect the

alignment performance. Shape initialization from the align-

ment result of the previous frame makes face alignment bet-

ter due to the more accurate rotation, translation, and scale

information inherited from the previous frame. However,

cascade shape regression is an open-loop operation, and the

expectation of the alignment result is not always the mean

shape due to the noises in the shape indexed features, As

a result, the cumulative bias tends to make the facial shape

tracking not stable on videos. In order to utilize the align-

ment result of the previous frame and make the initial shape

similar that of training data, we just use the similarity trans-

formation parameters and the face pose from the previous

frame. Compared to landmark tracking, the noise of the

initial shape from the previous frame is smoothed by pose

tracking, thus making the facial shape tracking more stable.

Another crucial component in the facial shape tracking

scenario is the tracking failure checker. As is shown in Fig-

ure 8, we randomly select four videos from the validation

set, and plot the normalized mean error as well as the corre-

sponding score for each frame. The results show that our

failure checker reasonably links the relationship between

normalized mean error and corresponding score. When the

failure occurs, the normalized mean error increases, mean-

while, corresponding score decreases.

6http://www.linkface.cn/index.html

Figure 7. Cumulative error curves of different tracking methods on

300-VW validation set.

3.5. Results on 300-VW

Following the contest rule, the face videos from the 300-

VW challenge dataset are categorized into “Scenario 1”,“S-

cenario 2” and “Scenario 3”. Figure 9 compares the exper-

imental results (49 landmarks) of the proposed method and

the Chehra tracker [2] on three kinds of videos respectively.

Compared to the baseline method, incremental face align-

ment, the performance of the proposed method is much bet-

ter on all of the three test sets. Besides the cumulative error

curves provided by the contest, we also calculate the nor-

malized mean error under certain thresholds in Table 3. For

the 49 landmarks, which do not contain the landmarks on

face contour, the proposed method achieves the mean er-

ror of 3.86% on the 95.91% frames of the hardest test set

scenario 3, which indicates that the proposed facial land-

mark tracking method is robust under arbitrary conditions.

On test set scenario 2, the normalized mean error of the pro-

posed method is 3.16% on the 99.38% frames, which shows

that the proposed method is quite suitable for facial motion

analysis in real-world human-computer interaction applica-

tions. Although we obtain high accuracy on test set scenario

1, the returned results show that our face detector have lots

of false positives on one single video. As we set the preci-

sion of our face detector at 99.8%, it is almost impossible

that most of the detection results on one single video are

false positive. One possible reason of this problem is that

we only detect the largest face in each frame, which is suit-

able on the validation dataset, but may be not suitable on all

of the test sets. We will investigate this problem after the

videos are released.

As we can see from Figure 10 and Table 4, the align-

ment results of 68 landmarks are slightly worse than that

of 49 landmarks. The proposed method obtains excellent

performances on Scenario 1 and Scenario 2 test sets with

the normalised mean error of 3.60% on 95.94% of frames

and 3.83% on 98.56% of frames respectively, which indi-

cates that the proposed method works well under labora-

tory and naturalistic well-lit conditions. However, uncon-
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Detectors OpenCV ov0.5 OpenCV ov0.7 300-W JDA (box) JDA (5 landmarks) JDA (5 landmarks, multiview)

NME 8.50% 7.89% 7.72% 6.63% 5.59% 4.68%

Table 1. Face alignment results from different shape initializations

Algorithm DRMF RCPR ESR CFAN SDM LBF TCDCN Linkface MCSR

NME68 19.79% 17.26% 17.00% 16.78% 15.40% 11.98% 9.15% 8.60% 6.74%

Table 2. Eye center distance normalized mean error on IBUG dataset

Dataset ≤ 5% ≤ 10% ≤ 15% ≤ 20%
Scenario 1 2.76%(88.93%) 3.06%(96.66%) 3.10%(97.07%) 3.12%(97.24%)
Scenario 2 2.83%(89.90%) 3.16%(99.38%) 3.19%(99.82%) 3.20%(99.86%)
Scenario 3 3.31%(79.18%) 3.86%(95.91%) 4.04%(98.11%) 4.11%(98.60%)

Table 3. Normalized mean error of the proposed method under different error thresholds on 300-VW dataset (49 landmarks).

strained conditions such as occlusions, large pose variations

still pose great challenges to face alignment on videos. As

a result, the alignment results on Scenario 3 test set are s-

lightly worse with the normalised mean error of 4.62% on

93.73% of frames.

4. Conclusion

In this paper, we have constructed a spatio-temporal

cascade shape regression (STCSR) model for robust facial

shape tracking. Firstly, we have presented a multi-view

cascade shape regression model for robust face alignmen-

t, which greatly decreases the shape variance in regression

model construction, making the learned regression model

more robust to shape variances. Secondly, a time series

regression model has been explored to face alignment be-

tween consecutive frames, thereby enhancing the temporal

consecutiveness between alignment result in former frame

and initialization in the latter. Finally, in order to increase

the efficiency in videos, a novel re-initialization mechanism

has been adopted to effectively and accurately predict face

location when the face is misaligned or lost. Extensive ex-

periments on the 300-VW dataset demonstrate the superior

performance of STCSR.
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[6] O. Çeliktutan, S. Ulukaya, and B. Sankur. A comparative

study of face landmarking techniques. EURASIP Journal on

Image and Video Processing, 2013(1):13, 2013.

[7] D. Chen, S. Ren, Y. Wei, X. Cao, and J. Sun. Joint cascade

face detection and alignment. In European Conference on

Computer Vision, pages 109–122. Springer, 2014.

[8] G. Chrysos, S. Zafeiriou, E. Antonakos, and P. Snape. Of-

fline deformable face tracking in arbitrary videos. In IEEE

International Conference on Computer Vision Workshops

(ICCVW), 2015. IEEE.

[9] T. F. Cootes, G. J. Edwards, and C. J. Taylor. Active appear-

ance models. IEEE Transactions on Pattern Analysis and

Machine Intelligence, (6):681–685, 2001.

[10] T. F. Cootes, C. J. Taylor, D. H. Cooper, and J. Graham. Ac-

tive shape models-their training and application. Computer

vision and image understanding, 61(1):38–59, 1995.

[11] T. F. Cootes, G. V. Wheeler, K. N. Walker, and C. J. Tay-

lor. View-based active appearance models. Image and vision

computing, 20(9):657–664, 2002.

[12] P. Dollár, P. Welinder, and P. Perona. Cascaded pose re-

gression. In Proceedings of IEEE Conference on Comput-

er Vision and Pattern Recognition, pages 1078–1085. IEEE,

2010.

[13] G. J. Edwards, C. J. Taylor, and T. F. Cootes. Interpreting

face images using active appearance models. pages 300–305,

1998.

[14] L. Ellis, N. Dowson, J. Matas, and R. Bowden. Linear regres-

sion and adaptive appearance models for fast simultaneous

47



Figure 6. Example alignment results from IBUG.

(a) Cumulative Error Curve of Scenario 1 (b) Cumulative Error Curve of Scenario 2 (c) Cumulative Error Curve of Scenario 3

Figure 9. Cumulative error curve of the proposed method (red) and the Chehra tracker (green) on 300-VW dataset (49 landmarks).

(a) Cumulative Error Curve of Scenario 1 (b) Cumulative Error Curve of Scenario 2 (c) Cumulative Error Curve of Scenario 3

Figure 10. Cumulative error curve of the proposed method (red) on 300-VW dataset (68 landmarks).

Dataset ≤ 5% ≤ 10% ≤ 15% ≤ 20%
Scenario 1 3.16%(82.50%) 3.60%(95.94%) 3.68%(96.93%) 3.71%(97.15%)
Scenario 2 3.31%(82.21%) 3.83%(98.56%) 3.90%(99.59%) 3.94%(99.82%)
Scenario 3 3.65%(62.42%) 4.62%(93.73%) 4.87%(97.17%) 5.00%(98.14%)

Table 4. Normalized mean error of the proposed method under different error thresholds on 300-VW dataset (68 landmarks).

modelling and tracking. International journal of computer

vision, 95(2):154–179, 2011.

[15] J. Gower. Generalized procrustes analysis. Psychometrika,

40(1):33–51, 1975.

[16] R. Gross, I. Matthews, J. Cohn, T. Kanade, and S. Baker.

Multi-pie. Image and Vision Computing, 28(5):807–813,

2010.

[17] N. Kumar, A. C. Berg, P. N. Belhumeur, and S. K. Nayar.

Attribute and simile classifiers for face verification. In Pro-

ceedings of the IEEE International Conference on Computer

Vision, pages 365–372, 2009.

[18] V. Le, J. Brandt, Z. Lin, L. Bourdev, and T. S. Huang. In-

teractive facial feature localization. In European Conference

on Computer Vision, pages 679–692. Springer, 2012.

[19] Q. Liu, J. Yang, K. Zhang, and Y. Wu. Adaptive compressive

tracking via online vector boosting feature selection. arXiv

preprint arXiv:1504.05451, 2015.

[20] P. Luo, X. Wang, and X. Tang. A deep sum-product archi-

48



(a) 001

(b) 002

(c) 046

(d) 057

Figure 8. Score (Blue) and NME (Red) on four 300-VW validation

videos

tecture for robust facial attributes analysis. In Proceedings

of the IEEE International Conference on Computer Vision,

pages 2864–2871, 2013.

[21] I. Matthews and S. Baker. Active appearance models revis-

ited. International Journal of Computer Vision, 60(2):135–

164, 2004.

[22] S. Ren, X. Cao, Y. Wei, and J. Sun. Face alignment at 3000

fps via regressing local binary features. In Computer Vision

and Pattern Recognition, pages 1685–1692. IEEE, 2014.

[23] S. Romdhani, S. Gong, and A. Psarrou. A multi-view non-

linear active shape model using kernel pca. In BMVC, vol-

ume 10, pages 483–492, 1999.

[24] C. Sagonas, G. Tzimiropoulos, S. Zafeiriou, and M. Pantic.

300 faces in-the-wild challenge: The first facial landmark

localization challenge. pages 397–403, 2013.

[25] C. Sagonas, G. Tzimiropoulos, S. Zafeiriou, and M. Pantic.

A semi-automatic methodology for facial landmark annota-

tion. In Computer Vision and Pattern Recognition Workshops

(CVPRW), pages 896–903. IEEE, 2013.

[26] B. Schölkopf, A. Smola, and K.-R. Müller. Nonlinear com-

ponent analysis as a kernel eigenvalue problem. Neural com-

putation, 10(5):1299–1319, 1998.

[27] J. Shen, S. Zafeiriou, G. Chrysos, J. Kossaifi, G. Tzimiropou-

los, and M. Pantic. The first facial landmark tracking in-the-

wild challenge: Benchmark and results. In IEEE Interna-

tional Conference on Computer Vision Workshops (ICCVW),

2015. IEEE.

[28] Y. Sun, Y. Chen, X. Wang, and X. Tang. Deep learning

face representation by joint identification-verification. In

Advances in Neural Information Processing Systems, pages

1988–1996, 2014.

[29] G. Tzimiropoulos. Project-out cascaded regression with an

application to face alignment. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

pages 3659–3667, 2015.

[30] V. N. Vapnik. The nature of statistical learning theory. 1995.

[31] A. Wagner, J. Wright, A. Ganesh, Z. Zhou, H. Mobahi, and

Y. Ma. Toward a practical face recognition system: Robust

alignment and illumination by sparse representation. IEEE

Transactions on Pattern Analysis and Machine Intelligence,

34(2):372–386, 2012.

[32] X. Xiong and F. De la Torre. Supervised descent method

and its applications to face alignment. In Proceedings of

IEEE Conference on Computer Vision and Pattern Recog-

nition, pages 532–539. IEEE, 2013.

[33] X. Xiong and D. Fernando. Supervised descent method for

solving nonlinear least squares problems in computer vision.

arXiv:1405.0601, 2014.

[34] X. Xiong and F. D. la Torre. Global supervised descent

method. In Proceedings of IEEE Conference on Computer

Vision and Pattern Recognition, pages 2664–2673, 2015.

[35] J. Zhang, S. Shan, K. Meina, and X. Chen. Coarse-to-Fine

Auto-Encoder Networks (CFAN) for Real-Time Face Align-

ment. In European Conference on Computer Vision, pages

1–16. Springer, 2014.

[36] Z. Zhang, P. Luo, L. Chen, and X. Tang. Learning and trans-

ferring multi-task deep representation for face alignment.

arXiv:1408.3967, 2014.

[37] X. Zhu and D. Ramanan. Face detection, pose estimation,

and landmark localization in the wild. In Computer Vision

and Pattern Recognition, pages 2879–2886. IEEE, 2012.

[38] Z. Zhu, P. Luo, X. Wang, and X. Tang. Deep learning

identity-preserving face space. In Proceedings of the IEEE

International Conference on Computer Vision, pages 113–

120, 2013.

49


