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Abstract

Matching cross-view images is challenging because
the appearance and viewpoints are significantly different.
While low-level features based on gradient orientations
or filter responses can drastically vary with such changes
in viewpoint, semantic information of images however
shows an invariant characteristic in this respect. Con-
sequently, semantically labeled regions can be used for
performing cross-view matching.

In this paper, we therefore explore this idea and pro-
pose an automatic method for detecting and representing
the semantic information of an RGB image with the goal
of performing cross-view matching with a (non-RGB) ge-
ographic information system (GIS). A segmented image
forms the input to our system with segments assigned
to semantic concepts such as traffic signs, lakes, roads,
foliage, etc. We design a descriptor to robustly capture
both, the presence of semantic concepts and the spatial
layout of those segments. Pairwise distances between the
descriptors extracted from the GIS map and the query
image are then used to generate a shortlist of the most
promising locations with similar semantic concepts in
a consistent spatial layout. An experimental evaluation
with challenging query images and a large urban area
shows promising results.

1. Introduction

In this paper, we consider the cross-view and cross-
modality matching problem between street-level RGB
images and a geographic information system (GIS).
Specifically, given an image taken from street-level, the
goal is to query a database assembled from a GIS in
order to return likely locations of the street-level query
image which contain similar semantic concepts in a con-
sistent layout. Relying only on visual data is important
in GPS-denied environments, for images where such tags
have been removed on purpose (e.g. for applications in
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Figure 1: Typical examples for a query image (left), semantic map
from the GIS (middle) and corresponding heat map (right). Our
proposed geolocalization scheme captures the semantic layout of the
query image and leverages it for matching to a semantic map.

intelligence or forensic sciences), for historical images,
or images from the web which are lacking any GPS tags.
Traditionally, such matching problems are solved by
establishing pairwise correspondences between interest
points using local descriptors such as SIFT [19] with a
subsequent geometric verification stage. Unfortunately,
even if top-down satellite imagery is available, such
an approach based on local appearance features is not
applicable to the wide-baseline cross-view matching con-
sidered in our setting, mainly because of the following
two reasons. Firstly, the extremely wide baseline be-
tween top-view GIS imagery and the street-level image
leads to a strong perspective distortion, and secondly,
there can be drastic changes in appearance, e.g. due
to different weather conditions, time of day, camera
response function, etc.

In this paper, we present a system to handle those
two challenges. We propose to phrase the cross-view
matching problem in a semantic way. Our system makes
use of two cues: what objects are seen and what their
geometric arrangement is. This is very similar to the
way we humans try to localize ourselves on a map. For
instance, we identify that a house can be seen on the left
of a lake and that there are two streets crossing in front
of this house. Then we will look for the same semantic
concepts in a consistent spatial configuration in the map
to find our potential locations. Inspired by this analogy,
in our system, instead of matching low-level appearance-
based features, we propose to extract segments from
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the image and label them with a semantic concept
employing imperfect classifiers which are trained using
images of the same viewpoint and therefore are not
invalidated by the viewpoint change. GIS often already
provide highly-accurate semantically annotated top-
down views thereby rendering the semantic labeling
superfluous for the GIS satellite imagery. Hence, we
assume that such a semantic map is provided by the GIS.
A typical query image and an excerpt of a semantic map
can be seen in Fig. 1. The semantic concepts we focus on
(e.g., buildings, lakes, roads, etc) form large (and quite
often insignificant in number) segments in the image,
and not points. Therefore, we argue that a precise
point-based geometric verification, like a RANSAC-
search[12] with an inlier criterion based on the Euclidean
distance between corresponding points, is not applicable.
We address these issues by designing a descriptor to
robustly capture the spatial layout of those semantic
segments. Pairwise asymmetric L2 matching between
these descriptors is then used to find likely locations in
the GIS map with a spatial layout of semantic segments
which is consistent with the one in the query image.
We also develop a tree-based search method based on a
hierarchical semantic tree to allow fast geo-localization
in a geographically broad areas.

2. Related Work

Cross-view matching in terms of semantic segments
between street-level query image and a GIS map joins
several previous research directions. Matching across
a wide baseline has traditionally been addressed with
local image descriptors for points [19], areas [21], or
lines [7, 31]. Registration of street-level images with
oblique aerial or satellite imagery is generally based only
on geometric reasoning. Previous work, e.g. [13, 17],
has reduced the matching problem to a 2D-2D registra-
tion problem by projecting ground models along vertical
directions and rectifying the ground plane. Unlike our
approach, the mentioned work requires a 3D point cloud
at query time, either from a laser scan [13] or from mul-
tiple views based on structure-from-motion [17]. More
recently, [28] considered the registration problem of a
dense multi-view-stereo reconstruction from street-level
images to oblique aerial views. Building upon accurate
3D city models for assembling a database, contours of
skylines in an upward pointing camera can be matched
to a city model [24] or perspective distortion can be
decreased by rectifying regions of the query image ac-
cording to dominant scene planes [4]. [6] also relied
on rectification of building facades, however, their sys-
tem relied on the repetitive structure of elements in
large facades, enabling a rectification without access
to a 3D city model. Using contours between the sky

and landscape has also been shown to provide valuable
geometric cues when matching to a digital elevation
model [5]. Not using any 3D information, Lin et al. [18]
proposed a method to localize a street-level image with
satellite imagery and a semantic map. Their system
relies on an additional, large dataset which contains
GPS-annotated street-level images which therefore es-
tablish an explicit link between street-level images and
corresponding areas in the satellite imagery and seman-
tic map. Similarly to the idea of information transfer in
ExemplarSVMs [20], once a short-list of promising im-
ages from this additional dataset has been generated by
matching appearance-based features, appropriate satel-
lite and semantic map information can be transferred
from this short-list to the query image.

Visual location recognition and image retrieval sys-
tem emphasise the indexing aspect and can handle large
image collections: Bag-of-visual-words [29], vocabulary
trees [22] or global image descriptors such as Fisher
vectors [16] have been proposed for that purpose, for
example. All those schemes do not account for any
higher-level semantic information. More recently, [11]
has therefore introduced a scheme where pooling regions
for local image descriptors are defined in a semantic
way: detectors assign each segment a class label and a
separate descriptor (e.g. a Fisher Vector) is computed
for each such segment. Those descriptors rely on local
appearance features, which fail to handle significant
viewpoint changes faced in the cross-view matching
problem considered in our paper. Also, this approach
does not encode the spatial layout between semantic
segments. If the descriptors are sufficiently discrimi-
native by themselves, encoding this spatial layout is
less important. In our case however, the information
available in the query image which is shared with the
GIS only captures class labels and a very coarse esti-
mate of the segment shapes. It is therefore necessary
to capture both, the presence of semantic concepts and
the spatial layout between those concepts, in a joint
representation.

Very recently, Ardeshir et al.’s work [3] considered
the matching problem between street-level image and
a dataset of semantic objects. Specifically, deformable-
part-models (DPMs) were trained to detect distinctive
objects in urban areas from a single street-level image.
The main objective of that paper was improved object
detection with a geometric verification stage using a
database of objects with known locations and the GPS-
tag and viewing direction of the image has been assumed
to be known roughly. They also present an exhaustive
search based approach to matching an image against
the entire object database. The considered DPMs in [3]
are well-localized and can be reduced to the centroid of
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Figure 2: Pipeline of our system: We use existing methods to compute the system inputs, namely the vanishing line of the ground plane and
a semantic segmentation of the image. The ground plane in the query image is rectified to minimize distortions between a top-down GIS
map and the query image. The GIS map is split into multiple overlapping tiles. Descriptors (blue circles) which capture the layout of the
semantic regions in the query image and the tiles are extracted. Pairwise distances between those descriptors are then used for a final ranking
of promising tiles.

the detection bounding box for a subsequent RANSAC
step which searches for the best 2D-affine alignment
in image space. Therefore, [3] can only handle such
”spot” based information and is not designed to handle
less accurate and potentially larger semantic segments
with uncertain locations such as the ones provided by
classifiers for ‘road’ or ‘lake’.

3. Semantic Cross-View Matching

A graphical illustration of our proposed system is
shown in Fig. 2. The building blocks proposed by our
paper will be described in detail in the next section,
here we provide a rough overview of the system and
describe the system inputs. The computation of this
input information relies on previous work and is there-
fore not considered as one of our contributions. Given
a street-level query image, first we split it into super-
pixel segments and label each segment with a semantic
concept by a set of pre-trained classifiers. We train
two different types of classifiers to annotate superpixels
with class labels corresponding to a subset of the labels
available in the GIS1. For semantic concepts with large
variation in appearance and shape, we are using the
work by Ren et al. [25]. However, in street level im-
ages, it is also quite common to spot highly informative
objects with small with-in class variation. Typical ex-

1GIS often provide very fine-grained class labels for regions
or areas. For simplicity, we consider a subset of labels for which
appearance based classifiers can be trained reliably.

amples are traffic signs or lamp posts. For each of those
classes, we therefore employ a deformable-part-model
(DPM), similar to the ones of [3]. The second piece of
input information is an estimate of the vertical vanish-
ing point or the horizon line, e.g. [14, 10, 8] describe
how those entities can be estimated from a single image.
The perspective distortion of the ground plane can then
be undone by warping the query image with a suitable
rectifying homography, which is fully determined by
the horizon line, assuming a rough guess of the camera
intrinsic matrix is available. We have opted to esti-
mate the two inputs for our system, namely the ground
plane location and the superpixel segmentation, in two
entirely independent steps. We note however, that at
the expense of higher computational cost this could be
estimated jointly [15, 26].

The semantic map from the GIS and the warped and
labelled query image now share the same modality and
suffer from less perspective distortion. The cross-view
matching problem between query and semantic GIS map
is then cast as a search for consistent spatial layouts of
those semantically labeled regions. In order to do so,
we design a Semantic Segment Layout (SSL) descriptor
which captures the spatial and semantic arrangement
of those segments within a local support area located at
a point in the query image or the semantic map. Upon
extracting such descriptors from the rectified image
and semantic map, the problem can be reduced to a
well-understood matching problem.
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4. Semantic Segment Layout (SSL) De-
scriptor

The goal of the SSL descriptor is to capture the pres-
ence of semantic concepts and at the same time encode
the rough geometric layout of those concepts. Similar
to several previous descriptors [9, 30], the neighborhood
around the descriptor centre is captured with pooling
regions arranged in an annular pattern where the size of
the regions increases with increasing distance to the de-
scriptor centre. We instantiate separate pooling regions
for each semantic concept and the overall descriptor is
the concatenation of the per-concept descriptors.

4.1. Placement of Descriptors

Similar to appearance based local descriptors, we
have to choose the locations where to extract descriptors
and its orientation. We are not aware of a good way to
find reliable interest points in arrangements of semantic
regions.

We initially experimented with placing a separate
descriptor at the center of each semantic segment. Un-
fortunately, this choice turns out to be very sensitive to
the location of the segment projected onto the ground
plane. This projection depends on an accurate estimate
of the contact region of that segment with the ground
plane. Based on our experiments, it is challenging to
get a sufficiently accurate estimate without manual
user intervention. In some preliminary experiments, we
therefore also tried to factor in the contact region uncer-
tainty by ’blurring’ the contributions of a neighbouring
segment along the line of sight between the camera and
that segment, with an increasing amount of blur the
further away the segment is from the camera center.
We think this is an elegant and theoretically sound way
to account for those uncertainties and we refer to Fig. 3
for a graphical illustration of the descriptor and of the
subsequent processing steps of our preliminary pipeline.
We plan to explore this pipeline in future work in more
detail. In this work however, we settled for a simpler
choice: a single descriptor is placed either in the center
of the rectified image (denoted CI in the experiments)
or at the center of the camera (CC in the experiments).
Also, despite the SSL descriptor being more general, we
only choose one annular pooling region thereby putting
more emphasis on capturing the direction of semantic
segments rather than the direction and distance. This
choice is again motivated by the difficulty of accurately
estimating contact regions.

We suggest using descriptors which are not rotation
invariant and an orientation therefore needs to be as-
signed to each descriptor as well. The reason for this
choice is that the alternative of defining a rotation-

invariant descriptor leads to a considerably less dis-
criminative descriptor and pairwise matching score. It
is straightforward to define a canonical orientation in
the semantic GIS map. For example, the first pool-
ing region can be chosen to point to geographic North.
However, unless compass direction is available, it is not
easily possible to define a canonical orientation for the
rectified query image.

Hence, we choose an arbitrary direction for the de-
scriptors extracted from the rectified query image, and
cope with not knowing the rotation parameters by em-
ploying a rotation invariant distance metric at the query
time (see section Sec. 5).

4.2. Aggregation over Pooling Region

There are several ways to capture the ’overlap’ be-
tween a pooling region and a semantic segment. An
intuitive approach is to compute the area of intersection
between the pooling region and the segment. This can
be fairly slow for irregularly shaped segments. More-
over, the shape of the segments in the query image
are quite imprecise, so an accurate computation of the
intersection area might be unnecessary or even harmful.
Here, we propose a scheme motivated by a probabilis-
tic point of view. The segments can be considered as
a spatial probability distribution, that a point sam-
pled in or close to this segment takes a certain label.
Similarly, the pooling regions are interpreted as prob-
ability distributions of sampling a point at a certain
location. We then have to compute a statistical measure
for the ’similarity’ between the two distributions. For
discrete distributions, the mutual information is a good
candidate. In our setting however, we have to handle
continuous distributions defined over the ground plane.
The Bhattacharyya distance [2] is a good way to mea-
sure the overlap between two continuous distributions
and can be efficiently computed when we deal with
Gaussian distributions. Hence, in practice, in order to
keep the computational requirements low, we will use
a two-dimensional Gaussian to define a pooling region
and each segment will be approximated by a Gaussian,
as well. In detail, let Gs(x;µs,Σs) and Gp(x;µp,Σp)
denote the Gaussian for the segment and the pooling
region, respectively. The Bhattacharyya distance is
then given by

dB(Gs,Gp) = 1

8
(µs − µp)TΣ−1(µs − µp)+

1

2
ln

detΣ√
detΣs detΣp

, (1)

where Σ = Σs+Σp

2
. If multiple segments that

are labeled with the same semantic concept are
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Figure 3: Pipeline for the SSL descriptor extraction in a query image: Due to the challenges in the contact region detection, in practice a
simplified version of the illustration shown here is used, see text for more details. (a) The pooling regions of the SSL descriptor are a set of
Gaussians. The descriptor visualized here contains 2 rings of six pooling regions each. (b) Contact regions of vertical objects are detected in the
rectified image by shooting rays from the camera position projected onto the ground plane (visualized as the lower vertex of the blue triangle
and computed as Hv∣, where H is the rectifying homography and v∣ is the vertical vanishing point) and recording the closest intersection
point with the segment. (c) Semantic segments are approximated with a Gaussian (for clarity, visualization is only for a single segment).
(d) Uncertainty in contact regions are handled by convolving the Gaussians of vertical segments with another Gaussian whose covariance is
elongated along the line between the camera position and the segment centroid. (e) A descriptor is extracted at each segment centroid.

present, they can be treated as a Gaussian Mix-
ture Model (GMM). The Bhattacharyya distance
between two GMMs can be approximated [27] by

dB(Ms,Mp) = ∑Ns

i=1∑Np

j=1 αiβjdB(Gsi ,Gpj ), whereMs =
∑Ns

i=1 αiGsi (x;µs
i ,Σ

s
i ) and Mp = ∑Np

j=1 βjGpj (x;µp
j ,Σ

p
j)

are a GMM for the segment and the pooling region,
respectively. In our case, the pooling region is always
represent by a single Gaussian, so Np = 1 and β1 = 1.
The Bhattacharyya distance is then converted to the
Hellinger distance2

dH(Ms,Gp) =
√
1 −BC(Ms,Gp), (2)

where BC(Ms,Gp) = exp (−dB(Ms,Gp)) is the
Bhattacharyya coefficient. Our descriptor is
the concatenation of all those Hellinger distances
d = (dH(M1,G1), dH(M1,G2), . . . , dH(MNs ,GNp)) ∈
R

NsNp . Each block of this descriptor corresponding to
a semantic concept is then L2-normalized independently
of the other blocks. If a concept is not present, the
Hellinger distance for all pooling regions of that concept
are set to zero.

4.3. Descriptor Computation in Semantic Map

The descriptor extraction from the semantic map is
considerably simpler than from the query image: no
rectification needs to performed as the overhead view
can be readily rendered and the segment boundaries are
exact. The semantic map is divided into overlapping
tiles for the subsequent matching stage. A single SSL
descriptor is extracted at the center of each tile (CI) or
at the center of the camera (CC).

2The Hellinger distance satisfies the triangle inequality whereas
the Bhattacharyya does not.

5. Matching

Given a street-level query image, our goal is to gener-
ate a ‘heat-map’ of likely locations where this image has
been taken. The semantic GIS map is therefore split
into fix sized overlapping tiles, based on parameters
such as average query image field-of-view and height of
camera above ground.

As described previously, the rotation alignment be-
tween the descriptor used in the semantic map and the
query image is unknown. In order to cope with that,
we propose to rotate one of the descriptors in discrete
rotation steps and compute the L2 distance for each
step. This boils down to the computation of a circular
correlation (or circular convolution) between blocks of
the two descriptors corresponding to the same seman-
tic concept. This can be implemented efficiently with
a circulant matrix multiplication or even with a FFT
using the circular convolution theorem [23].

In our implementation, we are currently using the L2
distance between two descriptors. However, especially
for the descriptor placed at the camera centre, several
pooling regions will not be contained in the field of view.
We therefore employ an asymmetric L2 distance where
the distance contribution of pooling regions in the query
descriptor which are not within the field of view of the
camera is set to zero. The field of view of the camera
can easily be estimated given the image resolution and
focal length.

6. Hierarchical Semantic Tree Represen-
tation of a GIS Map

The reference area covered by GIS maps is often very
broad. This leads to a large number of reference tiles
which the query descriptor should be compared against.
Several techniques, such as k-means or kd-tree, have
developed for fast nearest neighbor search [29, 22, 16]
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Figure 4: Two top-most layers of the semantic tree. The tiles of each
layer have been split into L = 3 groups with the hierarchical spectral
clustering, as described in the paper. We can see how this clustering
produces semantically similar clusters. Note that the ’white’ areas
in the top-most layer denote tiles which are mostly empty, i.e. had
no semantic entries in the GIS map.

which we can employ to speed up this process. We
describe a procedure inspired by k-means trees [22]
suitable for pre-computing a hierarchical semantic tree
which arranges the tiles of the map in a semantically and
spatially meaningful way. This speeds up the matching
and also enables fast semantic queries in a GIS system.

Our tree construction is based on hierarchical spec-
tral clustering with L branches on each level. The
similarity matrix required for spectral clustering is com-
posed of the previously described asymmetric distance
between pairs of tiles of the GIS map. This provides us
with a N ×N similarity matrix, where N denotes the
number of tiles. We use spectral clustering, rather than
k-means as used in k-means trees or similar methods,
since we are employing our own customized distance
function (asymmetric L2) while those methods often
assume a standard distance. Fig. 4 shows the two top
layers of the hierarchical tree (L = 3) obtained by ap-
plying the procedure just defined on a large GIS image.
What we observe is that the area has been partitioned
into three well-defined semantic concepts: water (in
blue), area scarcely populated (yellow) and densely
populated area (grey) in the first layer. In the second
layer, each of those three areas are decomposed into
three other areas, and construction of the tree continues
as such. The tree being semantically meaningful is a
byproduct of the fact that our descriptor is targeted
towards capturing semantic information.

At query time, we start traversing the tree at the
root. The query image is matched against a random
subset of tiles contained in each cluster of the current
level. The most promising child node out of the L

Figure 5: The area on which the cross-view matching has been tested
is located in the District of Columbia, US. On the bottom we report
the color coding for the semantic classes used in the experiments.

children at each level, which represents the cluster, is
found in this way. We use this technique since the
cluster center is not straightforward to define for our
customized distance functions. The tree is traversed all
the way down to the leaf nodes to find the final match3.
The tree depth is logL(N), which leads to a speed-up
of roughly N

M logL(N)
where M denotes the cardinality

of the random subset of tiles explored at each level.

7. Experiments and Results

Our framework has been tested for the geolocal-
ization of generic outdoor images taken in the entire
(∼ 159km2) of the District of Columbia, US, as exten-
sive GIS databases of this area are made available to
public [1]. The area is depicted in Figure 5 and in-
cludes a variety of different regions (water, suburban,
urban). We have gathered a set of 50 geo-tagged images
from Google Maps and Panoramio taken at different
locations, which serves as a benchmark for our system.
We have Nc = 7 semantic classes, that are C ={Road,
Tree, Building, Water, Lamp Post, Traffic Signal, Traf-
fic Sign}, and in the following experiments we are going
to use different sets of classes. The size of a tile in the
GIS is around ∼ 30m2. We set the number of rings in
our descriptors to 1, and the number of pooling regions
to 8. We assume that the focal length is approximately
known4. The homography which rectifies the ground
plane is then determined by the vertical vanishing point
or the horizon line. We assume that the y-axis of the
image is roughly aligned with the vertical direction and

3Spilling could be introduced, as well, where more than just
the most promising child is explored.

4A good estimate of the focal length is often available in the
EXIF-header. If not, then the focal length can also be estimated
from three orthogonal vanishing points, for example.
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Figure 6: Qualitative results: Each row shows a separate query, the query image is shown in the first column. The second column shows
the segmented and rectified query image in the top left and the top-15 tiles returned by our system (from left to right and top to bottom).
The third column shows the ground truth location (blue circle) on top of a heat map visualization of the matching scores between the query
image and the GIS map tiles (color-coded in log-scale). It can be seen that semantically similar tiles have a higher score and are therefore
ranked higher. This ranking is visualized in the fourth column: each plot shows the empirical cumulative-distribution-function (CDF) of the
(normalized) score between the query and all the tiles. The red star denotes the bin which contains the ground truth tile.

the vertical vanishing point is then given by the MLE
including all the lines segments ±20 degrees w.r.t. the
y-axis, see also [14]. As ground plane estimation is not
the topic of our paper, we manually check and correct
highly inaccurate estimates of the vanishing point in
our benchmark images in order not to bias our evalu-
ation toward mistakes in the ground plane estimation
(this is done for all baselines). Since the semantic GIS
map uses metric units and the rectified image is in
pixels, the size or scale of the pooling regions need to
be converted between those two units. A reasonable
assumption for street-level images is that the camera
is roughly at d = 1.7m above ground. The conversion
factor between metric units and pixels is then given by
[pixels] = f

d
[meters]. The scale of the pooling regions is

chosen such that a SSL descriptor captures significant
contributions from segments within roughly 30m.

Fig. 6 reports detailed qualitative results of our pro-
posed cross-view matching scheme for several sample
queries. Several interesting observations can be made
in this figure. First, as the covered area is very large,
even such generic semantic cues can narrow down the
search space to often < 5%. Second, the semantic and
geometric similarity among the top 15 matching GIS
tiles shows the proposed method is successfully captur-
ing such properties and is yet forgiving of the modeled
uncertainties by not being overly discriminative; note
that the ground truth location (marked in the CDF) is
often among the top few percents. Third, the heat map
correlates well with the semantic content of the image.

As for quantitative results, we compare different
Nearest Neighbor (NN) classifiers with the following
feature vectors: SSL descriptor in the center of image

Figure 7: Quantitative results: Analogously to the visualization in
[18], this figure plots the percentage of queries which contained the
ground truth tile in a short-list of the best scoring tiles against the
normalized size of that short-list (i.e. the x-axis denotes the fraction
of tiles contained in the short-list). The red curve shows how the
combination of SSL descriptor in the center of camera and Presence
term outperforms the other methods.

(per query image/GIS tile), SSL descriptor in the center
of the camera, binary indicator vector encoding the pres-
ence or absence of semantic concepts (Presence term),
SSL descriptor in the center of the camera plus the
Presence term. The last method is random matching.
The superior results of the SSL plus Presence match-
ing reported in Fig. 7 confirm the necessity of jointly
using semantic and coarse geometry for a successful
localization task. We also suspect that placing the SSL
descriptor in the center of camera results in better per-
formance than placing the descriptor in the center of
the image because the former approach is less sensible
to tiling quantization artifacts: e.g. objects on the left
side of the field of view will generally remain on the left
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Figure 8: Quantification of the impact of different semantic configu-
rations (in the legend R is road, T is tree, B is building, W is water,
L is lamp post, T is traffic signal, S is traffic sign).

side even when the viewpoint is moved to the closest
tile location.

We used the subset Cs ={Building, Lamp Post, Traf-
fic Signal, Traffic Sign} of the Nc semantic classes since
this subset yielded the best overall geo-localization re-
sult. For further evaluation, Fig. 8 depicts the results of
SSL plus Presence matching over four different sets of
semantic classes, which shows the contribution of each
semantic class in the overall geo-localization results.
Interestingly, the curves also show how certain sets of
semantic classes may even mislead the geo-localization
process. We believe this is due to un-informativeness
(e.g. being too common) of some classes as well as sev-
eral sources of noise whose magnitude can vary between
different classes (e.g. inaccurate entries in GIS map, se-
mantic segmentation misclassifications, etc.). If enough
training data were available, appropriate weights could
be learned for each class.

Acknowledgments: This work has been sup-
ported by the Max Planck Center for Visual Computing
and Communication.

8. Summary

This paper proposed an approach for cross-view
matching between a street-level image and a GIS map.
This problem was addressed in a semantic way. A fast
Semantic Segment Layout descriptor has been proposed
which jointly captures the presence of segments with a
certain semantic concept and the spatial layout of those
segments. As our experimental evaluation showed, this
enabled matching a street-level image to a large refer-
ence map based on purely semantic cues of the scene
and their coarse spatial layout. The results confirm
that the semantic and topological cues captured by our
method significantly narrow down the search area. This
can be used as an effective pre-processing for other less
efficient but more accurate localization techniques, such

as street view based methods.
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