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Abstract

Semantic mapping is a very active and growing research

area, with important applications in indoor and outdoor

robotic applications. However, most of the research on

semantic mapping has focused on indoor mapping and

there is a need for developing semantic mapping method-

ologies for large-scale outdoor scenarios. In this work, a

novel semantic mapping methodology for large-scale out-

door scenes in autonomous off-road driving applications is

proposed. The semantic map representation consists of a

large-scale topological map built using semantic image in-

formation. Thus, the proposed representation aims to solve

the large-scale outdoors semantic mapping problem by us-

ing a graph based topological map, where relevant informa-

tion for autonomous driving is added using semantic infor-

mation from the image description. As a proof of concept,

the proposed methodology is applied to the semantic map

building of a real outdoor scenario.

1. Introduction

In robotics, a semantic map is defined as “a map that con-

tains, in addition to spatial information about the environ-

ment, assignments of mapped features to entities of known

classes” [9]. Thus, a semantic map contains labels associ-

ated to objects (e.g., “tree”, “traffic sign”) and places (e.g.,

“road”, “building”). Semantic mapping is the process of

building semantic maps. Semantic perception is defined as

the process of converting sensory observations to this kind

of abstractions [4].

Currently, semantic mapping is a very active and grow-

ing research area. The semantic representation of the en-

vironment is considered essential in the forthcoming un-

manned cars, agriculture robotics, and any robotic appli-

cation requiring human-robot interaction [5]. Some of the

reasons for the high interest of the community in those areas

are the need for a more robust operation in unconstrained

environments and more efficient task execution [12].

The autonomous generation of semantic maps aims to

combine the strengths of SLAM techniques and object cat-

egorization to recover semantic-spatial knowledge about the

environment, which can be used for task planning and infer-

ence about non-sensed areas [2]. Current methods are based

on map building and application of real-time object catego-

rization techniques over captured data for attaching object

categories into the map, usually as a hierarchical structure,

generating maps with semantic significance.

However, to the best of our knowledge, most of the re-

search on semantic mapping has focused on indoor mapping

or outdoor mapping of restricted outdoor areas. In [3], hi-

erarchies related to spatial and conceptual information are

represented using a spatial hierarchy map and a conceptual

hierarchy map, in which depth represents different levels of

abstraction in semantic content. Nodes between both trees

are related via anchoring, which is provided through a user

interface. In [6, 8, 18], a multi-layered representation based

on a metric map, a navigation map, a topological map, and

a conceptual map is used for representing the environment.

The metric map is based on an EKF laser-based SLAM,

while place classification is based on simple geometrical

features extracted from laser scans, and object recognition

capabilities are added through the use of SIFT descriptors

[7]. Authors use an ontology-based system, and a com-

monsense OWL ontology of an indoor environment that de-

scribes taxonomies (is-a relations) of room types, and typ-

ical objects found therein (has-a relations). These concep-

tual taxonomies are handmade. In [1], Conditional Random

Fields (CRF) are used for modeling the map, which is repre-

sented as a set of nodes with a hidden state that corresponds

to a position plus a category. Categories are related to the

kind of objects normally found in street views, mixing vi-

sual and laser information. Laser features are computed by

generating local descriptors based in angles between laser
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measurements, and image features are generated by com-

posing different types of features, like local gradient di-

rections, color information, and Haar features. In [16], a

dense semantic map is built in an urban environment, us-

ing a vehicle equipped with six cameras with different ori-

entations. Each image is segmented with an unsupervised

method and labeled into one of the thirteen categories, us-

ing CRF. Then, the labeled images are projected assuming

a flat world model, creating a labeled metric map, called

dense semantic map. In a later work [14], stereo cameras

are used to reconstruct the environment surface, replacing

the flat world assumption. In a more recent work [15], an

octree based 3D map is built using the stereo cameras, and a

CRF method is used over the map to label it, creating a 3D

occupancy semantic map. The semantic maps proposed by

Sengupta et al.[14, 15, 16] archive a great description of the

environment but the semantic information included is lim-

ited to the labels obtained. Also, due to its construction on a

metric map the results are strongly dependent on the local-

ization. The semantic map proposed by Douillard et al. [1]

contains a similar amount of semantic knowledge, as it only

contains the labels of the different objects detected, but its

graph structure allows faster localization tasks.

According to Kostavelis & Gasteros [5], “a challenge for

the upcoming endeavors constitutes the semantic mapping

of large scale outdoors scenarios”, as most of the existing

methods aim to solve the problem for indoor topological

mapping environments rather than outdoors, and an impor-

tant aspect in indoor semantic mapping is place and object

recognition, which is still underdeveloped for outdoors.

In order to address this challenge, a novel semantic map-

ping methodology for large-scale outdoor scenes in au-

tonomous off-road driving applications is proposed in this

work. The semantic map representation consists of a large-

scale topological map built using semantic image informa-

tion. Thus, the proposed representation aims to solve the

large-scale outdoors semantic mapping problem by using a

graph based topological map, where relevant information

for autonomous driving is added using semantic informa-

tion from the image description. The proposed mapping

methodology is restricted to off-road driving applications

where a limited number of object categories is found. Its

extension to other driving applications, such as driving in

highways or city driving, will depend on a proper definition

of the object categories to be stored in the semantic map.

Thus, the main contribution of this work is a graph based

topological semantic mapping method suitable for large

scale off-road autonomous driving.

This paper is organized as follows. In Section 2, the pro-

posed mapping methodology is described. In Section 3, ex-

periment conducted to test the methodology is presented.

Finally, in Section 4 main conclusions are drawn.

Figure 1. Camera location on the vehicle.

Figure 2. Block diagram of the proposed method

2. Proposed Methodology

The objective is to build a semantic map based on a con-

sistent topological map constructed from images taken with

a camera looking to the front of the vehicle (see Figure 1),

and fed with high-level information obtained from an on-

line built semantic description of the image (see Figure 2).

The proposed method has two main stages: Semantic De-

scription and Topological Semantic Mapping.

In the Semantic Description stage, each image is pro-

cessed in order to obtain a semantic description of the scene,

including the road shape, vegetation and soil around the

road, as well as obstacles and objects of interest (e.g. trees,

posts, pedestrians, etc.). In the Topological Semantic Map-

ping stage, the semantic description of the image is used to

generate a topological map. This topological map is either

added to the global topological map in case that the vehi-

cle is driving for the first time in this area, or used for the

vehicle self-localization.

2.1. Semantic Description

This stage aims to create a semantic representation of the

images content using a graph structure based on the seman-

tic segmentation of the image as well as context informa-

tion. Figure 3 shows an example of the semantic description

of three different images, and the resulting graph structure

for each one. For demonstrative purposes, sketch versions

of the images are used in this figure instead of the real im-

ages.

Each image is semantically segmented using the Texton-

Boost method proposed by Shotton et al. [17], a well known

multi-class segmentation method that incorporates shape,

texture, color, location, and edge cues in a single unified

Conditional Random Fields (CRF) model. For this model,

the conditional probability for class label c given the image

x can be defined as
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logP (c | x, θ) =
∑

i

ψi (ci, x; θψ) + π (ci, xi; θπ)

+λ (ci, i; θλ) +
∑

(i,j)∈ξ

φ (ci, cj , gij (x) ; θphi)

−logZ (θ, x)

(1)

ξ is the set of edges in the 4-connected grid, Z (θ, x)
is a partition function, θ = {θψ, θπ, θλ, θφ} are the model

parameters, and i, j represent coordinates on the image.

The ψ term in the equation represents the shape-texture

potentials, and is based on a boosted combination of texton

features. The π term represents the color potentials, and is

based on a Gaussian Mixture Model (GMM). The λ repre-

sents the Location potential and it works as a look-up table.

Finally, the φ term represents the edge potential, based on a

contrast sensitive Potts model.

As the system is intended to be used in off-road driving

applications, the following kinds of objects/labels are used:

dirt, grass, road bushes, foliage, sky, tree trunk, post, and

pedestrian.

Then, each ground type segment/object (e.g. dirt, grass,

and road) is represented by a node in the semantic descrip-

tion graph, and the edges of the graph represent the neigh-

borhood of the segments. Every node contains the follow-

ing information: (i) type, (ii) spatial position, (iii) objects

list, and (iv) traversability index. Additionally, road nodes

include (v) curvature index, and (vi) odometry.

- The type of a node is the label acquired from the se-

mantic segmentation, and it defines the kind of ground be-

ing represented by the node.

- The spatial position represents the relative spatial po-

sition of the node to the road. The node of the first ground

segment in front of the vehicle is labeled as ‘Road’, and

each other node is labeled as either ‘Left’ or ‘Right’.

- The objects list corresponds to a list of the objects de-

tected inside the segment being represented by the node,

which are considered as important for the vehicle (e.g. trees,

posts, pedestrians, etc.)

- The traversability index (TI) estimates how dangerous

can be for the vehicle to drive over that region being repre-

sented by the road [13]. Each label from the semantic seg-

mentation has associated a TI. The nodes TI is calculated

as the most dangerous value between the TI of the objects

in the node’s object list, and the TI associated to the node’s

type.

- The curvature index is added for the road node only,

and it is a coarse classification of the observed curvature

of the road. This index can take 5 possible values ‘Closed

Left’, ‘Left’, ‘Straight’, ‘Right’, and ‘Closed Right’ [10].

The road curvature is obtained by using a Hugh Transform

based detection with a set of road curvatures on a flat world

model.

Figure 3. Example of a topological map. The first row shows three

different images. The second row shows the semantic description.

The third row shows the topological semantic map. For demon-

strative purposes, sketch versions of the images are used instead

of the real images. In this figure G stands for grass and S for sand.

The node G+T has a grass type of ground with trees over it. A, B,

C, and D are road nodes. B and D nodes have the same seman-

tic description, the one second one, but they represent different

regions of the road.

- Finally, the vehicle’s odometry at the time of the image

acquisition is included. This information will be later used

to estimate the length of a section in the topological map.

In addition, each node includes pointers to the ’main’

Left and Right nodes, where ‘main’ refers to the closest seg-

ment to the vehicle that is bigger than a given threshold in

that side.

We define SDk as the semantic description for the kth

processed image, and SDk.Road the road node of SDk.

Also, SDk.Left and SDk.Right are defined as the list of

nodes in SDk, tagged as Left and Right, respectively.

2.2. Topological Semantic Map

The Topological Semantic Map (TSM) is a graph struc-

ture that describes the road and its environment, based on

the semantic description of the images described in the for-

mer section. The TSM is organized as a sequence of consec-

utive road nodes and two surrounding sequences of so called

environmental nodes. A road node represents a region of

the road defined by its semantic information. Each environ-

mental node represents the main left or right neighboring

node of a group of road nodes. Thus, environment nodes

correspond to non-road nodes of the semantic description

that are neighbors to the road.
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Each road node in the TSM represents a section of the

road where the semantic descriptions obtained from consec-

utive images are the same in terms of same main left node,

main right node, and road curvature.

The environment nodes are located correspondently in

the TSM using the spatial label of the semantic description

(Left or Right) and are connected to its neighboring road

nodes, creating a consistent description of the neighborhood

of the road in the topological map.

The TSM is built incrementally from the semantic de-

scription for the observed image. Let us defineMk the TSM

in time step k. Mk summarizes the information of k seman-

tic descriptions SDi, with i = 1, , k. The nodes of Mk have

the same basic structure than the nodes of SDi, but each

road node in the TSM includes a length value, calculated as

the difference between the first odometry observed in that

node, and the first odometry from the next road node in the

TSM.

Algorithm 1 Map update evaluation

1: function MAPPINGUPDATE(SDk,Mk−1)

2: new road node← false

3: Mk ←Mk−1

4: Mk.Road.last.length← SDk.Road.odometry−
first odom

5: if SDk.Road.curv 6=Mk−1.Road.curv then

6: new road node← true

7: end if

8: if SDk.Left.main 6=Mk−1.Left.last then

9: Mk.addleft(SDk.Left.main)
10: new road node← true

11: end if

12: if SDk.Right.main 6=Mk−1.Right.last then

13: Mk.addright(SDk.Right.main)
14: new road node← true

15: end if

16: if new road node then

17: Mk.addnode(SDk.Road.curv)
18: first odom← SDk.Road.odometry

19: end if

20: end function

The TSM update criterion is detailed in Algorithm 1. Ev-

ery new map node is added to one of the three lists of nodes:

Road, Left, or Right, accordingly to its spatial label. The

last pointer of each list points to the last added element to

that list. The add left, and add right functions add a new

environment node to the TSM, adding it to the Left or Right

list, and updating their last pointer. The add node function

adds a new road node to the TSM, sets its Left and Right

nodes as the last from the Left and Right lists, and updates

the Road list last pointer.

For every new semantic description SDk, the Mappin-

gUpdate function updates the current road node length and

evaluates if the semantic description’s road curvature, main

left node, and main right node, are the same as the TSMs

last road node curvature, the last left node, and the last right

node. If the semantic description’s main left node is dif-

ferent to the TSM last left node, then a new environment

node is added to the TSM, and the same applies to the right

nodes. If a new environmental node was added or if the road

curvature is different, then a new road node is added to the

map, using the semantic description’s road node.

Figure 4 shows an example of a topological map built

from the images of the road shown in the map below. The

semantic descriptions for the images are presented in the

second row, and the topological map is shown in the third

row, over a virtual satellite image of the road.

When using this map structure, the vehicle’s localiza-

tion is reduced to the problem of finding the TSM road’s

node corresponding to the observations obtained by the ve-

hicle. Given that, a vehicle position is defined as the one of

the corresponding road’s node. The proposed localization

method is detailed in Algorithm 2.

Algorithm 2 Proposed localization method.

1: function LOCALIZATION(SDk, globalTSMk,

localTSMk)

2: localTSMk.MappingUpdate(SDk)
3: if is lost then

4: for i=1...length(hypothesisList) do

5: ifD(localTSM, globalTSM,

hypothesisList[i]) ≥ T then

6: hypothesisList.remove(i)

7: end if

8: new road node← true

9: end for

10: if length(hypothesisList) = 1 then

11: is lost← false

12: pose estimation← hypothesisList(1)
13: end if

14: if length(hypothesisList) = 0 then

15: localTSM .reset()

16: hypothesisList← globalTSM.Road

17: end if

18: else

19: if D(localTSM, globalTSM,

hypothesisList[i]) ≥ T then

20: localTSM .reset()

21: hypothesisList← globalTSM.Road

22: is lost← true

23: else

24: pose estimation← localTSM.Road.last

25: end if

26: end if

27: end function
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Figure 4. Example of a topological map generated with the proposed method. First row: Exemplar images from the used database. Second

row: corresponding semantic description of these images. Third row: semantic map obtained displayed over the satellite image of the road

(Source: Google Maps, satellite image).

The vehicle can be in two localization states: (i) located,

or (ii) lost. While the vehicle has a TSM pose estimate con-

sistent with the incoming observations, the vehicle is lo-

cated. The vehicle is lost either if the pose estimate is in-

consistent with the observations, or if there is no initial pose

estimate.

Two TSM are used for localization purposes: a global

TSM, which is a previously built map of the environment,

and local TSM, built locally based on the last observations,

and using the previously described mapping method.

When a lost condition is detected, the local semantic map

is set as empty and the hypothesis list is filled with all the

road nodes from the global TSM.

In lost state, the local TSM is compared with every can-

didate in the hypothesis list using the distance D (see equa-

tion 2), in each new observation (a.k.a. image) from the

vehicle. If the distance is greater than a given threshold,

that hypothesis is removed from the list. If after an obser-

vation, the list ends up with only one hypothesis in the list,

then the vehicle’s pose estimate is set as the hypothesis, and

the vehicle is no longer lost. If the hypothesis list ends up

empty, then the local TSM is reset, and the hypothesis list

is refilled.

In located state, the local TSM only keeps track of the

current road node. Here, the local TSM is compared with

the estimated pose in the global TSM with the distance D.

If the distance is greater than a second threshold, then the

vehicle is set as lost, otherwise the pose estimation is up-

dated.

D (Ma,Mb, k) = kp · P + kq ·
∑

i

Qi. (2)

The distance function D (see equation 2) compares two

TSM using the weighted sum of two terms: a P andQ. The

P term depends on the length of the current road node of

both TSM, and the Q term is proportional to the differences

in information for each equivalent node between the TSMs.

3. Experiment

The proposed method is tested using the same database

used by Parra-Tsunekawa et al. [11]. The database was

recorded with the Advanced Mining Technology Center’s

(AMTC) autonomous vehicle (Volkswagen Tiguan 2010)

inside O’Higgins Public Park, located near the downtown

area of Santiago, Chile. The database was captured while

the vehicle was driven on unpaved, rough terrain at low
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(<10 [m/s]) and medium speeds (<20[m/s]). The unpaved

area is formed by a very irregular road having a length of

about 800 [m] with positive and negative slopes. The road

is a track made of dirt surrounded of grass and some trees.

The height difference between the lowest and the highest

point of the track is about 4 meters.

For this work, only one segment of the database was used

(starting at coordinates (-33.468614,-70.662464)). The im-

age labeling and the object detection were manually an-

notated. The traversability index considers three levels:

low, medium, and high. Grass and dirt regions have high

traversability level (TL), while bushes have medium TL.

Any obstacle detected close to the road border, at a distance

smaller than the road width, has a low TL. Obstacles located

at distances between 1 and 2 road widths of the road border

have medium TL. Other obstacles have a high TL.

As a proof of concept, Figure 4 shows the results of the

application of the proposed method over the used database.

Four images of the dataset are shown in the first row. In

the second row the semantic descriptions of the images are

shown. The third row shows the topological map obtained,

over a satellite image of the road. Each node is marked

with a letter and color: ‘R’ stands for Road node, ‘G for

Grass node, and ‘B’ for Bushes, while the color represents

the associated Traversability Index: green for high, orange

for medium, and red for low.

The semantic map obtained is shown over the satellite

image of the road to make a qualitative comparison of the

topological map. The location of the environment nodes is

just a reference. Naturally, only the topologic representation

of the environment is the one that needs to be stored.

4. Conclusions

A novel outdoor semantic mapping method based on vi-

sual information and topological maps is presented and ap-

plied on a complex database.

Figure 4 shows that the resulting topological map is con-

sistent to the satellite image of the road. The resulting map

is composed by 12 road nodes and 10 environment nodes,

which means that a road segment of about 160 meters is

represented by a lightweight structure of only 22 nodes con-

taining high level information of the road and its surround-

ings.

The results of the proposed method are consistent to the

road environment, while keeping a lightweight and compu-

tationally efficient structure, making the proposed method

suitable for large scale outdoor semantic mapping.

The high level interpretation of the road allows easy and

fast ways to include high level deductions to the semantic

map, as shown in the results of the experiment in Figure 4.

By adding simple rules and expert information to the con-

ceptual map, it is possible to give new kinds of information

to an autonomous driving scheme, such as how dangerous

can be to take the vehicle to the sides of the road in case of

an emergency or an obstruction on the road.

Future work for this method includes automatic image

labeling and object detection, the inclusion of range sensors

for object detection and scene understanding. Another im-

portant challenge to solve for the proposed method is the

closed loop case, and how can it be implemented keeping

the method free from any global localization systems.
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