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Abstract

Road scenes can be naturally interpreted in terms of

a hierarchical structure consisting of parts and sub-parts,

which captures different degrees of abstraction at different

levels of the hierarchy. We introduce Latent Hierarchical

Part based Models (LHPMs), which provide a promising

framework for interpreting an image using a tree structure,

in the case when the root filter for non-leaf nodes may not be

available. While HPMs have been developed in the context

of object detection and pose estimation, their application

to scene understanding is restricted, due to the requirement

of having root filters for non-leaf nodes. In this work, we

propose a generalization of HPMs that dispenses with the

need for having root filters for non-leaf nodes, by treating

them as latent variables within a Dynamic Programming

based optimization scheme. We experimentally demonstrate

the importance of LHPMs for road scene understanding on

Continental and KITTI datasets respectively. We find that

the hierarchical interpretation leads to intuitive scene de-

scriptions, that is central for autonomous driving.

1. Introduction

We address the task of understanding a scene in terms

of a Latent Hierarchical Part based Model (LHPM). Such

models provide a way of interpreting the whole scene in

terms of the geometric relationships to its respective parts.

Each of these parts can in turn be recursively expressed

in terms of geometric relationships to their respective sub-

parts. As illustrated in Figure 1, the visual world naturally

lends itself to a tree based hierarchical representation that

captures different degrees of abstractions at different levels.

The parts of the hierarchy tend to have a natural geometric

relationship with each other.

The application of part based models to scene un-
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(a) Road scene with scene description

(b) Hierarchical decomposition of the scene in (a)

Figure 1. (a) A typical road scene with multiple lanes, dynamic

objects and static background. (b) Our approach interprets a

road scene using a Latent Hierarchical Part based Model (LHPM),

which dispenses the need for having root filters for non-leaf nodes

in the hierarchy.

derstanding [4, 22] have so far been restricted to non-

hierarchical (star-shaped) models. Hierarchical extensions

to part based models, in the form of Deformable Part based

Models (DPM) [9, 8, 21, 1], have been largely applied to

object detection and human pose estimation [30, 1, 31] re-

spectively. However, these approaches rely on having root

filters (detectors) corresponding to higher levels in the hier-

archy. This poses a problem for extending hierarchical part
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based model for scene understanding as it is generally not

feasible to have root filters for many regions in a scene, e.g.

for a road region.

Our contribution is to extend HPMs in a way that dis-

penses with the requirement for having root filters for the

non-leaf nodes of the hierarchy. Our extension involves

treating the non-leaf nodes as latent and inferring them in

a recursive manner within a optimization scheme based on

Dynamic Programming (DP). Our approach extends regular

HPMs [9, 8, 21] to scene understanding, where root filters

are often an impractical idiosyncrasy.

Our experiments demonstrate the importance of LHPMs

for road scene understanding on two datasets capturing di-

verse road scenes. We show that encoding geometric rela-

tions at multiple levels results in a significant reduction of

errors. Moreover, we also show that the proposed LHPMs

deliver an intuitive interpretation of the scene. We demon-

strate the relevance of an interpretation specifically for au-

tonomous driving.

We organize the paper in the following manner. The fol-

lowing section describes the related work. Section 3 details

the formulation of LHPMs and presents the challenge due to

missing root filters for non-leaf nodes. Section 4 describes

our contribution towards incorporating latent estimation of

non-leaf nodes. Section 5 discusses the application of our

approach to road scene understanding. Section 6 is ded-

icated to evaluation and experimental analysis. Section 7

summarizes our main contributions and outlines future re-

search directions.

2. Related Work

Much of the research in scene understanding has ap-

proached this problem from the perspective of segmenta-

tion of pixels [6, 2] into semantically meaningful regions.

A Conditional Random Field (CRF) [18] is typically used

to model the appearance around a homogeneous region (e.g.

pixels, superpixels), combined with the spatial relations be-

tween neighboring regions. CRFs have been extended by

Ladickỳ et al. [16, 23] to model hierarchical relations be-

tween regions. Wojek et al. [28] proposed a novel ap-

proach based on conditional random field to jointly per-

form object detection and scene labeling. However, learn-

ing the optimal components of the model, especially with

several layers in the hierarchy, is practically intractable due

to complex dependencies. To address such complexities,

Munoz et al. [20] proposed a stacked hierarchical inference

on a graphical model, which breaks the complex inference

process into a hierarchical series of sub-problems. How-

ever, segmentation based techniques tend to create a noisy

segmentation in real road scenes, as pointed out by Mik-

sik et al. [19], who tried to resolve this issue using temporal

smoothing techniques (e.g. optical flow).

In contrast to the above segmentation-based approaches,

part based models offer a principled way of “searching” for

the right configuration of parts that can make up a whole

scene.

Closely related to our work is from authors Topfer et

al. [26], who apply a hierarchical part based model for in-

terpreting a road scene. Their basic building block is the

detection of a patch, which is defined in terms of a pair of

parallel lane-marking features. They recursively build lanes

by stacking these patches together explicitly in their graph-

ical representation. Spatial relations between patches and

between lanes, are represented by continuous distributions

and non-parametric belief propagation is used to perform

inference in this framework. Their approach relies on the

presence of a sequence of patches that would constitute a

lane. In contrast to this work, our approach avoids linearly

stacking up patches to build lanes. The novelty of our ap-

proach lies in treating the positions of lane separators, lanes

and road region as latent variables and estimating these in

our inference scheme.

Pandey & Lazebnik [22] apply part based model for

scene understanding. However, the application of part

based models to scene understanding has so far been re-

stricted to star-shape models, where the root node is also

detected using a dedicated filter.

The significance of hierarchy for part based models has

been demonstrated in the case of object detection [11, 8,

21, 1] and human pose estimation [30, 1, 31] respectively.

However, their extension to scene understanding remains

restricted since these approaches, again, rely on having root

filter(s) (i.e. detectors) corresponding to higher levels in the

hierarchy, and it is generally not feasible to have root filters

for many regions in a scene (e.g. for a road region).

Our contribution is to generalize HPMs to road scene

understanding, where root filters are often impractical. We

show that a more complex hierarchical structure imposes

strong constraints that enables us to efficiently search for the

right configuration of parts that can make up a whole scene,

despite errors arising from object detectors at the bottom

level. Moreover, by dispensing with the need of having root

filters for the non-leaf nodes, we are able to extend HPMs

to road scene understanding.

3. Formulation

Given an image I of a road scene, we would like to inter-

pret this image in terms of a hierarchical part based model,

such as the one illustrated in Figure 1. Such a model aptly

represents a scene in terms of the relationship between parts

and their respective sub-parts. The tree has a root node in

form of a global scene node, which captures the static as-

pect as shown in Figure 1. This root node is decomposed in

terms of its respective parts, each of which in-turn are split

into further parts at the next level of the tree structure.

More formally, a node in the tree is given by v and the

27



set of all nodes in the tree are given by V . The leaf nodes

are Vf ⊂ V . Any node v except the root node has an unique

parent given by pa(v). Similarly, any node v, except the

leaf nodes, has a set of children given by the set ch(v).
The random variable lv is a hypothesis for the location

of the node v in the image I. For any particular non-leaf

node v with position lv , we define a configuration Lch(v) as

a set of children nodes Lch(v) = {..., lv′ , ...}. The random

variable L = {..., lv, ...} represents one particular hypoth-

esized scene configuration consisting of locations of all the

nodes in the tree.

Our objective is to infer the optimal scene configura-

tion L̂ that maximizes the posterior probability distribution

P(L|I,Θ), given Θ = {..., θv, ...}, the model set for all the

nodes in the tree.

L̂ = argmax
L

P
(

L|I,Θ
)

(1)

The hierarchy imposes natural conditional independence

assumptions, using which we can factorize the posterior as

P(L|I,Θ) ∝
∏

v∈Vf

P
(

lv|I,Θ
)

∏

v∈V\Vf

P
(

lv|Lch(v),Θ
)

(2)

This probability first of all implies that the location lv of any

particular leaf node v ∈ Vf is directly constrained by the ap-

pearance probability P
(

lv|I,Θ
)

of placing a window at lo-

cation lv over the image I, provided by the object detector.

Secondly, the location lv of any non-leaf node v is indirectly

constrained by the locations Lch(v) = {lv′ : v′ ∈ ch(v)} of

their respective children nodes ch(v) according to the spa-

tial probability P
(

lv|Lch(v),Θ
)

.

In a nutshell, Equation 2 expresses our key objective i.e.

the optimal configuration L̂ is the one that maximizes the

posterior P
(

L|I,Θ
)

.

4. Optimization

In order to optimize Equation 2 in an efficient manner,

we use dynamic programming (DP), which has been con-

sidered a natural choice for tree structures [9, 8]. The DP

based optimization is expressed as follows.

B(lv) = max
lv

(

P
(

lv|Lch(v)

)

∏

v′∈ch(v)

B(lv′)
)

(3)

The DP formulation given above expresses the probabil-

ity B(lv) of the optimal location lv of a node v, which

is recursively expressed in terms of (i) the spatial proba-

bility P
(

lv|Lch(v)

)

; (ii) the accumulated optimal produc-

tion probabilities of all its children given by the product
∏

v′∈ch(v) B(lv′). For the leaf nodes, the production proba-

bility is given by the appearance probability P
(

lv|I,Θ
)

or

more simply P(lv).

The DP formulation assumes that the optimal position l̂v
for each node v requires the optimal configuration L̂ch(v) of

its children nodes to be already found. Thus, the inference

procedure starts from the leaf nodes and proceeds upwards

recursively until the root node is reached. When the root

node of the hierarchy is reached, we can read off exactly

which configurations led to this global maximum, by re-

constructing which predecessor states led to the best result.

Arriving back at the leaf nodes, our solution is complete.

In order to find the optimal configuration for any node v,

we have to generate multiple configurations Lch(v) for all

its children nodes and score each of them as follows.

B(lv) = max
lv

∏

lv′

(

P
(

lv′ |lv
)

∏

v′∈ch(v)

B(lv′)
)

(4)

In previous works on applying HPMs to object detec-

tion [9, 8, 21, 1] and human pose estimation [30, 1, 31]

respectively, the position lv of the root node, required to

compute the probability P
(

lv′ |lv
)

is generally provided by

the use of a root filter (i.e. appearance probability given by

an object detector). Such a setup can significantly help in

keeping the search space in the aforementioned energy sur-

face more tractable. However, it is not feasible to have a

root filter for scene entities that are hard to detect using a

sliding window based detector (e.g. road regions). There-

fore, we here treat the root node as a global scene node.

We compute the expected position E(lv|Lch(v)) of a la-

tent parent node v, given a configuration Lch(v) of its chil-

dren nodes as follows.

E(lv|Lch(v)) =
∑

lv′∈Lch(v)

E(lv|lv′)P(lv′) (5)

Here, E(lv|lv′) is the expected position lv of a latent par-

ent node v with respect to a single child node lv′ ∈ Lch(v).

This expectation is in turn computed by taking the expec-

tation of lv given the conditional probability distribution

P(lv|lv′ , θv), as follows.

E(lv|lv′) =

∫

lvP(lv|lv′ , θv)dlv (6)

The distribution P(lv|lv′ , θv) given in Equation 6 spec-

ifies the probability of the position of lv given a child

node’s position lv′ using an appropriate probability distri-

bution with parameters θv . We rewrite Equation 4 using the

expected position lv which is computed using Equation 5

and 6 as follows

B(lv) = max
lv

∏

lv′

(

P
(

lv′ |E(lv|Lch(v)), θv
)

∏

v′∈Lch(v)

B(lv′)
)

(7)

The inference procedure proceeds upwards in the tree by

iteratively using Equation 7 to score possible locations for
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each node in the tree, until the scene node is reached. At this

point, the optimal configuration for the entire tree is the set

of configurations for each node that maximizes Equation 7.

5. Application to Road Scene Understanding

In this section, we describe the application of LHPMs

to the proposed hierarchical interpretation of road region as

shown in Figure 1. For the sake of illustration we consider

a part of this hierarchy that corresponds to the road region,

with four levels corresponding to lane markers, lane separa-

tors, lanes and the road region respectively. The road region

is especially interesting because the use of root filters to de-

tect higher level entities (such as lane separators and lanes)

is in-feasible using sliding window based object detectors.

The proposed LHPMs addresses this issue by treating the

higher level entities as latent nodes in the inference proce-

dure as described in Section 4.

We now describe the details of how the latent position l̂v
of a parent node v is estimated given a certain configuration

Lch(v) = {..., lv′ , ...} using two steps. Firstly, each child

node v′ ∈ ch(v) given its respective location lv′ , projects

the expected position E(lv|lv′) of the reference node v us-

ing the model for the node θv as given by Equation 6. In

our application, we use a bi-variant normal distribution to

model the spatial relationship a parent and child node.

For level 1 in the hierarchy depicted in Figure 2 (a), the

expected position of a lane separator is projected by the lane

markers in level 0, as shown using the black markers in Fig-

ure 2 (b). Similarly, the expected positions of the lanes and

the road region are each projected by the lane separators and

lanes respectively for the next two levels of the hierarchy,

This is illustrated in Figure 2 (e) for level 2 and Figure 2 (h)

for level 3 respectively.

In the second step, the expected position E(lv|Lch(v)) of

lv given a configuration Lch(v) of its child nodes is com-

puted using Equation 5 and is illustrated using an orange

marker for level-1 (lane separators) in Figure 2 (b), an or-

ange line for level-2 (lanes) in Figure 2 (e) and level-3 (road

region) in Figure 2 (h) respectively.

Having inferred the expected position E(lv|Lch(v)) of

the parent node v, we use the learned model θv to compute

the spatial probability P
(

lv′ |E(lv|Lch(v)), θv
)

that appears

in Equation 7. The bi-variate distributions given by param-

eters θv are illustrated for all three levels in Figure 2 (c)

(lane separators), Figure 2 (f) (lanes) and Figure 2 (h) (road

region).

6. Experiments

We report our results on two datasets. The first dataset

was collected by Continental AG, depicting a variety of

traffic scenarios with different types of lane configurations.

This dataset contains multi-lane annotations, enabling us to

perform more detailed lane-based evaluation for validating

our approach. This dataset is divided into 150 images for

training and 150 images for testing.

The second dataset is the KITTI Vision Dataset [10].

This dataset contains a set of 95 images, which were ex-

tracted from video footage of driving around urban roads,

and was manually annotated with binary labels specifying

whether each pixel is drivable road or otherwise.

In this work, we have used the Continental training

dataset for training our object detectors and learning the

parameters of our LHPMs. We report our results on the

Continental test set, comprising of 150 images. We also use

the same models to report our performance on the KITTI

dataset. Our results given in the next subsection show

the robustness of using models trained on the Continental

dataset in extrapolating to the KITTI dataset, without any

extra training.

We first ran a sliding window based object detector for

the lane markers, pedestrians and cars respectively. We

used Histograms of Oriented Gradient (HOG) feature de-

scriptors [5] and a linear SVM classifier [27]. We deliber-

ately kept a low detection and non-maximum suppression

threshold, generating noisy detections as shown in the first

column of Figure 4 and Figure 5. We then feed these detec-

tions to the proposed LHPM. We obtain results at different

levels of the hierarchy, namely person and car for moving

objects, and a configuration of lane markers, lane separa-

tors and lanes respectively. We limit the lane detection upto

3 lanes (i.e. left-lane, ego-lane and right-lane) in this work.

Finally, we use a standard F1 computed based on PASCAL

VOC guidelines [7], as a scoring criterion to evaluate the

performance of the proposed LHPM.

6.1. Quantitative Evaluation

In this section, we present a quantitative evaluation of

our approach. The results show that the performance LH-

PMs produce promising performance on both Continental

and KITTI dataset.

More significantly, we would like to assess the role

of LHPMs for hierarchical scene interpretation. We first

present a comparison of the performance of detecting the

ego lane at different levels of the tree based representation.

Figure 3 (c) for the KITTI dataset and Figure 3(a) for the

Continental dataset, represents the performance of detecting

the ego-lane at various levels. In these plots, the F-measure

is plotted on the y-axis and ao area of overlap (expressed in

percentage) is plotted on the x-axis. We observe from these

two plots that the performance at level-1 is comparatively

lower to level-2 and level-3 for all overlap values.

Our second comparison consists of evaluating the perfor-

mance difference between level-2 and level-3, in detecting

all the three lanes (i.e. ego-lane, left-lane, right-lane) and

plotting the resulting F-measure vs ao – see Figure 3 (b).
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(a) (b) (c)

(d) (e) (f)

(g) (h)
Figure 2. This figure is used to describe the computation of the latent node’s position for all three levels of the road region hierarchy. The

details are described in the main text.

We observe a similar result as before: the performance at

level-3 is always better than that at level-2 as one would sus-

pect as more scene information is taken into account. (Note:

Level-1 is not taken into consideration in this comparison,

since at level-1 the objective is to detect lane separator and

has no information of how a lane/road-region looks like.
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(a) (b) (c)
Figure 3. The above plots report the performance in terms of the F -measure for different values of overlap ao. Sub-Figure (a) compares the

performance of detection performance for the ego lane at levels 1, 2 and 3 respectively, on the Continental dataset. Sub-Figure (b) depicts

the detection performance for left, ego and right lanes at levels 2 and 3 respectively, on the Continental dataset. Sub-Figure (c) depicts the

detection performance for the ego lane at levels 1, 2 and 3 respectively, on the KITTI dataset.

UM - Perspective space

Method Fmax Prec. Recall Acc

BL [10] 88.9 87.3 90.6 95.3

SPRAY [15] 88.3 90.7 86.0 95.2

LHPM 87.0 60.5 75.2 94.0

Table 1. Results [%] of pixel-based ego-lane evaluation in perspec-

tive space, on the KITTI dataset for Urban Marked (UM) road

scenes.

Thus, a comparison with level-2 and level-3 would be un-

fair.)

These results support the following conclusion: an

LHPM-based approach with multiple levels, leading to a

road scene understanding, can effectively reduce errors,

given that more information is included at multiple levels

in a structured manner.

6.2. Qualitative Evaluation

For a qualitative analysis we direct the readers attention

to Figure 5 for the Continental dataset and Figure 4 for the

KITTI dataset respectively.

These two figures depict detection results on images as

represented by rows. The first column shows lane marker

detections at a low detection threshold (color coding: red

to green in decreasing order of detection score). The sec-

ond and third columns show detection results at level-2 and

level-3 respectively (color coding: (i) red represents left-

lane; (ii) green represents ego-lane and (iii) blue represents

right-lane). Detections of the pedestrians and vehicles are

also shown in order to infer the relative locations of these

moving objects with respect to these different lanes.

In Figure 5 (a,c,d), despite noisy detections, both Level

2 and 3, have been able to predict all three lanes. However,

in Figure 5 (b), there is a significant amount of false pos-

itives on the right lane. Although these false positives are

of low scores (bright green boxes in first image from left),

yet their spatial arrangement yields a better lane hypothe-

sis when compared to the spatial arrangement of the high

scoring detections. Thus, at level-2, the ego lane is wrongly

predicted. Again, we are able to correct the error at level-3

(first image from right) when we jointly model the lanes.

Similarly, for the KITTI dataset depicted in Figure 4 (a)

poses challenges due to complex shadow formations. Fig-

ures 4 (b,d,e) pose challenges due to the insufficient evi-

dence from painted lane boundaries. We observe that de-

spite noisy detections, level 3 has been able to achieve

promising performance on detecting the lanes.

6.3. Scene Description

In contrast to existing approaches on lane/road detec-

tion [24, 3, 12, 25, 14] techniques, our approach is capable

of providing an intuitive scene description. We underlay

this assumption with the following examples: in Figure 5 (a)

we observe (i) one truck on the ego lane; (ii) another truck

on the left lane. In Figure 5 (b) (i) two pedestrians on the

left side walk; (ii) one pedestrian on the right side walk. In

Figure 5 (c), (i) one pedestrian is standing on the left side

of the left-lane; (ii) one pedestrian is standing on the right

side of the right cyclist lane; (iii) two cars on the left-lane;

(iv) one car on the ego lane. In Figure 5 (d), (i) two cyclists

on the right-lane; (ii) a car on the ego-lane. Such intuitive

scene descriptions can provide input to multiple driver as-

sistance systems, including fully autonomous driving.

7. Conclusion

Our proposed approach adopts a natural way to interpret

a road scene in terms of a hierarchical part based model.

We extend HPMs to scene understanding by proposing an
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Detections Level-2 Level-3

(a)

(b)

(c)

(d)

(e)
Figure 4. Qualitative results on images from KITTI dataset. Despite a large number of high scoring false positive detections at Level-0,

Level-2 results in an optimal interpretation of the road region in terms of its constituent lanes in rows a,b and c. However in rows d and e,

Level-2 has resulted in erroneous overlap (yellow) of the ego lane (green) and left lane (red) predictions. Level-3 further corrects the errors

at Level-2 by taking spatial relationships between lanes into consideration.

approach that dispenses with the need for having root fil-

ters for non-leaf nodes, by treating them as latent variables

within a DP-based optimization. Our experiments demon-

strate that we can significantly reduce errors, when more in-

formation is included at multiple levels in a structured man-

ner. Moreover, we find that the hierarchical interpretation

also leads to intuitive scene descriptions that are central to

autonomous driving.

In the future, we plan to investigate the combination of

part based models with semantic segmentation based ap-

proach in the context of scene understanding, taking inspi-

ration from recent work [29, 17, 13] along this direction.

Furthermore, we also plan to extend the proposed LHPMs

to model the dynamic aspects (e.g. tracking and interactions

between scene entities) of a scene.
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