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Abstract

Simultaneous Localization and Mapping (SLAM) algo-

rithms have been recently deployed on mobile devices,

where they can enable a broad range of novel applications.

Nevertheless, pure visual SLAM is inherently weak at oper-

ating in environments with a reduced number of visual fea-

tures. Indeed, even many recent proposals based on RGB-D

sensors cannot handle properly such scenarios, as several

steps of the algorithms are based on matching visual fea-

tures. In this work we propose a framework suitable for

mobile platforms to fuse pose estimations attained from vi-

sual and inertial measurements, with the aim of extending

the range of scenarios addressable by mobile visual SLAM.

The framework deploys an array of Kalman filters where the

careful selection of the state variables and the preprocess-

ing of the inertial sensor measurements result in a simple

and effective data fusion process. We present qualitative

and quantitative experiments to show the improved SLAM

performance delivered by the proposed approach.

1. Introduction

The problem of Simultaneous Localization And Map-

ping (SLAM) has been traditionally addressed by either ex-

pensive 3D sensors, e.g. laser scanners, or monocular RGB

cameras. The former have enabled impressive results thanks

to their high-quality measurements [4], although size and

expensiveness limit the breadth of their applications. On

the other hand, monocular SLAM has reached a consider-

able maturity [7, 14] but still mandates massive paralleliza-

tion by GPGPU to attain dense 3D reconstruction [18]. In

the past few years, consumer-grade RGB-D cameras ca-

pable of delivering colour and depth information in real-

time, e.g. the Microsoft Kinect and Asus Xtion Pro Live,

have fostered new approaches to tackle the SLAM problem

[17, 11, 9].

Nowadays, novel devices aimed at enhancing mobile

platforms with RGB-D sensing capabilities are starting to

become available, examples including the Structure sensor,

Google’s Project Tango and the Intel RealSense 3D Cam-

era. However, most RGB-D SLAM systems are unsuited to

mobile platforms due to their reliance on massive GPGPU

processing to pursue real-time or even interactive operation

on desktop PCs [17, 9].

This is not the case, though, of the recently proposed

SlamDunk algorithm [10], which features few threads, low

memory consumption and, peculiarly, can achieve real-time

RGB-D SLAM on a desktop PC without GPGPU acceler-

ation. Due to its favorable computational traits as well as

its robustness and speed, SlamDunk was then adopted as

reference architecture for the creation of the first RGB-D

SLAM framework amenable to mobile platforms [5]. The

results reported in [5] show the mobile algorithm to attain

an accuracy comparable to the desktop version as well as

an approximate speed of about 6-7 frames per second on an

off-the-shelf Android tablet.

In spite of the adoption of RGB-D sensing, a major fail-

ure case for most visual SLAM algorithms, including Slam-

Dunk, concerns the exploration of environments that are

poor in texture, such that image features are scarce. Indeed,

all RGB-D SLAM systems but KinectFusion [17] and its

variants [6] rely on detection and matching 2D visual fea-

tures in order to accomplish key tasks such as camera track-

ing. On the other end, even low-end mobile devices are

nowadays equipped with inertial sensors, the most common

being accelerometers and gyroscopes. Such sensors allow

for estimating the pose of the device with respect to its ini-

tial position and may therefore be deployed alongside visual

measurements to possibly ameliorate camera tracking. The

inertial data suffer of peculiar shortcomings, though, as they

are typically noisier than visual measurements and subject

to drift over time.

In this paper we propose a framework based on Kalman
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filtering to integrate inertial measurements into an RGB-

D SLAM system. Our framework is purposely simple to

allow for efficient implementation on resource-limited de-

vices. As the sampling rate of inertial sensors is signif-

icantly higher than the frame rate of the RGB-D camera,

the aim of our Kalman filtering is twofold: on one hand,

it smooths out noise as long as only inertial pose measure-

ments are gathered; on the other, it realizes the actual data

fusion whenever both inertial and visual SLAM pose esti-

mations are available.

The remainder of this paper is organized as follows. The

next section reviews some relevant publications on RGB-D

SLAM systems and the fusion of inertial and visual data for

SLAM/Visual Odometry. Then, in Sec. 3, we summarize

the SlamDunk pipeline, which we used to develop and test

our framework to fuse inertial measurements and RGB-D

SLAM. The proposed framework is then presented in Sec. 4

and experimental findings reported in Sec. 5. Finally, in

Sec. 6, we draw concluding remarks and highlight the major

issues to be addressed by future work.

2. Related Work

Most state-of-the-art RGB-D SLAM systems pro-

duce high-quality results through acceleration by massive

GPGPU processing on high-end desktop platforms [17, 24].

As such, these systems can hardly provide design guide-

lines towards rendering interactive SLAM feasible on plat-

forms with limited resources such as mobile devices. One

of the first RGB-D SLAM proposals was RGB-D Mapping

[11], which, indeed, does not rely on GPGPU acceleration.

They attain camera tracking by pairwise matching of im-

age features and carry out global pose graph optimization to

handle camera drift. To constrain nodes and make the op-

timization effective, the algorithm looks for possible loop

closures by matching image features within a subset of pre-

vious keyframes and perform global pose graph relaxation

accordingly. Therefore, as the explored space gets wider

and the graph size increases, more time is spent in finding

loop closures and optimizing poses. A similar approach is

deployed by RGB-D SLAM [9], which, moreover, can ob-

tain near real-time processing (less than 15 FPS) by deploy-

ing GPGPU processing to compute SIFT visual features.

Nonetheless, the speed usually drops after gathering many

frames due to the increasing complexity of the global opti-

mization routine. SlamDunk [10], presented in more details

in Sec. 3, is a recent proposal whereby some major issues

inherent to the discussed works can be dealt with effectively.

As a negative effect, SLAM algorithms deploying im-

age features may exhibit a significant performance deterio-

ration (or even fail) whenever features are scarce and/or less

reliable, e.g. while exploring low-textured portions of the

workspace or processing blurred images due to fast camera

movements. However, these issues may be tackled more

easily in the mobile realm thanks to the inertial sensors

available nowadays inside the majority of the devices. Ac-

cordingly, the work by Tanskanen et al. [22] uses a standard

Extended Kalman Filter to deploy both visual and inertial

measurements on a mobile phone. However, the system is

designed for object capturing by a monocular camera, with

dense 3D reconstruction running at about 0.3-0.5Hz. Dif-

ferently, our approach leverages on RGB-D sensing to at-

tain dense mapping and can reach much higher frame rates.

Another proposal dealing with fusion of visual and inertial

measurements is given by the work of Weiss and Siegwart

[23], which addresses monocular visual odometry and is

mainly aimed at estimating the metric scale. Purposely, the

authors propose a complex Extended Kalman Filter formu-

lation which may be fused with any visual odometry en-

gine. Another approach to visual and inertial data fusion is

given by the work of Huang et al. [12], which makes use

of an autonomous micro air vehicle (MAV) equipped with

an RGB-D camera and an IMU. The work mainly focuses

on the visual algorithm implementation, without showing

details on the Extended Kalman Filter used for the fusion.

Making a comparison with our approach, their visual al-

gorithm detects and matches FAST features which present

less robustness in opposition to the SURF features consid-

ered in our work. Moreover, the pose optimization step and

other operations are computed separately on a laptop com-

puter, while our approach executes entirely on the mobile

platform, reaching slower but still interactive frame rates.

Similar to our approach is also the work of Qayyum and

Kim [20], which is mainly focused on the usage of a Kinect

sensor in outdoor environments. In our work, instead, we

decided to focus on indoor scenarios that present a scarcity

of visual features.

3. SlamDunk System Overview

Fig. 1 shows the SlamDunk [10] algorithm pipeline,

which can be divided into three main modules: Local Map-

ping, Camera Tracking and Local Optimization. Local

Mapping models the camera path as a collection of RGB-

D keyframes and stores their poses within a quad-tree data

structure. To improve efficiency, the tracking procedure

does not consider the full camera path but, instead, a subset

of spatially adjacent keyframes is selected from the quad-

tree using an Active Window. Visual features associated

with such keyframes, e.g. SURF [2] or SIFT [16], are gath-

ered and stored into a local Feature Pool, which is a fast

indexing structure enabling efficient feature matching.

The Camera Tracking module is the first to execute, tak-

ing the RGB-D frame coming from a generic RGB-D cam-

era as input and returning the estimated camera pose. Visual

features are extracted from the RGB image and matched

into the Feature Pool to find correspondences between the

current frame and the keyframes stored in the local map.

2



Figure 1. The SlamDunk pipeline comprises three main modules: Camera Tracking, Local Mapping, and Local Optimization.

Using the associated depth measurements, matching pixels

are back-projected in the 3D space leading to 3D correspon-

dences. Subsequently, a full 6DOF pose can be robustly

estimated by running a standard Absolute Orientation algo-

rithm [1] within a RANSAC framework. Camera pose is

represented as a 4×4 matrix in the following format:

T =

(

R t

0
⊤
3 1

)

, (1)

where R represents a 3×3 rotation matrix and t is a trans-

lation vector. Points are projected onto the image plane by

means of the camera matrix, while the 3D back-projection

is computed taking into consideration the associated depth

measurement for each pixel, as detailed in [10].

Given the calculated pose, if the currently tracked frame

presents a limited overlap with respect to the Local Map, it

is promoted as a new keyframe, thereby triggering the Lo-

cal Optimization module and updating the Local Map itself,

which gets centered around the newly spawned keyframe.

The Local Optimization module has the task of optimiz-

ing poses across a pose graph associated with the keyframes

to minimize the reconstruction error. Further details on the

cost function used for this optimization can be found in [10].

A mobile implementation of the algorithm is proposed

in [5], in order to cope with the issues related to the re-

duced computational resources available in mobile devices

compared to the typical desktop PC environment. In par-

ticular, the feature detection and extraction algorithms used

by SlamDunk, i.e. SIFT [16] or SURF [2], would have been

computationally too expensive for a mobile environment.

Hence, to minimize loss of accuracy and maintain an ac-

ceptable speed, an optimized Upright-SURF detector and

the BRISK descriptor [15] were deployed. Moreover, a new

software architecture was developed around the algorithm

pipeline, thus allowing for faster communication between

the different modules and avoiding bottlenecks in the sys-

tem.

4. Inertial Data Fusion

The integration of inertial measurements alongside vi-

sual measurements sets forth several challenges. First, the

sensors available inside common mobile devices present

considerable measurement noise. In this work, we use only

the most common inertial sensors that can provide a full

pose estimation, i.e. the gyroscope, to measure angular ve-

locity and integrate it to estimate rotation angles, and the

accelerometer, to measure linear acceleration and double in-

tegrate it to estimate translations. The magnetometer could

also be employed to estimate rotations but it is subject to

severe disturbances in the presence of sources of electro-

magnetic fields and thus we opted not to use it. The vi-

sual measurements, too, present some degree of noise that

should be considered when fusing pose estimates. A so-

lution that is computationally not expensive and takes into

account the errors in estimating the pose from different sen-

sors is offered by the Kalman filter [13].

Fig. 2 shows the new module included into the Slam-

Dunk pipeline, which consists of two Kalman filters. Given

measurements coming from the tracking module and the in-

ertial sensors, one filter is used to estimate camera orienta-

tion and the other filter to estimate camera position. We add

the new module before the keyframe check and the optional

optimization step to let the data fusion beneficially influ-
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Figure 2. Schematic representation of the sensor fusion module and its connections to the SlamDunk modules.

ence both the camera tracking, by considering its output as

the device pose for the current frame, as well as the local op-

timization, where the filtered pose provides a better initial

guess. The subdivision of orientation and position filtering

allows us to test two different versions of the module, one

with only the orientation estimation and another that also

considers position estimation.

A second challenge is represented by the different ac-

quisition rates. In our scenario the accelerometer runs at

about 200 Hz, the gyroscope at about 100 Hz, whereas the

visual tracker is able to produce a pose estimation every 6

frames on average. We decided to solve this problem by

using the same Kalman filters in two different operational

modes: a blind update mode, where only the measurement

coming from the corresponding inertial sensor is used, and a

non-blind update mode, where both inertial and visual mea-

surements are used. The blind update is executed at the

same frequency as the corresponding sensor and is useful to

let the internal state of the filter evolve at the correct frame

rate and, at the same time, filter the inherent noise. The

non-blind update, instead, runs every time a new pose from

the camera tracker is available and accomplishes the proper

data fusion. After every non-blind update the results are

made available to the subsequent modules. This operation

is also helpful in reducing the inherent drift caused by in-

tegration over time of inertial measurements. Both update

modes are preceded by a predict phase, in which the inter-

nal states of the filters are propagated to the new time step

according to a selected motion model.

While camera tracking runs, the Kalman filter state

freezes to the inertial measurement closest to the frame

acquisition time and we buffer the following inertial data

without running the associated blind updates. As soon as

the pose from visual measurements is available, we run one

non-blind update and then let the filter advance to the cur-

rent time step with a series of blind updates, thus consuming

the buffered measurements. During the optimization phase,

if present, the Kalman filters will continue updating their

internal states thanks to the received inertial measurements.

4.1. Estimation of Measurements Uncertainty

Fusion of the poses provided by visual and inertial sen-

sors within a Kalman filtering framework requires estima-

tion of measurement uncertainties. The measurement errors

of the inertial sensors depend primarily on the characteris-

tics and quality of the actual physical devices. As such, we

considered the uncertainties associated with inertial mea-

surements as constant values and tuned them heurisitically.

Conversely, the quality of the pose obtained from visual

data varies with the amount of geometric structures and

texture in the current frame. Therefore, we estimate the

uncertainty of the poses provided by SlamDunk’s camera

tracking module dynamically. In particular, we estimate the

coherence of the feature matches under the estimated pose

according to the following formula
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rvisualk =

∑

(u,v)∈m(Ik,Ij)

s(u, v) (Pk f
k
u − Pj f

j
v ))

2

∑

(u,v)∈m(Ik,Ij)

s(u, v)

∀Ij ∈ AW ,

(2)

where the weighted average runs over the set m of all

feature matches (u, v) between the current frame Ik and the

keyframes Ij in the Active Window (AW ). Pk and Pj rep-

resent the frame and keyframe poses while fk
u and f j

v denote

the 3D projections of feature points u and v. Each term in

the sum is weighed by the score provided by the feature

matching process, s(u, v), so to give more importance to

matches with a higher score.

4.2. Orientation Filtering and Fusion

The state variables of the filter dealing with the orienta-

tion (Fig. 2, left side) are represented as follows:

xor
k =

(

θk

ωk

)

, (3)

where θk represents the rotation at time k between the

Device Reference Frame (DRF) and the World Reference

Frame (WRF), i.e. the frame coincident with the device’s

pose at time 0, and ωk represents the angular velocity in the

DRF. Both θk and ωk are expressed in axis-angle notation.

The predict phase is based on a constant angular veloc-

ity model. To compute the estimate of the state for the new

time step k, we need to integrate the previous angular veloc-

ity over the time interval ∆t and then combine it with the

previous orientation θk−1. Since rotations cannot be com-

bined directly in the axis-angle representation, they have to

be converted forth and back to the rotation matrix format,

which is achieved via matrix exponential and logarithm [3].

This results in non-linear predict equations

θk|k−1 = log(exp(θk−1|k−1) · exp(ωk−1|k−1 ∆t)) (4)

ωk|k−1 = ωk−1|k−1 (5)

which we handle by an Extended Kalman Filter (EKF)

approach. By numerical differentiation of the equations

around xori
k−1 we can calculate the state transition matrix

Fk−1 and consequently update the estimate error covari-

ance matrix Pk|k−1 of the filter by the standard EKF equa-

tions.

Thanks to the chosen state representation, the blind up-

date is linear and thus relies on the standard update equa-

tions of the Kalman filter. The measurement in the blind up-

date is simply the gyroscope angular velocity ω
gyro
k while

the corresponding matrix for the residual calculation is

given by Hblind = [03×3 I3×3].

In the non-blind update, instead, the measurement is

given by Rvisual
k , i.e. the rotation matrix estimated by the

camera tracker, and the angular velocity ω
gyro
k estimated by

the gyroscope. In this case, the innovation of the filter, i.e.

the difference between the predicted state and the measure-

ment for the current frame, cannot be computed directly in

the angle-axis representation. This leads to non-linear up-

date equations that slightly deviate from the traditional EKF

formulas, as done e.g. in [8]. In our case, the innovation in

the non-blind case for the first three entries of the state vec-

tor becomes

yori
k = Rvisual

k ⊖Hθ
ori
k|k−1 (6)

= log
(

Rvisual
k exp(Hθ

ori
k|k−1)

T
)

(7)

where ⊖ denotes motion composition. The Kalman gain

Kk is then estimated as usual, whereas the updated estimate

of the state becomes

θk|k = θk|k−1 ⊕Kk y
ori
k (8)

= log
(

exp(Kk y
ori
k ) exp(θk|k−1)

)

. (9)

The measurement noise covariance matrix for the blind

update is represented as a 3×3 diagonal matrix with the

gyroscope noise values r
gyro
k on the diagonal, Rblind =

rgyro I3×3. For the non-blind update the matrix is expanded

to a 6×6 diagonal matrix, taking into consideration both

SlamDunk uncertainty rvisualk (Eq. 2) for the first three

entries of the measurement vector and the gyroscope noise

rgyro for the others.

4.3. Position Filtering and Fusion

As far as the translation component is concerned, we can

use a linear Kalman filter (Fig. 2, right side) with the stan-

dard kinematic equations for constant acceleration motion.

However, the accelerometer measures gravity alongside the

desired linear acceleration, and this component must be re-

moved in order to perform double integration of linear ac-

celeration to estimate translation. Moreover, to combine

measurements from the accelerometer, which are expressed

in the Device Reference Frame, with the state of the fil-

ter, which stores the translation with respect to the World

Reference Frame, the rotation between the reference frames

needs to be compensated.

In our approach the gravity vector is estimated at the start

of the application by measuring the accelerometer output in

the very first frames and filtering it out by a low-pass fil-

ter. Every time the acceleration from the inertial sensor is

available, the rotation between the reference frames is com-

pensated by rotating the accelerometer output vector using

the transformation provided by the Orientation EKF. This

allows for removing the gravity component as detailed in

the following equation:

aWRF
k = exp(θk)a

acc
k − g , (10)
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Figure 3. Mobile setup used in the experiments.

where aacck represents the measurement from the ac-

celerometer, θk represents the current rotation, g is the es-

timated gravity vector, and aWRF
k is the resulting linear

acceleration in the WRF, which will be used as measure-

ment for the Kalman filter in the updates. After rotation is

compensated, the position estimation along the three axes is

computed by a linear Kalman filter.

The state of the filter is given by position, velocity and

acceleration of the device:

x
pos
k =





pk

vk

ak



 . (11)

The predict phase is based on the kinematic equations of

motion:

xk|k−1 = F posxk−1|k−1, F pos =





1 ∆t ∆t2

2
0 1 ∆t

0 0 1



 .

(12)

The Kalman updates are linear as well. In the blind up-

date, the measurement is given by the linear acceleration

only, while the non-blind update fuses the linear accelera-

tion from the sensor with the position estimated by the cam-

era tracker. The measurement noise covariance matrices

Rpos use the accelerometer noise values racc, with the ad-

dition of the SlamDunk measurement uncertainties rvisualk

in case of the non-blind update.

5. Experimental Results

In this section, we present quantitative and qualitative re-

sults obtained by running three different versions of mobile

SlamDunk. The first version is the original formulation of

the algorithm [5], which does not include any fusion of iner-

tial measurements by Kalman filters and thus deploys visual

tracking only. The second version is obtained by integrating

into SlamDunk only the Orientation Kalman filter (Fig. 2,

left side) and using the position estimations provided by the

visual tracker. The third version consists in the integration

into SlamDunk of both the Orientation and Position Kalman

filters (i.e. the overall pipeline depicted in Fig. 2). The ref-

erence mobile platform used throughout all experiments is a

Samsung Galaxy Tab Pro 10.1 tablet running Android 4.4.2

on which we mounted the Structure depth sensor from Oc-

cipital [19] as shown in Fig. 3.

To obtain quantitative experiments we have processed

three RGB-D sequences, with the RGB channels obtained

by the colour camera of the tablet and the depth channel

by the Structure sensor. Some RGB frames of these se-

quences are shown in Fig. 4. Prior to the acquisitions, we

calibrated the colour camera and the depth sensor so to be

able to record aligned RGB and depth frames. To estimate

the ground truth pose, we placed a chessboard in the scene

and used the knowledge of the intrinsic parameters of the

RGB camera. In some parts of the sequences the device

moves away from the chessboard so to allow exploration

of a wider environment, later coming back to a position

which enables to see the chessboard again. Accordingly,

ground-truth poses are available only for those frames fea-

turing the presence of the chessboard. We adopted this

simple methodology due to the absence of publicly avail-

able datasets that include both RGB-D and inertial data to-

gether with ground-truth information. To foster develop-

ment in this area of research, as an additional contribution of

this paper we will make our datasets and the corresponding

ground-truth publicly available. The comparison between

the three versions of mobile SlamDunk is based on RMSE

values calculated using the methodology and tools of the

TUM RGB-D benchmark dataset [21].

The quantitative results are reported in Tab. 1. In the

case of the sequence Room Closets, both formulations of

mobile SlamDunk including Kalman filtering turn out sig-

nificantly more accurate than the version relying on visual

tracking only. This is mainly due to the scarcity of distinc-

tive and reliable visual features on the surfaces present in

the explored environment. Qualitative results dealing with

the Room Closets sequence are shown in Fig. 6, which also

highlights how a large portion of the room is occupied by

a white (i.e. nearly feature-less) closet. In the other two

sequences, alike, the SlamDunk version integrating the Ori-

entation Kalman filter neatly outperforms the algorithm re-

lying on visual tracking only. Moreover, in all the three

sequences we observed a higher error in case the Position

Kalman filter is included compared to the results attained

using only the Orientation Kalman filter. We ascribe this

to propagation of the errors associated with the double inte-

gration process required to convert linear accelerations into

position measurements.

We also present the mean execution times of the different

operations, as shown in Tab. 2. These results clearly show

that our lightweight approach does not significantly affect

the frame rate of the system, even in the case of a consider-
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Measurement RMSE Kalman (Orientation) RMSE Kalman (Orientation + Position) RMSE without Kalman

Room Closets 0.0532 0.0710 0.3134

Kitchen 0.0372 0.0574 0.0376

Bookcases 0.0257 0.1852 0.0365

Table 1. RMSE values (meters) of the different versions with respect to the calculated ground-truth of the sequence.

Operation Execution Time

Predict + Update blind (Orientation) 0.022 milliseconds

Predict + Update non-blind (Orientation) 0.030 milliseconds

Predict + Update blind (Position) 0.015 milliseconds

Predict + Update non-blind (Position) 0.022 milliseconds

Table 2. Execution times of the Kalman operations.

Figure 4. Some RGB frames from the three sequences used to obtain quantitative results.

able number of updates that follow the tracking phase.

Some final reconstructions can also be qualitatively in-

spected in Fig. 5 and Fig. 6. These two examples show that

the improved tracking accuracy provided by the fusion of

inertial and visual measurements can produce notable dif-

ferences in the overall 3D reconstruction quality.

An interactive view of some of the captured reconstruc-

tions has been made available as supplementary material.

6. Conclusion and Future Work

Depth sensing on mobile devices will likely become a

commodity in the near future so to enable new applications
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Figure 5. 3D reconstruction of a table using visual measurements only (left) and fusing inertial and visual measurements (right).

Figure 6. Partial 3D reconstruction of a poorly textured room using visual measurements only (left) and fusing inertial and visual measure-

ments (right).

and deliver new experiences to users. In this work, we have

shown a simple but effective framework to leverage the in-

ertial sensors widely available in smartphones and tablets

to ameliorate RGB-D SLAM on mobile devices. Our find-

ings vouch that fusing the angular velocity measurements

provided by the gyroscope alongside visual camera track-

ing according to an Extended Kalman Filtering formula-

tion can consistently and significantly improve pose estima-

tion with respect to a purely visual SLAM approach. How-

ever, with our implementation we found it much less ben-

eficial the deployment of the accelerometer due to issues

arising in the double integration process required to attain

position measurements. Therefore, we plan to investigate

on how to better deploy linear acceleration data for mobile

RGB-D SLAM, possible approaches including more accu-

rate numerical integration of acceleration data, velocity re-

set in near-stationary conditions or more complex filtering

schemes, as described e.g. in [23].

Eventually, we have created and will make available the

first dataset featuring RGB-D streams synchronized with in-

ertial measurements as well as ground-truth camera poses.

8



References

[1] K. S. Arun, T. S. Huang, and S. D. Blostein. Least-squares

fitting of two 3-d point sets. IEEE Trans. Pattern Anal. Mach.

Intell., 9(5):698–700, sept 1987.

[2] H. Bay, A. Ess, T. Tuytelaars, and L. V. Gool. Speeded-up

robust features (SURF). Computer Vision and Image Under-

standing, 110(3):346 – 359, September, 10 2008.

[3] J.-L. Blanco. A tutorial on se(3) transformation parameteri-

zations and on-manifold optimization. Technical report, Uni-

versity of Malaga, Sept. 2010.

[4] D. Borrmann, J. Elseberg, K. Lingemann, A. Nüchter, and
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