Multi-Task Self-Supervised Visual Learning

Carl Doersch, Andrew Zisserman; Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2017, pp. 2051-2060


We investigate methods for combining multiple self-supervised tasks---i.e., supervised tasks where data can be collected without manual labeling---in order to train a single visual representation. First, we provide an apples-to-apples comparison of four different self-supervised tasks using the very deep ResNet-101 architecture. We then combine tasks to jointly train a network. We also explore lasso regularization to encourage the network to factorize the information in its representation, and methods for "harmonizing" network inputs in order to learn a more unified representation. We evaluate all methods on ImageNet classification, PASCAL VOC detection, and NYU depth prediction. Our results show that deeper networks work better, and that combining tasks---even via a naive multi-head architecture---always improves performance. Our best joint network nearly matches the PASCAL performance of a model pre-trained on ImageNet classification, and matches the ImageNet network on NYU depth prediction.

Related Material

[pdf] [arXiv]
author = {Doersch, Carl and Zisserman, Andrew},
title = {Multi-Task Self-Supervised Visual Learning},
booktitle = {Proceedings of the IEEE International Conference on Computer Vision (ICCV)},
month = {Oct},
year = {2017}