Fast Multi-Image Matching via Density-Based Clustering

Roberto Tron, Xiaowei Zhou, Carlos Esteves, Kostas Daniilidis; Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2017, pp. 4057-4066


We consider the problem of finding consistent matches across multiple images. Current state-of-the-art solutions use constraints on cycles of matches together with convex optimization, leading to computationally intensive iterative algorithms. In this paper, we instead propose a clustering-based formulation: we first rigorously show its equivalence with traditional approaches, and then propose QuickMatch, a novel algorithm that identifies multi-image matches from a density function in feature space. Specifically, QuickMatch uses the density estimate to order the points in a tree, and then extracts the matches by breaking this tree using feature distances and measures of distinctiveness. Our algorithm outperforms previous state-of-the-art methods (such as MatchALS) in accuracy, and it is significantly faster (up to 62 times faster on some benchmarks), and can scale to large datasets (with more than twenty thousands features).

Related Material

author = {Tron, Roberto and Zhou, Xiaowei and Esteves, Carlos and Daniilidis, Kostas},
title = {Fast Multi-Image Matching via Density-Based Clustering},
booktitle = {Proceedings of the IEEE International Conference on Computer Vision (ICCV)},
month = {Oct},
year = {2017}