RGB-Infrared Cross-Modality Person Re-Identification
Ancong Wu, Wei-Shi Zheng, Hong-Xing Yu, Shaogang Gong, Jianhuang Lai; Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2017, pp. 5380-5389
Abstract
Person re-identification (Re-ID) is an important problem in video surveillance, aiming to match pedestrian images across camera views. Currently, most works focus on RGB-based Re-ID. However, in some applications, RGB images are not suitable, e.g. in a dark environment or at night. Infrared (IR) imaging becomes necessary in many visual systems. To that end, matching RGB images with infrared images is required, which are heterogeneous with very different visual characteristics. For person Re-ID, this is a very challenging cross-modality problem that has not been studied so far. In this work, we address the RGB-IR cross-modality Re-ID problem and contribute a new multiple modality Re-ID dataset named SYSU-MM01, including RGB and IR images of 491 identities from 6 cameras, giving in total 287,628 RGB images and 15,792 IR images. To explore the RGB-IR Re-ID problem, we evaluate existing popular cross-domain models, including three commonly used neural network structures (one-stream, two-stream and asymmetric FC layer) and analyse the relation between them. We further propose deep zero-padding for training one-stream network towards automatically evolving domain-specific nodes in the network for cross-modality matching. Our experiments show that RGB-IR cross-modality matching is very challenging but still feasible using the proposed model with deep zero-padding, giving the best performance. Our dataset is available at http://isee.sysu.edu.cn/project/RGBIRReID.htm.
Related Material
[pdf]
[supp]
[
bibtex]
@InProceedings{Wu_2017_ICCV,
author = {Wu, Ancong and Zheng, Wei-Shi and Yu, Hong-Xing and Gong, Shaogang and Lai, Jianhuang},
title = {RGB-Infrared Cross-Modality Person Re-Identification},
booktitle = {Proceedings of the IEEE International Conference on Computer Vision (ICCV)},
month = {Oct},
year = {2017}
}